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ABSTRACT 

The use of micro shock tubes has become common in many instruments requiring a high velocity and 
temperature flow field, for example in micro-propulsion systems and drug delivery devices for medical systems. 
A shock tube has closed ends, and the flow is generated by the rupture of a diaphragm separating a driver gas 
at high pressure from a driven gas at relatively low pressure. The rupture results in the movement of a shock 
wave and contact discontinuity into the low-pressure gas, and an expansion wave into the high pressure gas. 
The characteristics of the resulting unsteady flow for micro shock tubes are not well known as the physics of 
such tubes includes additional phenomena such as rarefaction and complex viscous effects at low Reynolds 
numbers. In the present study, computational fluid dynamics (CFD) calculations are made for unsteady 
compressible flow within a micro shock tube using the van-Leer MUSCL scheme and the two-layer ݇-ߝ 
turbulence model. Novel results have been obtained and discussed of the effects of using different diaphragm 
pressure ratios, shock tube diameters and wall boundary conditions, namely no slip and slip walls. 
 
Keywords: Shock wave propagation; Shock wave reflection; Computational Fluid Dynamics; Micro shock 
tube; Slip wall.  

NOMENCLATURE ܥ non-dimensional pressure gradient 
CS contact surface ܦ diameter 
EH expansion head ݀ு driver section diameter ݀ெ driven section diameter ݁ total energy per unit mass ܨ௥,  ௭ radial, axial body forces ℎ enthalpy ݇஻ Boltzmann constantܨ
Kn Knudsen number ܮ length ܮு driver section length ܮெ driven section length ܮ௭ଵ, ,݌ ௭ଶ monitoring positions Mୱ Mach number (shock wave) Mୡ Mach number (contact surface)ܮ ܲ pressure (static) 
Pr pressure ratio ݍ௥,  ௭ radial, axial heat fluxݍ

Re Reynolds number ݎ radial coordinate 
S scaling factor ܵ௨ sutherland constant 
SW Shock wave ܶ temperature ଴ܶ reference temperature ݐ time ݑ,  axial coordinate ݖ   radial, axial velocities ܼ axial distance ݓ
 Lennard-Jones length ߪ density ߩ ଴ reference viscosityߤ molecular viscosity ߤ distance from cell centre to wall ߜ mean free path ߛ ௩ momentum accommodation coefficientߙ thermal accommodation coefficient ்ߙ 

 
1. INTRODUCTION 

Micro shock tubes are used in many engineering 

applications, for example, micro turbines, micro 
combustors and needle-free delivery systems. A 
shock tube is a device which generates a moving 
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shock front and associated expansion and contraction 
waves by the sudden expansion of gas from a high 
pressure environment to a low pressure environment. 
The high pressure and low pressure regions are first 
separated by a diaphragm which then ruptures, 
resulting in a shock wave with the flow behind the 
shock wave induced to move by the shock wave 
propagation. 

The small flow dimension of a shock tube introduces 
additional flow physics, in particular, micro shock 
tubes experience shock attenuation from significant 
viscous effects at low Reynolds numbers. In 
addition, at high Knudsen numbers, there is slipping 
of the near-wall fluid due to non-continuum effects, 
and this acts to increase shock strength and aid shock 
wave propagation. 

Due to the low pressure and micro scale, viscous and 
rarefaction effects are greatly increased and this 
makes calculations and experimental results of the 
shock wave propagation and flow characteristics 
deviate from theoretical analysis (Zhang et al. 2015). 
However, a proper understanding of the shock 
propagation and associated flow field is important to 
determine fluid or particle momentum and efficiency 
of the device. In some devices knowledge of the 
temperature field is necessary to examine efficiency. 
It is well known that the limit for the continuum 
based simulations and molecular approaches are 
defined using a non-dimensional number called the 
Knudsen number (Kn) (Karniadakis and Beskok 
2002), which is the ratio of the mean free path to the 
flow diameter. A low Knudsen numbers of below 
0.01 indicates that continuum approaches are 
suitable for flow simulations. If the Kn is between 
0.01 and 0.1, then Navier-Stokes equations with slip 
wall boundary conditions represent the flow field 
very well. If Kn is greater than 0.1, simulations 
should be carried out using pure molecular 
approaches. In summary the higher the Knudsen 
number then the higher the mean free path which 
subsequently increases the molecular forces.  
Much work has already been done on macro tubes, 
starting with an experimental study by Duff (1959) 
who studied the viscous loss associated with the 
boundary layer growth in shock propagation. The 
decelerating shock front and the accelerating contact 
surfaces eventually lead to a stage where the shock-
contact interface tends to a constant value and moves 
with the same speed. Analytical modelling has been 
carried out by Mirels (1963) on the effect of 
boundary layer on shock wave propagation and 
Brouillete (2003) has proposed a scaling factor, S, 
which relates tube diameter and initial pressure to the 
shock attenuation. Diffusive effects of the friction 
and heat conduction were studied at low values of S 
in micro shock tubes and the results showed that the 
model predicted the shock wave at small scale to 
experience much loss in strength. Sturtevant and 
Okamura (1969) and Kohsuke et al. (2009) 
investigated the influence of the boundary layer on 
the shock wave propagation at different boundary 
conditions and good agreement was observed 
between simulations and theoretical results for the 
laminar region of the boundary layer. The wall 
friction and heat transfer effects on the shock wave 

