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ABSTRACT 

This article presents a numerical algorithm using the Meshless Local PetrovGalerkin (MLPG) method for 
numerical simulation of unsteady incompressible flows, governed by the Navier–Stokes equations via the 
stream function–vorticity (ψ–ω) formulation. The driven flow in a square cavity is used as the model 
problem. The present method is a truly meshless method based only on a number of randomly scattered 
nodes. The multiquadrics RBFs are employed for constructing trial functions in the local weighted meshless 
local Petrov–Galerkin method. The present numerical algorithm is based on a local weighted residual method 
with the Heaviside step function as the test function over a local subdomain. The efficiency, accuracy and 
robustness of the numerical algorithm are demonstrated by the standard driven cavity. It is observed that the 
obtained results agreed very well with the results of Ghia. Therefore the ability and accuracy of the present 
numerical algorithm was presented by solving the standard driven cavity flow problem with reasonable 
accuracy when compared to solutions obtained by Ghia. In other words the benchmark computations indicate 
that the MLPG Meshless method is very effective in the simulation of fluid flow problems.  

Keywords: MLPG meshless method; Radial basis function; Vorticity-stream function; Shape functions; 
Navier-stokes equations; Heaviside step function.  

NOMENCLATURE 

C, η, β shape parameters 
dc characteristic length between node i and 

its neighbor nodes  
n number of nodes in the support domain  
rs radius of the support domain  
rQ radius of the quadrature domain 

(subdomain)  
Re Reynolds number 
t time 
u component of velocity in the x direction  
v component of velocity in the y direction  
W heaviside step weight function 

 dynamic viscosity               ߤ s dimensionless size of support domainߙ Q dimensionless size of quadrature domainߙ
uh(y,z) radial basis functions  ߁Q boundary of the quadrature domain   ߗQ quadrature domain (local subdomain)  ߗs support (interpolation) domain for point 
xQ ߩ density of the fluid  ߶(x)  shape function  ߱ vorticity ߙc dimensionless shape parameters for MQ  
ψ stream function 

1. INTRODUCTION

Due to the limitations of physical models such as 
the lack of adequate instruments and also problems 
due to the lack of complete similarity with real 
flow, obtaining laboratory results for most of the 
practical cases is not possible. Regarding these 
problems and advancement of computers, a method 
which is commonly used in recent years for flow 
analysis, is computational fluid dynamics. Unlike 
the experimental simulations, flow conditions and 

