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ABSTRACT 

Combined solutal and thermal buoyancy–thermocapillary convection in a square open cavity is studied 
numerically in the present article. The Forchheimer–Brinkman-extended Darcy model is used in the 
mathematical formulation for the porous layer and the COMSOL Multiphysics software is applied to solve the 
dimensionless governing equations. The governing parameters considered are the thermal Marangoni number, 
−1000 ≤ Ma_T ≤ 1000, the Darcy number, 10−5 ≤ Da ≤ 10−2, the porosity of porous medium, 0.4 ≤ ε ≤ 0.99 
and the Lewis number, 10 ≤ Le ≤ 200. It is found that the global heat and solute transfer rate decreases by 
reducing the counteracting surface tension force and increases by augmenting the surface tension force. The 
minimum values of the global heat and solute transfer rate were obtained about Ma_T = −90 for the all 
porosities. 

Keywords: Marangoni convection; Natural convection; Porous cavity; Forchheimer brinkman model. 

NOMENCLATURE

C,S concentration, dimensionless 
concentration  

D species diffusivity 
Da Darcy number 
F inertia coefficient 
g gravitational acceleration 
K permeability of the porous medium 
Le Lewis number 
Ma Marangoni number 
Ν kinematic viscosity 
N buoyancy ratio 
Nu Nusselt number 
Pr Prandtl number 
Ra Rayleigh number 
Sh Sherwood number 

α effective thermal diffusivity 
βC thermal expansion coefficient for 

concentration 
βT thermal expansion coefficient for 

temperature 
γC solutal surface tension gradient 
γT thermal surface tension gradient 
ℓ width and height of cavity 
ε porosity 
Θ dimensionless temperature 

Subscript 
C cold 
f fluid 
h hot 
0 reference value

 

1. INTRODUCTION 

Natural convection due to combined buoyancy effect 
of thermal and species diffusion in a fluid saturated 
porous medium has received considerable attention 
in the last two decades owing to its applications. The 
phenomenon of the combined buoyancy effect is 
usually referred to as double diffusive convection. 
The theoretical work for double diffusive convection 
in a porous cavity has been pioneered by Nithiarasu 

et al. (1985), Mamou et al. (1995). They applied 
Darcy models for the porous layer. Goyeau et al. 
(1996), Nithiarasu et al. (1996), Karimi-Fard et al. 
(1997) applied non-Darcy models for the porous 
layer. Chamkha (2002) included the heat generation 
and absorption effects in the porous cavity. He 
concluded that the average Nusselt and Sherwood 
numbers decrease as a result of heat generation and 
increase as a result of heat absorption. Liu et al. 
(2008) included the solute sources and Tofaneli and 
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de Lemos (2009) considered the turbulent natural 
convection. Al-Farhany and Turan (2012) showed 
that the average Nusselt and Sherwood numbers 
decrease when the inclination angle of the cavity 
increases. Benissaad and Ouazaa (2012) used the 
model of Darcy and a porous medium saturated by a 
binary fluid. An excellent agreement between the 
analytical solution and the numerical simulation 
were obtained. Hadidi et al. (2016) considered the 
heat and mass transfer generated horizontal partially 
porous enclosure. Recently, Ghalambaz et al. (2016) 
investigated natural convection and two different 
chemical components have dissolved in the fluid 
saturated porous medium which have separate 
concentrations. 

Double diffusive and Marangoni convection in a 
cavity filled with viscous fluid was studied by Arafune 
and Hirata (1998). They found the concentration field 
changes by the existence of solutal Marangoni 
convection. Jue (1998) considered the similar 
configuration and found the Marangoni effect 
enhances or decreases the circulation strength. 
Marangoni convection occurs when the surface 
tension of an interface (generally liquid-air) depends 
on the concentration of a species or on the 
temperature. Marangoni convection may be called 
thermocapillary convection. Previously, the 
theoretical work for natural and Marangoni 
convection has been pioneered by Strani et al. (1983). 
They concluded that the surface deformation had a 
negligible influence on the qualitative aspects of the 
flow-field structure at low crispation number. 
Srinivasan and Basu (1986) found that buoyancy 
driven flow has been shown to be negligible compared 
to surface tension gradient driven flow in laser 
melting. Bergman and Ramadhyani (1986) 
investigated numerically the characteristics of 
buoyancy driven flow in a square cavity. They showed 
that surface tension significantly alters the buoyant 
flow. The boundary layer scalings for buoyant and 
thermocapillary convection have been established 
well Carpenter and Homsy (1989). Then, Hadid and 
Roux (1992) analyzed a shallow cavity and showed 
that surface tension can have a quite significant effect 
on the stability of a primary buoyancy driven flow. 
Effects of a magnetic field on the combined 
convection were studied by Rudraiah et al. (1995) and 
Hossain et al. (2005). Saleem et al. (2011) examined 
a square cavity whose right wall is kept open for flow 
entrainment and exit. Recently, Arbin et al. (2016) 
reported the effect of the Marangoni number, Lewis 
number and heater size on the contours of streamlines, 
isotherms, isoconcentrations, masslines and heatlines 
in an open top square cavity with partially heated and 
salted from the side. 