propagation have been studied (Ngomo et al. 2010) 
and it was found that diffusive shear stresses and 
energy losses near the wall significantly led to shock 
wave attenuation. 

The application of unsteady Navier-Stokes equations 
coupled with the velocity slip and temperature jump 
boundary conditions has been applied to micro tube 
flows (Zeitoun et al. 2009; Zeitoun and Burtschell 
2006), with a strong decrease in the shock strength 
and flow velocity along the micro shock tube 
observed. The decay of shock wave strength was 
much stronger at lower initial pressure and small 
tube diameter. Based on the Knudsen number, 
computational studies to investigate the shock wave 
propagation under different pressure ratios, shock 
tube diameters with slip condition and no slip wall 
boundary conditions have been carried out (Arun and 
Kim 2012a; Arun and Kim 2012b). The results 
indicated shock wave propagation is attenuated by 
viscous boundary layer formation, and the decay of 
the shock wave increases drastically with reduction 
in diameter.  

The choice made here for discretization was the van-
Leer MUSCL scheme as opposed to a Riemann 
solver or an approximate Riemann solver (Roe 
1981). This scheme, was one of many oscillation-
free higher-order advection schemes launched in an 
effort to circumvent Godunov’s theorem (1959) 
which stated that to preserve monotonicity of the 
solution, the advection scheme should be at most 
first-order accurate. van-Leer (1984) regarded 
oscillations as the result of oscillatory interpolation 
of the discrete initial values and proposed the remedy 
therefore as consisting of introducing monotonicity-
preserving interpolation. The simplest higher-order 
schemes reconstruct a linear or quadratic distribution 
in a cell using three contiguous cell averages. 
Following Godunov (1959) van-Leer’s schemes 
included fluxes derived from the solution of 
Riemann problems and when combined with higher-
order reconstruction this led to upwind-biased 
differencing, hence the name MUSCL - Monotone 
Upstream Scheme for Conservation Laws. There is 
evidence from the review by Woodward and Colella 
(1984) that superior shock capturing ensues from 
such a high-resolution Godunov-type method, and so 
it was chosen for this work.  

The objective of the present study is to numerically 
simulate unsteady flow evolution, shock propagation 
and shock reflection inside a micro shock tube. 
Effects of different diaphragm pressure ratios are 
investigated and effects of the shock tube diameter 
on shock wave and contact surface propagation are 
also investigated. Different wall boundary conditions 
of no slip and slip walls were used to observe 
unsteady flow characteristics. The scaling parameter S indicating effects of the scale was calculated. 

2. MICRO SHOCK TUBE 

A micro shock tube essentially consists of a driver 
section, a driven section and a diaphragm used for 
separating the driver section and driven section as 
shown on Fig. 1. The driver section is always 
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initialized at high pressure and the driven section is 
kept at low pressure. Due to the pressure difference 
between driver and driven sections, when the 
diaphragm is ruptured instantaneously, the normal 
shock wave develops and moves towards the driven 
section. As the shock wave meets the end wall of the 
driven section, it is reflected and moves towards the 
driver section. The positions of two pressure 
transducers are shown where experimental results 
were obtained (Andong National University, 2016). 

 

 
Fig. 1. Schematic of a closed micro shock tube. 