the dimensions of the domain in these schemes 
could easily be changed in order to fulfill the 
design and study purposes. One of the most 
important problems in the field of computational 
fluid dynamics is solution of the governing 
equations, which describes the incompressible fluid 
flow. Therefore the fluid flow behavior can be 
studied by solving the Navier-Stokes equations 
using numerical methods. Incompressible Navier–
Stokes flow in two dimensions is one of 
severalmajor problems in fluid mechanics that have 
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been extensively studied both theoretically and 
numerically. The numerical methods such as finite 
difference method (Jafari et al. 2011), finite 
volume method (Shirani et al. 2011; Harichandan 
and Roy 2012), and finite element method (Bunsri 
et al. 2008; Alam et al. 2016), are generally used. 
These methods have widely been used in 
computational fluid dynamics for solving the 
governing equations of flow field as the most 
important subjects in computational fluid 
dynamics. Therefore there are numbers of well 
known conventional numerical methods (Finite 
Element Method, Finite Volume Method and Finite 
Difference Method) but Finite Element Method 
(FEM), because of its versatility and flexibility is 
extensively used as an analysis tool in various 
engineering applications. However, on the other 
hand FEM suffers from drawbacks such as locking 
problem, element distortion, and loss in accuracy 
and the need for remeshing. The finite element 
method (FEM) has been established as a very 
powerful numerical technique for the analysis of 
space domain problems having arbitrary shapes. 
But it has some drawbacks. It has been observed 
that in the finite element method, mesh generation 
is a far more time-consuming and expensive task 
than the assembly and solution of the finite element 
equations. Moreover, there are certain classes of 
problems for which FEM is difficult, or even 
impossible to apply, like problems with 
discontinuities, moving boundaries, or severe 
deformations. For such problems, it has become 
necessary to find the methods, which may be 
somewhat more expensive from the viewpoint of 
computer time but require less time in the 
preparation of data. Meshless methods for 
numerical solutions of boundary value problems 
have generated much attention in recent years. In 
other words recently, a class of new methods, 
known as meshless methods, has been developed. 
Therefore development of efficient computational 
approaches for the numerical simulation of the 
steady and the unsteady viscous fluid flow has 
become a very important need in various fields of 
practical engineering. There are also recent 
developments in the applications of meshless 
techniques to fluid flow and groundwater flow 
problems (Saeedpanah et al. 2011). The 
meshless methods are an extensive area of 
research for solving CFD problems. 
Therefore meshless methods were established 
with the objective of eliminating the 
requirement of mesh generation step, which is 
time-consuming and burdensome, in FEM. Owing 
to these reasons, meshless methods have 
received much attention as a number of 
meshless methods have been introduced by 
different authors. These include smooth particle 
hydrodynamics (Chen et al. 2015; Monaghan 
1992), reproducing kernel particle method (Liu et 
al. 1995), the method of finite spheres (De and 
Bathe 2000), local boundary integral equation 
(LBIE) method (Zhu et al. 1998), the partition of 
unity method (Babuska and Melenk 1997), 
element-free Galerkin (EFG) method (Belytschko 
et al. 1994; 1996; Lu et al. 1994; Dolbow 
and Belytschko 1998), meshless local Petrov–
Galerkin (MLPG) method (Atluri and Zhu 1998a; 
Atluri and 

Zhu 1998b; Atluri and Shen 2002; Gu YT and Liu 
GR 2001 ), natural element method (Sukumar et al. 
1998), etc. The methods based on global weak form 
showed promising results but they suffer a 
drawback. They are not truly meshless methods, 
i.e. they are ‘meshless’ only in termsof the
interpolation of the field variables and have to use
background cells to integrate a weak form over the
problem domain. The MLPG method does not need
any ‘element’ or ‘mesh’ for either field
interpolation or background integration, and any
non-element interpolation scheme such as the
MLS, the PUM, or the RBFs can be used for trial
and test functions. The flexibility in choosing the
size and the shape of the local sub-domain leads to
a convenient formulation in dealing with non-linear
problems. The subdomain can be any simple
geometry such as circles, rectangles, or ellipses
centered at the field node in question in two
dimensions. Therefore the meshless local Petrov-
Galerkin (MLPG) method is a truly meshless
method, which requires no elements or background
cells, for either the interpolation or the integration
purposes. The concept of MLPG was first proposed
by Atluri and Zhu (1998a; 1998b), and later
discussed in depth in Atluri and Shen (2002).
Remarkable successes of the MLPG method in
computational mechanics have been reported in
recent years. The MLPG method was first applied
to solve the incompressible flow equations by Lin
and Atluri (2001). Lin and Atluri (2001) used the
MLPG method to solve the Stokes flow and the lid-
driven cavity flow problems. In their work, the
governing equations were based on the primitive-
variables formulation, but in the present work the
formulation is based on two equations including
stream function Poisson equation and vorticity
advection-dispersion-reaction equations. As
respects the advantages in using the vorticity-
stream function formulation for two-dimensional
computations are well known, then two equations,
vorticity transport and streamline poisson equations
are treated separately via their formulation in
advance and their behaviors are investigated. The
present numerical algorithm is based on a local
weighted residual method with the Heaviside step
function as the test function over a local
subdomain. The multiquadrics RBFs are employed
for constructing trial functions in the local
weighted meshless local Petrov–Galerkin method.
The driven cavity flows offer an ideal framework in
which meaningful and detailed comparisons can be
made between results obtained from experiment,
theory, and computation. In fact, as hundreds of
papers attest, the driven cavity problem is one of
the standards used to test new computational
schemes. Another great advantage of this class of
flows is that the flow domain is unchanged when
the Reynolds number is increased. Finally, the
ability and accuracy of the present numerical
algorithm was presented by solving the standard
driven cavity flow problem with reasonable
accuracy when compared to solutions obtained by
Ghia (1982). In other words the benchmark
computations indicate that the MLPG Meshless
method is very effective in the simulation of fluid
flow problems.
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2. RADIAL BASIS FUNCTION (RBF) 
INTERPOLATION 