In this paper, double diffusive–thermocapillary 
convection in a square cavity is investigated. The 
convective flows induced by the combined action of 
both temperature and solutal gradients in porous 
media has surged in view of its importance in many 
engineering problems, such as migration of moisture 
contained in fibrous insulation, grain storage, the 
underground disposal of nuclear wastes, and drying 
processes in the top-free cavity, especially under a 
small-scale system or under low-gravity 

hydrodynamics environment. The non-Darcy model 
is used for the porous layer. Two opposing walls of 
the cavity are maintained at fixed but different 
temperatures and concentrations, while the other two 
walls are adiabatic. The results are presented in term 
of stream functions, isotherms, isoconcentration 
lines and Nusselt and Sherwood number. 

 

a  

b  
Fig. 1. (a) Schematic representation of the model, 

(b) Mesh distribution. 
 

2. MATHEMATICAL FORMULATION 

Consider a square cavity as shown in Fig. 1. The left 
wall is kept at high temperature (Th) and high 
concentration (Ch), the right wall at low temperature 
(Tc) and low concentration (Cc) and the bottom and 
top walls are adiabatic. The top free surface is 
assumed to be flat and non–deformable which 
corresponds to a situation with very high surface 
tension. The surface tension, σ, on the upper 
boundary is assumed to vary linearly with 
temperature and concentration gradients as: 

σ=σ0[1-γT(T-T0)-γC(C-C0)]                               (1) 

where T0=(Th+Tc)/2 is the mean temperature, 
C0=(Ch+Cc)/2 is the mean mass fraction, 
γ=(1/σ0)(∂σ/∂T) is the temperature coefficient of the 
surface tension, σ0 is a reference surface tension. The 
fluid is assumed to be Newtonian and incompressible. 
The flow is steady and laminar and further we assume 
that there is no internal heat generation, absorption, 
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Soret, Dufour or viscous dissipation. No–slip 
conditions are applied on all boundaries, except the case 
where the upper free surface relates the velocity 
gradient to the temperature gradient. Finally, the 
direction of the gravitational force is in the negative y-
direction. Under the above assumptions, the 
conservation equations for mass, momentum and 
energy in a two–dimensional Cartesian co–ordinate 
system are (Hossain et al. (2005)): 
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The appropriate boundary conditions are: 

u=v=0, C=Ch and T=Th at x=0                       (7) 

u=v=0, C=Cc and T=Tat x=ℓc                         (8) 
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The dynamic boundary conditions on the top free 
surface relates the velocity gradient to the 
temperature gradient and this represents the balance 
between the shear stress and the surface tension 
gradient at surface which is responsible for 
establishment of thermocapillary flow in the cavity. 

Equations (2) through (10) can be reduced (after 
eliminating the pressure gradient terms) and made 
dimensionless by using the following variables: 
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to result the following dimensionless equations: 
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to result the following dimensionless equations: 
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where F = 1.75/( √150ε3/2) is the inertia coefficient 
according to the Ergun (1952) correlation. 

3. NUMERICAL METHOD AND 
VALIDA TION 

The governing equations along with the boundary 
conditions are solved numerically by the CFD 
software package COMSOL Multiphysics. 
COMSOL Multiphysics (formerly FEMLAB) is a 
finite element analysis, solver and simulation 
software package for various physics and 
engineering applications. We consider the 
following application modes in COMSOL 
Multiphysics. The Incompressible Laminar Flow 
Equations mode (spf) for Eqs. (12)–(14), the Heat 
Transfer Equations mode (ht) for Eq.(15) and the 
Heat Equations mode (hteq) for Eq.(16). In this 
study, mesh generation on square cavity is made 
by using triangles. The triangular mesh 
distribution is shown in Fig. 1(b). P2-P1 Lagrange  
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Fig. 2. Comparison of the present computed steady state streamlines, isotherms and isoconcentration 
(left) against that of literature (right) for a pure fluid, ε=0.99, Da=107, Pr=7.6, N=5, Le=10, RaT=103, 

MaT=MaC=−100. 

 
elements and the Galerkin least-square method are 
used to assure stability. 