 

3. GOVERNING EQUATIONS 

Transient, 2D axisymmetric calculations were made 
with compressible Navier-Stokes equations coupled 
with species transport equations to predict the 
change in flow parameters. The conservation 
equations used in this work were 

Continuity ߲ݐ߲ߩ + ݎ1 ݎ߲(ݑߩݎ)߲ + ݖߜ(ݓߩ)߲ = 0 (1) 

Axial Momentum ߲(ݓߩ)߲ݐ + ݎ1 ݖ߲(ݓݓߩݎ)߲ + ݎ1 =ݎ߲(ݓݑߩݎ)߲ −  ݖ߲݌߲

+ ݎ1 ݖ߲߲ ൥ߤݎ ൭2 ݖݓ߲߲ − 23 (∇ ∙  Ԧ)൱൩ݒ

+ ݎ1 ݎ߲߲ ൤ߤݎ ൬߲߲ݎݓ + ൰൨ݖ߲ݑ߲ +  ௭ܨ

(2) 

Radial Momentum ߲(ݑߩ)߲ݐ + ݎ1 ݖ߲(ݑݓߩݎ)߲ + ݎ1 ݎ߲(ݑݑߩݎ)߲ = −  ݎ߲݌߲

+ ݎ1 ݖ߲߲ ൤ߤݎ ൬߲ݖ߲ݑ + ݎݓ߲߲ ൰൨ 

+ ݎ1 ݎ߲߲ ൥ߤݎ ൭2 ݎ߲ݑ߲ − 23 (∇ ∙  Ԧ)൱൩ݒ

ߤ2− ଶݎݑ + 23 ݎߤ (∇ ∙ (Ԧݒ +  ௥ܨ

 

(3) 

Energy ߲(݁ߩ)߲ݐ + ݎ1 ݎ߲(ݑℎߩݎ)߲ + ݎ1 ݖ߲(ݓℎߩ)߲  (4) 

= ݎ߲ݑ߲   ൬2ߤ ݎ߲ݑ߲ − 23 ∇ߤ ∙ +Ԧ൰ݒ ݑ  ቆ23 ݑߤ2) − ∇ߤݎ ∙ ଶݎ(Ԧݒ ቇ 

+ ݖݓ߲߲ ൬2ߤ ݖݓ߲߲ − 23 ∇ߤ ∙ +Ԧ൰ݒ ߤ ൬߲ݖ߲ݑ + ݎݓ߲߲ ൰ଶ
 

ݑ+ ቆ1ݎ ݎ߲߲ ൭ݎ ൬2ߤ ݎ߲ݑ߲ − 23 ∇ߤ ∙  Ԧ൰൱ݒ

− 23 ݑߤ2) − ∇ߤݎ ∙ ଶݎ(Ԧݒ + ݖ߲߲ ൭ߤ ൬߲ݖ߲ݑ
+ ݎݓ߲߲ ൰൱ቍ 

ݓ+ ቆ1ݎ ݎ߲߲ ൭ߤݎ ൬߲ݖ߲ݑ + ݎݓ߲߲ ൰൱ 

+ ݖ߲߲ ൬2ߤ ݖݓ߲߲ − 23 ∇ߤ ∙ Ԧ൰൱ݒ − ݎ1 −ݎ߲(௥ݍݎ)߲ ݖ௭߲ݍ߲  

where ∇ݒԦ = డ௪డ௭ + డ௨డ௥ + ௨௥   (5) ݖ is the axial coordinate, ݎ is the radial coordinate, ݓ 
is the axial velocity, ݑ  is the radial velocity, ݌  is 
static pressure, ߤ is molecular viscosity, ݁ the total 
energy per unit mass, ℎ  is enthalpy, ݍ௥  and ݍ௭  are 
the respective radial and axial heat fluxes and ܨ is 
body force.  

The total energy per unit mass is evaluated from the 
total enthalpy per unit mass as ݁ = ℎ − ݌ ⁄ߩ    (6) 

The PHOENICS (Cham 2016) code together with 
some FORTRAN-coding sequences added through 
user-accessible subroutines was used for the 
computation of these equations. The flow was 
considered turbulent and solved as transient. The 
ideal gas equation was used to predict the variation 
of density with respect to temperature and pressure. 
The higher-order van Leer MUSCL scheme was 
used for the discretization of convection and a first-
order Euler scheme was used for the transient terms.  