In recent years, many numerical methods based on 
the radial basis functions have been introduced and 
improved for solving several types of computational 
fluid dynamics problems. The numerical methods 
based on the radial basis functions are truly 
meshless methods because these methods depend 
on a scattered set of nodes in the domain and they 
do not require any extra information. Therefore, 
these types of numerical techniques could be easily 
employed for dealing with high dimensional 
problems or models with complex geometric 
domain. This is the main advantage of numerical 
methods based on the radial basis functions. 
Meshless methods using radial basis functions have 
been gained quite importance due to their simplicity 
and straightforward implementation, and they are 
becoming a viable alternative as a method for the 
numerical solution of partial differential equations. 
The MLPG meshless method requires a local non-
element type interpolation or approximation to 
represent the trial function. The local approximation 
schemes like MLS, PUM, and RKPM use fictitious 
values at scattered nodes, and the local interpolation 
using RBFs enable trial functions that pass through 
the actual values of the unknown variables at 
scattered nodes, the later one is used in this present 
work. Consider a continuous function u(x) defined 
in a domain Ω, which is represented by a set of field 
nodes. The u(x) can be interpolated from the 
neighboring n nodes that are located in the gauss 
point xQ support domain by using radial basis 
functions as:    

         Q
T

Qi

n

i
iQ

h XaXGXaXgXXu  
1

,           (1) 

where gi(x) is the radial basis function in the space 
coordinates xT=[y,z], n is the number of nodes in 
the neighborhood (refers to the domain of 
interpolation) of xQ, and തܽi(xQ) are the coefficients 
for gi(x),respectively, corresponding to the given 
point xQ. It should be noted that the number (n) of 
the neighboring nodes of xQ is less than or equal to 
the total number of nodes in the global problem 
domain (nt) depending on the size of support 
domain specified. The vectors are defined as: 

 Tnaaaaa ,...,, 321                                            (2) 

        Tn
T XgXgXgXgG ,...,,, 321                 (3) 

The radial distance function in a vertical two 
dimensional domain is a function of Euclidean 
distance r defined as: 

    2122
iii zzyyr                                         (4) 

The radial distance function transforms a multiple 
dimensional problem into one dimension. Enforcing 
the interpolation to pass through all n scattered 
points within the point xQ support domain leads to 
the following set of equations for the coefficients തܽi(xQ): 
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which can be expressed in matrix form as follows: 

sUAa                                                               (6) 

Where  ns uuuuU ,...,,, 321  and A is the 

interpolation matrix of rank (n×n) as follows: 
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The coefficients can be obtained as: 

sUAa 1                                                            (8) 

where A−1 is the inverse matrix of A. Finally, the 
interpolation can be expressed as: 

      ss
Th UXUAXGXu  1                       (9) 

where A−1 is the inverse matrix of A. Finally, the 
interpolation can be expressed as: 

            XXXXXX nk  ,...,,...,,, 32   (10) 

in which 

    ki

n

i
ik AXgX ,

1




                                 

 (11) 

and ܣҧi,k is the (i,k) element of the matrix A-1. The 
derivatives of ∅k(x) can be obtained as follows: 
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There are several radial basis functions available. 
The most important three RBFs consisting 
Multiquadrics (MQ), Gaussian (EXP) and thin plate 
splines (TPS) are as follows (Franke 1982; Kansa 
1990; Hardy 1990). 