Several grid sensitivity tests were conducted to 
determine the sufficiency of the mesh scheme and to 
ensure that the results are grid independent. We use 
the COMSOL default settings for predefined mesh 
sizes, i.e. extra coarse, coarser, coarse, normal, fine, 
finer, extra fine and extremely fine. In the tests, we 

consider the parameters MaT = 100, N = 5, Pr = 1, Ra 
= 103 and Da = 10−2 as tabulated in Table 1. 
Considering both accuracy and time, an extra fine 
mesh size was selected for all the computations done 
in this paper. As a validation, our results for the 
isotherms compare well with that obtained by Jue 
(1998) for a special case, pure fluid, ε = 0.99, Da = 
107, Pr = 7.6, N = 5, Le = 10, RaT = 103, MaT = MaC 

= −100 as shown in Fig. 2. 
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Table 1 Grid sensitivity checks at MaT=100, N=5, Pr=1, Ra=103 and Da=10−2 

Predefined mesh size Mesh elements Nu  Sh  CPU time (s) 

Extra coarse 286 1.0504 8.3246 3 

Coarser 451 1.0340 8.1739 4 

Coarse 865 1.0226 7.8188 5 

Coarse 1273 1.0173 7.6723 5 

Fine 2220 1.0131 7.5209 7 

Finer 5577 1.0110 7.2511 12 

Extra fine 14105 1.0099 7.1343 28 

Extremely fine 23875 1.0092 7.1468 55 

 
4. RESULTS AND DISCUSSION 

The analysis in the undergoing numerical 
investigation are performed in the following range 
of the associated dimensionless groups: the 
thermal Marangoni number, −1000 ≤ MaT ≤ 1000, 
the Darcy number, 10−5 ≤ Da ≤ 10−2, the porosity 
of porous medium, 0.4 ≤ ε ≤ 0.99 and the Lewis 
number, 10 ≤ Le ≤ 200. The buoyancy ratio, 
Prandtl number and the Rayleigh number are fixed 
at N = 5, Pr = 1 and Ra = 103, respectively. The 
solutal Marangoni number is considered equal to 
the thermal Marangoni number for the all figures. 

Figure 3(a)-(d) show the effects of MaT on the 
flow, thermal and concentration fields in the 
porous cavity with constant values of Le = 10, Da 
= 10−2 and ε = 0.7. As can be seen in Fig. 3, the 
ambient fluid interacts with the fluids inside the 
cavity at upper part the opening and the fluid near 
the hot wall receives some heat from the heating 
wall that rise the fluid temperature and 
concentration. The hot fluid has lower density than 
the cold fluid. This creates a flow circulation in the 
cavity, but at a strong, negative thermal 
Marangoni number (Fig. 3(a)), the flow circulation 
is driven by surface tension convection. The 
capillary driven convection is opposite to 
buoyancy driven convection. The vortex driven by 
surface tension occupies half of the domain and 
impels the isoconcentration lines to be denser at 
the top right comer. The counteracting case 
displays a decreased value of the absolute Ψmin, 
and the turning point exists much closer to the top 
surface for a lower counteracting surface tension 
force For the MaT = −100, the Marangoni 
convection flow produces less influence and 
dominates less area than that of the MaT = −1000 
case. This condition does not occur at the 
augmenting case. The penetration area does not 
increase prominently by increasing the positive 
Marangoni number. The strength of the flow 
circulation increases significantly by increasing 
the positive Marangoni number (known from 

Ψmax values). The boomerang shape can not be 
found here, because the surface tension flow aids 
the buoyancy flow. 

Figure 4(a)-(d) show the effects of Da on the flow, 
thermal and concentration fields in the porous 
cavity with constant values of Le = 10, MaT = −100 
and ε = 0.7. The intensity of the main flow at the 
bottom portion due to gravity force weakens by 
increasing the Darcy number. On the other hand, 
the intensity of the secondary flow at the top 
portion due to thermocapillary force strengthens 
by increasing the Darcy number. The 
concentration buoyancy convection is greater than 
the thermal convection in this condition with N = 
5 for the all cases. The isotherms and 
isoconcentration display similar structure at 
relative low Darcy number. When the Darcy 
number increases, the flow is fast, Darcys forces 
are also very large and tend to reduce the velocities 
at the edge of the solutal boundary layers instantly. 
Hence, the rest of the cavity is almost stratified. In 
the stratified areas, the mass transfer is mostly 
restricted to the diffusive mechanism. 