At very low pressure, due to rarefaction the flow no 
longer attaches to the wall but slips. At these 
conditions a jump in the near wall fluid temperature 
can be observed. The slip wall boundary condition 
was performed at low pressure by using Maxwell’s 
slip velocity and temperature jump equations, as 
(Karniadakis 2000) ݓ௪ − ௚ݓ = ቀଶିఈೡఈೡ ቁ ఒఋ ൫ݓ௚ −  ௖൯   (7)ݓ
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௦ܶ − ௪ܶ = 2 ൬2 − ்ߙ்ߙ ൰ ߜߣ ൫ ௚ܶ − ௖ܶ൯ (8) 

ߣ = ݇஻ܶ√2ߪߨଶ(9) ݌ 

Here ߙ௩  and ்ߙ  are the momentum and thermal 
accommodation coefficients respectively, and the 
subscripts ݃, ݓ  and ܿ  indicate gas, wall and cell-
centre velocities respectively. ߣ is the mean free path 
 is the distance from the cell-centre to the wall, ݇஻ ߜ ,
is the Boltzmann constant and  ߪ  is the Lennard-
Jones characteristic length of species. The slip 
velocity is derived from Eq. (7) and the viscosity was 
modelled as a function of temperature using the 
Sutherland viscosity model 

ߤ = ଴ߤ ൬ ܶܶ଴൰ଵ ଶൗ ଴ܶ + ܵ௨ܶ + ܵ௨  (10) 

Here ߤ is the viscosity of the gas, ߤ଴ is a reference 
viscosity, ܶ  is the static temperature and ଴ܶ  is a 
reference temperature and ܵ௨  is the Sutherland 
constant.  

4. SHOCK TUBE THEORY 

The shock wave and contact surface are induced by 
the ruptured diaphragm. The shock wave and contact 
surface move toward the driven section with Mach 
numbers Mୱ and Mୡ. In an ideal shock tube, at fixed 
initial conditions, both in driver and driven sections, Mୱ and Mୡ can be calculated as ସܲܲଵ = ൜1 + ଵߛଵߛ2 + 1 ൫MSଶ − 1൯ൠ 

൜1 − ସߛ − ସߛ1 + 1 ସߙଵߙ ൬Mௌ − 1Mௌ൰ൠିଶఊర ఊరିଵൗ
 

(11) 

M஼ = ଵߛ1 ൬ ଶܲܲଵ − 1൰ 

ۈۉ
ඪۇ ଵߛଵߛ2 + 1ଶܲܲଵ + ଵߛ − ଵߛ1 + 1 ඪ 1 + ଵߛ + ଵߛ1 − 1 ଶܲܲଵߛଵ + ଵߛ1 − 1 ଶܲܲଵ + ቀ ଶܲܲଵቁଶۋی

ۊ
 

(12) 

The shock wave Mach number and contact surface 
Mach number keep constant in micro shock tubes 
(Zhang et al. 2015) as all boundary conditions are 
fixed. MS and MC increase with the increase of the 
diaphragm pressure ratio. However due to the 
attenuation which happens in the real shock tube 
flow resulting from viscous and rarefaction effects, 
shock wave and contact surface Mach numbers 
always show a difference from theoretical solutions. 
The shock wave Mach number gradually decreases, 
but contact surface Mach number gradually 
increases. The formation and development of the 
boundary layer behind the shock wave is the main 
reason for this (Zhang et al. 2015). 

4.1   Scaling Factor S 

Heat conduction and shear stresses make remarkable 
deviation in flow characteristics compared to ideal 

shock wave behavior in a micro shock tube as 
demonstrated by Brouillete (2003), where a control 
volume defined as the region between the shock 
wave and contact surface was proposed to quantify 
effects of the scale and diffusive transport 
phenomena on shock wave propagation as is shown 
on Fig. 2. 
 

 
Fig. 2. Control volume used in the study of 
diffusive effects in the micro shock tube. 