   22, Crzyg ii                                           (14) 
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where β , C and η are shape parameters that are 
used for fine tunning. The partial derivatives of 
these RBFs can be obtained as follows: 
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Multiquadrics RBFs (Eq. (14)) and partial derivatives 
of these RBFs (Eq. (17)) are used here. Therefore the 
MQ method is a special version of the radial basis 
functions method. In 1982 Franke tested a large 
number of interpolation methods for two dimensional 
scattered data, and found that MQ method was one of 
the most impressive. Also, according to Kansa and 
Hardy (1990) for its good performance in many cases 
we choose MQ as the radial basis function in this 
paper. Fig. 1 shows typical shape functions for two-
dimensional problem using MQ basis with an 
interpolation domain containing 5*5 nodes.   

3. GOVERNING EQUATIONS 

As seen in Fig. 3 the plate is moving with 
horizontal velocity U. As a result the flow field is 
not a surface flow. Consequently the terms 
relating to the Froude number vanish. Hence the 
general non-dimensional, non conservative form 
of the Navier-Stokes equations in a two 
dimensional problem in Cartesian coordinates 
system can be written as: 
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where u and v are the velocities in x and y direction 
respectively, p is the pressure, Re is the Reynolds 
number. With regard to the selected formulation, a 
specific numerical method should be taken, so that, 
pressure-velocity interfere is achieved. So, for the 
solution of the Navier–Stokes equations, it is 
essential to use a suitable form of the equations 
concerning the discretization of the domain and the 
boundary conditions. The dimensionless non 
conservative two-dimensional Navier–Stokes 
equations in stream function–vorticity (ψ–ω) 
formulation within closed domains in Cartesian 
coordinate system are as follows: 
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where ω, ψ and Re are the vorticity, the stream 
function and Reynolds number. The velocity 
components along x and y directions are denoted by 
u and v, respectively and are related with ψ and ω 
as follows: 
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Fig. 1. Shape functions for two-dimensional 

domain (25 nodes). a) Domain and nodal 
arrangement, b) shape function of central node, 

c) shape function derivative in x direction of 
central node, d) shape function derivative in y 
direction of central node, e) shape function for 
an edge node,  f) shape function for a corner 

node.3. 
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In the above equations, Re = UL/υ ,where υ is the 
kinematic viscosity. One of the advantages of using 
stream function–vorticity (ψ–ω) formulation lies in 
removing pressure gradient terms from the solution 
process, resulting in a higher numerical stability of 
the computational scheme. The pressure does not 
appear in the solution procedure and has no 
influence on the velocity field, a fact that is of 
course valid only for incompressible fluid 
approximation. The pressure can be computed after 
velocity field is being solved by the Poisson 
pressure equation: 
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4. DISCRETIZATION 

Meshless methods which use weak form of 
equations are categorized into global weak form and 
local weak form. EFG and RKPM are examples of 
global weak methods over entire domain ߗwhereas 
MLPG uses local weak form of equations over a 
local sub-domain of arbitrarily shaped ߗQ called 
quadrature domain, which is located entirely inside 
the global domain ߗ.This is the most distinguishing 
feature of the MLPG. In comparison to global weak 
form methods, local weak form will provide a clear 
concept for a local meshless integration of the weak 
form, which does not need any background 
integration cells over the entire domain. Also, it will 
lead to a natural way to construct the global 
stiffness matrix: not through the integration over a 
contiguous mesh, and by assembly of the stiffness 
matrices of the elements in the mesh, but through 
the integration over local sub-domains.  

4.1   Discretization of the Poisson Equation  

The 2-D Poisson equation of streamline with 
boundary conditions is as follows: 
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where ω is treated as a given source function, and 
thedomain Ω is enclosed by Γ = Γψ U Γt , Γψ is the 
essential boundary conditions, Γt is given, n is the 
outward unitnormal vector to Γ, Γψ and Γt are 
subsets of  Γsatisfying Γψת Γt =0  and Γψ  ݐ߁ ׫ = Γ. . 
As shown in Fig. 2 in the MLPG method, the local 
weak form of the Petrov-Galerkin residual 
formulation is used over a local quadrature domain 
ΩQ to establish discrete system equations. An 
arbitrarily shaped support domain can be used. 
Generally, a circle or rectangular support domain is 
used for convenience. A general weak form of Eq. 
(24) by applying the weighted residual method 
locally over the quadrature domain can be written as: 
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Fig. 2. The support domain and quadrature 

domain in constructing the discretized equation 
for node I. 