 
SW, CS and EH respectively represent shock wave, 
contact surface and expansion head. The friction and 
heat transfer to side walls are described by 
appropriate source terms through this control volume 
approach. As the shock wave and contact surface 
propagate in the driven section, the length of control 
volume becomes larger due to the velocity difference 
between the shock velocity and contact surface 
velocity. Based on the control volume, the scaling 
parameter S indicating effects of the scale was used 
as ݌ଶ݌ଵ = ଵߩଶߩ ቊ1 + ଵߛ − 12 MSଶ ቈ1 − ൬ߩଵߩଶ൰ଶ቉ቋ 

− ଵߩଶߩ ൬1S൰ 1MSPr ൤ ଶܲܲଵ ଶߩଵߩ − 1൨ 

(13) 

where, S = (Re ܦ) ⁄ܮ4 . Reynolds number and the 
distance ܮ are two important variables to calculate S, 
and the velocity, density and dynamic viscosity of 
the flow are obtained from the region between the 
shock wave and contact surface. The effects of the 
scale are investigated by calculating the Reynolds 
number and the decrease of the length of ܮ. Eq (13) 
indicates that a smaller S value will have obvious 
effects on calculating density ratio between the front 
and back of the shock wave. Lower Reynolds 
numbers and larger ܮ  values will contribute to 
smaller S values. If S becomes infinite, any effects of 
scaling can be ignored. This happens in shock tubes 
with large diameters and high Reynolds numbers. 

4.2   Pressure Gradient 

As a shock wave moves in a micro shock tube, the 
pressure gradient of the flow in front of and after the 
shock changes. The pressure gradient is related to the 
pressure difference in front of and after the shock 
wave and the distance across the shock wave. As the 
pressure gradient across a shock is fairly linear, the 
gradient can be calculated by ߲߲ܼܲ ≈ ฬ ௓ܲమ − ௓ܲభܼଶ − ܼଵ ฬ (14) 

where ௓ܲమ − ௓ܲభ  represents the pressure difference 
across the shock and ܼଶ − ܼଵ  is the distance of 
pressure change across the shock. 

The non-dimensional pressure gradient can be 
expressed as 
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ܥ = ߲߲ܼܲ ଵܦܲ = ฬ ௓ܲమ − ௓ܲభܼଶ − ܼଵ ฬ  ଵܦܲ
(15) 

 

It should be noted that the pressure gradient 
calculation ensuing from Eq. (14) cannot distinguish 
between expansion and compression shock waves or 
calculation near a solid wall. This first-order 
formulation is different from that used in the Navier-
Stokes calculations here. For these calculations a 
MUSCL based scheme was used which extends the 
idea of using a piecewise approximation to each cell 
by using limited left and right extrapolated states. 
This scheme takes the form ૚∆࢏ࢠ ቂ࢏ࡲା૚ ૛ൗ − ૚ି࢏ࡲ ૛ൗ ቃ                                     (16) 

where the numerical fluxes ࢏ࡲേ૚ ૛ൗ  correspond to a 

non-linear combination of first- and second-order 
approximations of the continuous flux function.  

5. COMPUTATIONAL STUDY 

5.1   Validation 

Validation of the computer code was made in two 
ways. First, 1D transient calculations were made 
inside a macro shock tube for which there is an 
analytical solution (Sod 1978). Phenomena such as 
shock waves, contact discontinuity and rarefaction 
waves are common to both macro and micro shock 
tubes but as already stated for micro shock tubes, 
under the influence of significant viscous effects, and 
at high Knudsen number, rarefaction effects also 
come into play. The tube length and time period were 
chosen so that the calculations end before the waves 
are reflected from the tube ends. The macro tube was 
10m long with a cross-sectional area of 0.1m2 and 90 
cells were used to cover the computational domain. 
In the driver region the initial pressure was set at 1 
bar, the temperature at 348.391 K and the gas density 
at 1.0 kg/m3. In the driven region the initial pressure 
was set at 0.1 bar, the temperature at 278.13 K and 
the gas density at 0.125 kg/m3. The wall friction 
effect is ignored and the energy equation solved as 
static enthalpy with an ideal-gas equation of state. 
The higher-order van Leer MUSL scheme is used for 
the discretization of convection and the default first-
order Euler scheme is used for the transient terms. As 
can been seen from Fig. 3, reasonable agreement was 
found between the calculated and analytical results. 
The region within the shock was well calculated but 
just at the beginning and end of the shock were not 
captured satisfactorily.  The van-Leer MUSCL 
scheme was used here as the default hybrid scheme 
found in PHOENICS can produce inferior results 
due to numerical smearing. However it can be seen 
that proper capture is still not evident due to clipping 
of the extrema. This may be due to the total variation 
diminishing (TVD) feature of the MUSCL scheme 
used, which of course is a serious drawback. To 
avoid this loss of accuracy near extrema, it seems 
necessary to satisfy the monotonicity preserving 
criteria due to Suresh and Huynh (1997) that enlarges 
the TVD intervals to provide room for the numerical 
flux to maintain an accurate value. This has already 
been carried out by Daru and Tenaud (2009) and it 

can be concluded that a better discretization scheme, 
which includes the enlargement of TVD intervals, 
should be used in future work. 
 