 
where ψ is the trial function and W is the test 
function. Using the divergence theorem, we obtain 
the local weak form as: 
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in which ΓQ is the boundary of the quadrature 
domain ߗQ and n is the outward unit normal to the 
boundary ΓQ. Imposing the natural boundary 
condition, Eq. (26), we obtain 
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in which ΓQt is a part of ΓQ, over which the natural 
boundary condition is specified; ΓQu is the 
intersection of ΓQ and the essential boundary Γu; ΓQi 
is the internal part of ΓQ on which no boundary 
condition is specified, as shown in Fig. 2. For a 
quadrature domain located entirely within the 
global domain, there is no intersection between ΓQ 
and Γ, and the integrals over ΓQu and ΓQt vanish. As 
shown in Fig. 2 ߗQ is the local test or weight 
function domain where w ≠ 0 (size rQ). Different 
local test functions can be used in the weak form 
(Eq. 27) which leads to different ways to construct 
the global stiffness matrix (Liu 2003). In fact, the 
MLPG method is a fundamental base for the 
derivation of many meshless formulations, since 
trial and test functions are chosen from different 
functional spaces. There are many options for the 
test function (Atluri and Shen 2002). One of these is 
the Heaviside step function. The Heaviside step test 
function maintains a unit value at the node and 
gives zero value at all other nodes. The feature 
makes the evaluation of the integrals and therefore 
the whole procedure more efficient. This is a big 
advantage of the Heaviside step test function. The 
formulation based on this test function is also one of 
most accurate methods among all options available 
so far, according to numerical investigations made 
in reference (Atluri and Shen 2002). In order to 
simplify in the weak form (Eq. 27), I deliberately 
select a test function W such that it vanishes on ߗQ. 
This can be easily accomplished by using the 
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Heaviside step function as the weight function, with 
the radius rw of the support of the weight function 
being replaced by the radius rQ of the local domain ߗQ, such that the domain integral vanishes. 
Therefore in this research in order to avoid the 
evaluation of any numerical integration in the weak 
form (Eq. 27), the Heaviside step test function is 
chosen as the test function in each sub-domain. 
Using the Heaviside step function as test function, 
the local weak form (Eq. 27) can be rewritten as: 
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Qi QQu Qt
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d
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Fig. 3. The cavity and its corresponding 

boundary conditions. 
 

It should be noted that because the system equations 
are established node by node, the process of 
assembly of the stiffness matrix is similar to that in 
the finite-difference method. That is, the entries in 
the ith row of the stiffness matrix are just the 
coefficients of the equation defined at node i. The 
use of the local weak form. for one node will yield 
only one linear equation involving ෠߰. Note that the 
trial function u within thequadrature domain ߗQ, in 
the RBF interpolation, is determined by the 
fictitious nodal values, ෠߰ within the "support 
domain'' for all gauss points xQ falling within ߗQ. 
The local weak form. Eq. (28), gives one algebraic 
equation relating all these ෠߰i. Thus, one obtains as 
many equations as the number of nodes. Therefore, 
we need as many local domains ߗQ as the number 
of nodes in the global domain to obtain as many 
equations as the number of unknowns. In the 
present implementation, the local domain is chosen 
as a circle, centered at a node xi. To obtain the 
discrete equations from the local weak form. (28), 
the RBF (9) is used to interpolation the trial 
function ψ. Substitution of Eq. (9) into Eq. (28) for 
all nodes leads to the following discretized system 
of linear equations: 

    fK                                                        (29) 

where, the entries of the "stiffness'' matrix K and the 
"load'' vector are defined by 

        dXXWXK iKkjij
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One can easily notice that the numerical integration 
in one local sub-domain gives two equations, 
without any global background integration mesh. 
Gauss quadrature is employed in each local sub-
domain centred at node xi. For each Gauss 
quadrature point xQ, RBF is performed to obtain the 
integrand. Therefore, for a node xi, there are two 
local domains: the test function domain ߗte for 
Wi≠0 (size rQ), and the interpolation domain ߗs for 
xQ (size rs). Fig. 2 shows the quadrature domain ߗQ 
of a node xi and the support domain ߗs for a gauss 
point xQ. These two domains are independent and 
defined as rs = αsdc and rQ = αQdc, respectively, 
where αs and αQ are dimensionless coefficients and 
dc known as characteristic length is the shortest 
spacing between node i and its neighbor nodes or 
the global boundary whichever is smaller. The 
number of nodal variables coupled in the Eqs. (30) 
and (31) changes according to the size (rs) of the 
support domain ߗs. 

4.2 Discretization of the Vorticity Transport 
Equation 

The vorticity transport equation is as follows: 




























2

2

2

2

Re

1

yxy
v

x
u

t

             (32) 

The boundary conditions are assumed to be: 
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                                              (33) 
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Where Γ߱ is the essential boundary conditions, Γt is 
the Neumann boundary conditions, ഥ߱. and ݐҧ are 
given, n is the outward unit normal vector to Γ, Γ߱ 
and Γt are subsets of  Γ. satisfying Γ߱ ת ݐ߁ ൌ0 and ߱߁ ׫ ݐ߁ ൌ  A general local weak form of  .߁
Eq. (32) by applying the weighted residual method 
over the quadrature domain can be written as: 
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By using the divergence theorem, the following 
local weak form is obtained: 
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For the temporal discretization of the vorticity 
transport equation (32), a first-order backward Euler 
scheme is used. 
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And enforcing the natural boundary conditions, the 
system equations are obtained as 

    fK                                             (39) 

where 
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In order to simplify the above equation, we 
deliberately select a test function W such that it 
vanishes on ߗQ. This can be easily accomplished by 
using the Heaviside step function as the weight 
function, with the radius rw of the support of the 
weight function being replaced by the radius rQ of 
the local domain ߗQ , such that the domain integral 
vanishes. Using this test function and rearranging 
the Eqs. (42) and (43) are obtained as: 
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4.3   Vorticity Boundary Condition  

The vorticity boundary condition does not exist 
explicitly and should be constructed. The method is 
based on Taylor series expansion of third order. The 
vorticity condition can be derived from the stream 
function, Eq. (24). Suppose the w is the point at the 
wall, i is the nearest interior point to the w along the 
direction -nw (nw is the outward unit normal to the 
boundary Γ at the point w). The distance between w 
and i is l. From Eq. (24), it is found that the 
implementation of voticity of conditions in 
equivalent to approximate the second-order 
derivatives of the stream function at the boundary, 
i.e.  2 2/w w

l     Taylor series expansion for ψi 

gives 

ww
wi l

l
l

l 





















2

2
2

2

1     

 4
3

3
3

6

1
lo

l
l

w













                                         (44) 

Neglecting the terms higher than third order, and 
substituting the Neumann boundary condition for ψ, 
i. e., ∂ψ / ∂l = 0 (because of u = v = 0), we have 
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Therefore 
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From Eq. (46), it is found that the boundary 
condition for ωw is an essential boundary condition 
type.        

5. COMPUTATIONAL RESULTS 

According to Perng and Street (1991), for its good 
performance for validation and simulation 
incompressible flows in geometrically complex 
domains, we choose square driven cavity flow 
problem as the benchmark in this research. Hence 
the square driven cavity flow problem is one of the 
most popular cases used for validation of numerical 
results. Also the fluid flow in a square cavity is one 
of the most difficult benchmark problems in flows 
of incompressible fluids. Therefore driven cavity 
flow problem is of the best benchmarks to verify 
numerical results. The complexity of the flow field 
in connection with a simple geometry makes this 
problem ideal for testing computational fluid 
dynamics codes. On the other side, the driven cavity 
problem can be found in a variety of important 
engineering applications, like flows in mixing 
vessels equipped with disk turbines, flows in 
polymer extruders and environmental flows. The 
problem domain with its boundary conditions is 
illustrated in Fig. 3. As a result the flow field is not 
a surface flow. Consequently the terms relating to 
the Froude number vanish. The imposed velocity 
field at the top moving wall of the cavity drives a 
large recirculation region inside the cavity. With 
increasing moving wall velocity and hence the Re 
number value, additional smaller recirculation 
zones appear in the corners of the cavity. For 
inspection of the computational results and showing 
the abilities of the Meshless Local Petrov-Galerkin 
(MLPG) method, the flow field in a square driven 
cavity was simulated using the above procedure. 
The results are summarized as follows:  