 
Fig. 3. Macro shock tube results for calculated 

solution compared to analytical solution at ࢚ = ૟. ૜૚ ms. 
 

The second validation method used was comparison 
with the experimental data of Park et al. (2014) 
where a micro shock tube with a 6mm diameter and 
a pressure ratio (Pr) of 6 was used with the driver 
region initially set at 6 atm and the driven region 
initially set at 1 atm. The shock wave and expansion 
wave propogation curves were obtained as shown on 
Fig. 4 where SW and EH represent the shock wave 
and expansion head respectively. 
 

Fig. 4. Experimental and calculated results for 
wave location at different times. 

 
The results show reasonable agreement although 
generally more attenuation occurred in the 
experimental study. This is probably due to the fact 
that real gas shows more viscous effects and there 
was heat transfer between the shock heated gas and 
tube walls. The walls were assumed to be adiabatic 
and held at 300K during the calculations.  

It can be concluded however that the calculation 
method used here is reasonably capable of predicting 
flow characteristics in micro shock tubes. 
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5.2   Computational Domain 

The computational domain consists of a driver and 
driven sections as shown on Fig.1. The dimensions 
used in this work were, the lengths of the driver (ܮு) and the driven (ܮெ) sections are 41mm and 
66mm respectively. The diameters of the driver (݀ு)  and driven (݀ெ)  sections are 20mm and 
7.5mm respectively. The domain was discretized 
using a structured, cylinder-polar grid. After 
performing grid independent solution tests the final 
grid used 120 radial by 1200 axial cells, of which 
60 radial by 720 axial cells are located in the driven 
section, and 120 radial by 480 axial cells in the 
driver section. The grid was refined close to solid 
wall using a geometric progression distribution. 
This is demonstrated for the region close to the end 
of the driven region on Fig. 5 where only selected 
grid nodes are shown to ensure clarity. Each 
simulation was run for a total of 0.5ms using the 
uniform time steps given in Table 1. The two-layer ݇-ߝ  turbulence model mention in Table 1 is that 
reported by Elhadidy (1980) and Rodi (1991) and 
uses the high Reynolds number ݇ - ߝ  turbulence 
model away from the walls in the fully turbulent 
region while the near-wall viscosity-affected layer 
is resolved with a one-equation model involving a 
length-scale prescription (Norris and Reynolds 
1975). During the calculations, no under-relaxation 
factors were used and the maximum residual for 
each variable was set at 10-4 to achieve 
convergence. Each case was computed on a Dell 
5500 Workstation with an Intel Xeon Six Core 
Processor (2.66 GHz) with 16GB RAM. 

 
Table 1 Main Computational Details 

Energy equation Static enthalpy (ℎ) 

Time step 0.5ߤs 

Velocity arrangement Staggered 

Turbulence model 2-layer ݇ −  ߝ

Solution algorithm Implicit SIMPLEST 

Time differencing 1st Order Euler 

Convection discretization MUSCL 

Elapsed run-time (0.5ms) 27.5 hours 

 

 
Fig. 5. Grid refinement near the end of driven 

region (full grid nodes not given to 
ensure clarity). 

 
Four cases were considered for the shock 
propagation study as tabulated in Table 2. As can be 
seen the value of the Knudsen number in each case 
was much less than 0.01 indicating that a continuum 

approach is suitable for these flow simulations. Case 
3 was included to investigate the effect if any of 
using wall conditions that slip. 
 
Table 2 Initial Conditions for Propagation Study 

Case 
Dia.* 

(mm) 
ସܲܲଵ ଵܲ 

(atm) 

Kn* × 10ି଺ T 

(K) 

Wall 

BC 

1 7.5 9 1 9 300 No slip 

2 3.75 9 1 18 300 
No 

Slip 

3 7.5 9 1 9 300 Slip 

4 7.5 18 1 9 300 No slip 

* driven region 

 
For all simulations, Sutherland’s law was used for 
the molecular viscosity together with a uniform 
specific heat of 1004 J/kgK, and in the energy 
equation, laminar and turbulent Prandtl numbers of 
0.71 and 0.86  were used respectively. 