Calculations show that, when mesh is coarse, this 
solution procedure shows some instability. 
Therefore the test case was computed on two nodal 
densities. The coarse mesh consisted of 30*30 
nodes while the fine one consisted of 60*60 nodes 
(Figs. 4 and 5). For these series of calculations, only 
four characteristic Reynolds numbers were 
computed: 1000, 5000, 7500, 10000. Also, the 
comparison of results between the two meshes 
showed that the coarse mesh gave accurate results 
up to Re=5000, but was unable to give a converged 
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solution for Re=10000. It is noticed here that, for 
Re=10000 with the coarse mesh consisted of 30*30 
nodes no results are given but for Re<10000, a 
coarse mesh of 30*30 nodes predicts the solution 
with good accuracy. As Re increases, however, the 
inadequacy of coarse meshes gradually becomes 
apparent. The reason being that, this lower node 
distribution is incapable of capturing the velocity 
gradient within the boundary layer for Re=10000, 
resulting no stable solution. Also, as Re increased, 
very coarse meshes could not be included in the 
procedure. In other words when Reynolds numbers 
equal to and greater than 10000, the solution 
becomes unstable. This is due to the fact that, since 
the velocity gradient for Re=10000 is greater than 
that for Re=7500,and also since the boundary layer 
for Re=10000 is  thinner compared to that for R  e 
= 7 5 0 0 , t o  obtain a stable solution at Re=10000, 
the number of nodes must be increased and a 30*30 
node distribution is not enough. Hence for Re 
=10,000, the fine mesh was used. Therefore 
numerical simulations were performed on the mesh 
of 60*60 nodes. Finally, for higher Reynolds 
number, full convergence was obtained. On the 
other hand, the definition of convergence in the fine 
meshes appears to influence the final solution 
obtained. Therefore more precisely, for Reynolds 
numbers up to 5000, a fine mesh of 60*60 was 
used. Also, In order to accurately resolve high 
gradients of velocities and vorticities, the fine mesh 
have to be used.  

 

Fig. 4. Computational nodal density for driven 
cavity: (30*30). 

 

 
Fig. 5. Computational nodal density for driven 

cavity: (60*60). 
 

In fact, the employment of fine mesh is popular, 

particularly for simulation of the flow field at 
higher Reynolds numbers. As seen from Fig. 6 to 
Fig. 13, the fine mesh solutions exhibit additional 
vortices in or near the cavity corners as Re 
increases. It should be noted that the fine mesh 
solutions have been obtained very efficiently for 
high-Re flow using the Meshless Local Petrov-
Galerkin (MLPG) method and vorticity-stream 
function formulation. Therefore the fine mesh 
parameter in this procedure is considered very 
important. Finally, in view of the above remarks, 
the present fine mesh should be very useful. 

 

 
Fig. 6. Streamlines for Re=1000. 

 

 
Fig. 7. Vorticity isolines for Re=1000. 