6. RESULTS AND DISCUSSION 

The results for Case 1 produced by PHOENICS 
some 0.1ms and 0.2ms after rupture of the 
diaphragm are shown on Fig. 6 and Fig. 7 
respectively with corresponding centerline 
parameter values given on Fig. 8. Velocity profiles 
showing clearly the boundary layer are given on 
Fig. 9 at 

௭஽ = 0.5.  The contour plots are for 

temperature, pressure and absolute velocity and the 
normal shock is seen the move to the right through 
the driven section while the expansion wave is 
propagating to the left through the driver section. It 
can be seen that the shock wave gives the driven 
gas a severe acceleration accompanied by a jump 
of temperature and pressure.  

 

 
Fig. 6. Micro shock tube: Contour plots of field 

variables after 0.1ms. 
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Fig. 7. Micro shock tube: Contour plots of field 

variables after 0.2ms. 

 
There is a further increase in temperature and 
pressure within the driven gas when the shock 
reaches and is reflected back from the closed end 
wall. It can be argued that sharper waves and 
reflections just downstream of the diameter 
reduction in the driven section by using a 
turbulence model which produces smaller turbulent 
viscosities. The 2-layer ݇ ߝ-  turbulence model is 
known to introduce a smearing effect by producing 
excessive turbulent viscosities across shock waves 
and contact discontinuities. Case 1 was also run 
using the Sarkar et al. (1991) compressibility 
corrections to the 2-layer ݇ - ߝ  turbulence model 
which are intended to reduce the predicted 
turbulence levels due to dilatational effects in high 
speed flow by this change made no significant 
change to the calculations. 

Comparison of the calculated pressure histories 
with those measured at Andong National 
University (2016) over a time period of 0.5ms is 
shown on Fig. 10. The measurements were taken at 
distances ܮ௭ଵ and ܮ௭ଶ from the diaphragm location 
as shown on Fig. 1. The calculated results are 
broadly in line with the measurements with the 
shock wave arrival times at both sensor locations 
for both the initial and reflected shock wave. 
However there is a significant over-prediction of 
the pressure level within the driven section of the 
shock tube. This may be improved by using smaller 
time steps and/or the incorporation of a second-
order time differencing. More likely it is the 
problem already mentioned of the van Leer 
MUSCL scheme failing to capture properly the 
extrema of the shock. As with the Sod calculations 
(Fig. 3) incorporation of the suggestions of Suresh 

and Huynh (1997) may improve matters here. 
Further work is obviously needed to reduce the 
over-prediction. 

 

 
 

 
Fig. 8. Micro shock tube: Centreline distribution 

of variables after 0.1 and 0.2ms. 

 

 
Fig. 9. Micro shock tube: Velocity profiles at ࢠ ⁄ࡰ = ૙. ૞ after 0.1 and 0.2ms. 
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Fig. 10. Micro shock tube: Measured and 

calculated pressure histories at the sensors 
located at ࢠࡸ૚ and ࢠࡸ૛ (see Fig. 1). 

 
Two different initial driven pressures were used to 
study the shock wave propagation as shown in 
Table 2 (Case 1 and Case 4). The distributions of 
pressure gradient in front and after the shock wave 
were calculated using Eq. (15) and are shown on 
Fig. 11. At the beginning, the pressure gradient has 
a relatively high value, due to the smaller distance 
of pressure change across the shock wave. This is 
followed by much smaller changes in the pressure 
gradient and the changes may be considered 
linear. Generally, after the initial period, as the 
shock wave moves along the driven region, the 
pressure gradient slowly decreases due to the 
strength of the shock wave decreasing and the 
distance of pressure change across the shock wave 
increasing. When the pressure ratio (Pr) between 
driver and driven sections is doubled there is a 
considerable increase in pressure gradient across 
the shock wave which is maintained over the time 
period calculated. 
 

 
Fig. 11. Pressure gradient of the flow in front 

and after the shock wave for different pressure 
ratios. 