 
The computations were performed for different 
Reynolds numbers, Re=1000, Re=5000, Re=7500 
and Re=10000, with the characteristic length, 
L=1m, and characteristic velocity, U =1m/s, and the 
no-slip and impermeable wall boundary conditions 
are imposed along the remaining walls (Figs. 6–19). 
All computations were performed by time stepping 
procedure, where the typical time steps were ∆t=1 
for Re=1000 and Re=5000 and ∆t=0.1 for Re=7500 
and Re=10000 (Figs. 6–15). From Fig. 6 to Fig. 13, 
the streamlines and vorticity contours for different 
Reynolds numbers, computed is shown, with the 
expected behavior. As it is shown in those Figs., 
there are no oscillations in the streamlines even at 
high Reynolds numbers. On the other hand, as 
shown in Figs. 6, 8, 10 and 12 in general, a two to 
four vortex structure is found depending on the 
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Reynolds number used. The pattern of the flow 
changes from two-vortex structure at low speeds to 
four -vortex structure at high speeds, as shown in 
Figs. 6, 8, 10 and 12. Hence, a two and four-vortex 
structure is analyzed and good results are claimed. 
In addition, the comparison of velocity profiles 
along the lines x = 0.5 and y = 0.5, is presented in 
Figs. 14 and 15. Reference (Ghia et al. 1982), is a 
classic benchmark, extensively used for 
comparison. In this reference, streamline-vorticity 
scheme is used and calculations for Reynolds 
number up to 10,000 are computed, showing good 
agreement with available data. As shown in Figs. 14 
and 15 the results of the computations are compared 
with the results of Ghia (1982) obtained by the 
FDM. In other words from Fig. 14 to Fig. 15, both 
velocity components and their comparison with the 
classical results of Ghia are shown. It is observed 
that the obtained results agreed very well with the 
classical results of Ghia. In other words as shown in 
Figs. 14 and 15 for different Reynolds numbers, the 
agreement is excellent. As seen from Fig. 6 to Fig. 
13, the fine mesh solutions exhibit additional 
vortices in or near the cavity corners as Re 
increases. Also, in Figs. 16 – 19, the pressure field 
is presented for different Reynolds numbers. It 
should be noted that as seen from Fig. 16 to Fig. 19, 
at the top and right side of the cavity, due to the 
intense flow variations, there exist intensive 
pressure variations. The pressure field, at this 
location, shows an expansion, while at the left edge 
a compression is observed. 

 
Fig. 8. Streamlines for Re=5000. 

 

 
Fig. 9. Vorticity isolines for Re=5000. 

 
Fig. 10. Streamlines for Re=7500. 

 

 
Fig. 11. Vorticity isolines for Re=7500. 

 

 
Fig. 12. Streamlines for Re=10000. 

 

 
Fig. 13. Vorticity isolines for Re=10000. 
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Fig. 14. Comparison of u velocity profiles at 

x=0.5. 
 

 
Fig. 15. Comparison of v velocity profiles at 

y=0.5. 
 

 
Fig. 16. Pressure distribution for Re=100. 

 

 
Fig. 17. Pressure distribution for Re=400. 

 
Fig. 18. Pressure distribution for Re=1000. 

 

 
Fig. 19. Pressure distribution for Re=2000. 

 

6. CONCLUSION 

In the present article, a numerical algorithm is 
presented for computation of unsteady 
incompressible flows, governed by the Navier–
Stokes equations in vorticity-stream function 
formulation. In other words, a numerical 
algorithm using the MLPG is extended and 
accurate calculations are claimed for different 
Reynolds numbers. A local multiquadrics RBFs 
technique using radial basis functions is used to 
construct the trial function entirely in terms of a 
set of scattered nodes. By using multiquadrics 
RBFs the nodes are treated according to their 
distances and not their coordinates. It can be seen 
that no special treatment is needed to impose the 
essential boundary conditions. The present 
method is based on a local weighted residual 
method with the Heaviside step function as the 
test function over a local subdomain. Therefore in 
this research in order to avoid the evaluation of 
any numerical integration in the weak form, the 
Heaviside step test function is chosen as the test 
function in each sub-domain. The efficiency; 
accuracy and robustness of the numerical 
algorithm are demonstrated by the standard driven 
cavity. The comparison of computational results 
with the results of Ghia shows that the present 
numerical algorithm is capable of accurate 
resolution of flow fields in complex geometries. 
Therefore the ability and accuracy of the MLPG 
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was presented by solving the standard driven 
cavity flow problem with reasonable accuracy 
when compared to solutions obtained by Ghia. In 
other words the benchmark computations indicate 
that the MLPG is very effective in the simulation 
of fluid flow problems. Finally, the consequence 
is that the present numerical algorithm should be 
very useful. 
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