 
The Reynolds number values in the region between 
shock wave and contact surface were obtained at two 
different pressure ratios as shown on Fig. 12. The 
density, velocity and dynamic viscosity of the flow 
changed as the shock wave and contact surface 
moved along the driven region. The gradual increase 
in the Reynolds number with time for each of the two 
cases with is due to the flow velocity increasing in 
this region. As the initial pressure ratio is increased 
it can be seen that the Reynolds number decreases 
accordingly. 

Also calculated for Cases 1 and 4 was the scaling 
parameter S using Eq. (13) as shown on Fig. 13.  It 
can be seen that the S value decreased as the shock 

wave travelled through the driven region due to the 
fact that the distance ܮ (the distance between shock 
wave and contact surface) as used in the scaling 
parameter became larger with time.  

 

 
Fig. 12. Reynolds number distributions for 

different pressure ratios. 
 

 
Fig. 13. S value distributions for different 

pressure ratios. 

 
The S values found for the different Pr values follow 
the same pattern as found for the Reynolds numbers. 
The effect of incorporating different wall boundary 
conditions, i.e. slip and no slip conditions, was next 
examined. It is recognized that because the Knudsen 
numbers involved were very low there is no real need 
to use slip as the wall boundary conditions. However 
it is interesting to examine what difference using slip 
wall conditions has compared to no slip wall 
boundary conditions.  

The flow slipping near a wall bounded fluid reduces 
the wall drag effects and thereby increases the shock 
propagation distance compared to a no slip wall 
condition. The contact surface under slip conditions 
shows an opposite trend in its propagation distance, 
i.e. for a contact surface the slip flow reduces the 
wave propagation distance compared to the no slip 
wall conditions. It can be seen from Fig. 14 that the 
calculated results for Case 1 (No slip) and Case 3 
(Slip) follow the foregoing reasoning. 

The reduction in propagation distance for the contact 
surface under slip conditions has already been found 
by Duff (1959) who used a low pressure shock tube 
with non-rarefied gas flow. Duff (1959) suggested 
that the contact surface accelerated and comes closer 
to the shock wave as it propagates through the shock 
tube because of the leakage of hot gas past the 
contact surface through the boundary layer formed 
behind the shock front.  
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Fig. 14. Shock wave and contact surface 

locations for slip (Case 3) and no slip (Case 1) 
wall conditions over a time period. 

 

 
Fig. 15. Temperature ratio across the shock 

wave for slip (Case 3) and no slip (Case 1) wall 
conditions over a time period. 

 
The temperature ratio comparisons across the shock 
front for slip and no slip cases are shown on Fig. 15. 
The shock strength at any instance is a function of 
the temperature across the shock front and therefore 
it can be concluded that the shock strength for the 
slip case is greater than that for the no slip case. 

The effect of shock tube diameter is now examined. 
The simulation with a smaller tube diameter of 
3.75mm (Case 2) while keeping the pressure ratio 
and initial pressure the same as Case 1 shows that the 
shock strength ( a function of temperature) is reduced  
in a smaller diameter shock tube. Both Case 1 and 
Case 2 were calculated with no slip wall conditions 
and the comparison of the temperature along the 
centre-line for Case 1 and Case 2 are shown on Fig. 
16. 
 

 
Fig. 16. Temperature distributions for Case 1 

and Case 2 along the driven region centre-line at ࢚ = ૞૙࢙ࣆ. 
 
It is clear that for the smaller shock tube diameter 
case the temperature rise created by the shock wave 

is less when compared to the higher diameter case. 
This may be explained because the core flow volume 
bounded by the viscous loss region (i.e. the boundary 
layer) becomes still smaller and the energy 
dissipation becomes greater. 

The lower temperature rise for Case 2 within the 
shock wave and therefore the lower shock strength 
leads to a greater attenuation of the shock wave as 
the tube diameter decreases. It can be seen from 
Fig.17 that the shock position for Case 2 is much less 
with time than Case 1. Both Case 2 and Case 1 shock 
fronts always lag behind the ideal inviscid analytical 
solution of Eq. (11) using a theoretical Mach number M௦ of 2.1. 
 

 
Fig. 17. Shock location along the driven region 

centre-line for different tube diameters. 
 

7. CONCLUSION 

Numerical calculations have been made to 
investigate the unsteady flow evolution subjected to 
various initial conditions and diameters, within a 
micro shock tube. Reasons for shock attenuation and 
its dependency on initial pressure ratios, tube 
diameter and wall boundary conditions have been 
studied and discussed.  
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