Figure 5(a)-(d) show the effects of Le on the flow, 
thermal and concentration fields in the porous 
cavity with constant values of Da = 10−2, MaT 
=−100 and ε = 0.7. The thermosolutal convection 
weakens and Marangoni convection strengthens 
by increasing Lewis number. When the Lewis 
number increases, the thickness of the boundary 
layer decreases, and hence, the buoyancy force 
due to mass transfer could be distributed in a 
narrow area; as a result, the induced velocities in 
the cavity are coarse. 

Figure 6 (a) illustrates the variation of average 
Nusselt number along the hot and cold walls 
versus Darcy number for ε = 0.7 and MaT = −100 
at different values of Lewis number. It is noticed 
that the average Nusselt number values are 
increased exponentially for the for the all values 
of Lewis number. The increased Darcy number 
leads to enhanced fluid movement. The existence  
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(a) MaT = −1000 

 

 
(b) MaT = −100 

 

 
(c) MaT = 100 

 

 
(d) MaT = 1000 

Fig. 3. Streamlines (left), isotherms (middle) and isoconcentrations (right) evolutions by varying 
thermal Marangoni number for  $Le=10$, $Da=10^{-2}$ and $\epsilon=0.7$. 
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(a) Da = 10-5 

 

 
(b) Da = 10-4 

 

 
(c) Da = 10-3 

 

 
(d) Da = 10-2 

 

(e) Fig. 4. Streamlines (left), isotherms (middle) and isoconcentrations (right) evolutions by 
varying the Darcy number for Le=10, MaT=−100 and ε=0.7. 
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(a) Le = 10 

 

 
(b) Le = 30 

 

 
(c) Le = 80 

 

 
(d) Le = 200 

(e) Fig. 5. Streamlines (left), isotherms (middle) and isoconcentrations (right) evolutions by 
varying the Lewis number for Da = 10−2, MaT = −100 and ε = 0.7. 
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Fig. 6. Average Nusselt number (a) and Sherwood number (b) on the hot wall (left) and the cold wall 
(right) with Da for different Le at ε=0.7 and MaT=−100. 

 
 
of an asymptotic convection regime where the Nuh 
and Nuc are independent of the Darcy number for the 
four Lewis number. Careful investigation shows that 
the average Nusselt number remains constant up to 
Da = 8.3 × 10−4. The average Nusselt number are 
observed identic for the different Le value. Later, the 
Nu is no longer identic, higher Lewis number gives 
lower Nu values. This due to as the Lewis numbers 
increases, the induced buoyancy forces, due to mass 
transfer effects, are strong, but the effective regions 
are very limited. The differences grow explicitly by 
increasing the Darcy number. Contrast to the Nu, the 
Sh increases with increasing the Lewis number for 
Da > 8.3 × 10−4. The Shh and Shc values are almost 
equal for each Da. The onset of solutal diffusivity 
starts at lower Da for greater Le, but the onset of 
thermal convection starts at the same Da for the all 
Lewis number. 

Variations of the average Nusselt number along the 
hot and cold walls with the Darcy number are shown 
in Fig. 7 (a) for different values of thermal 

Marangoni number MaT at ε = 0.7 and Le = 

10. In general, the heat transfer increases with 
increasing the Darcy number. This is due to the 
porous matrix become more permeable at larger Da 
that increasing flow intensity. The strongest 
counteracting surface tension gives the highest 
average Nusselt number along the hot wall, while the 
strongest augmenting surface tension gives the 
highest average Nusselt number along the cold wall 
for the considered Da. The Nuh and Nuc are almost 
constant by increasing the Darcy number for MaT = 
−100, 100. They also remains unchanged by 
changing the MaT = −100 to MaT = −100 for Da < 
10−3. It contrast to changing the MaT =−1000 to MaT 
= 1000 where the Nuc remains unchanged for Da > 
10−3. Similar to the Nu, the Sh increases with 
increasing the Darcy number. The strongest 
counteracting surface tension gives the highest 
average Sherwood number along the hot wall for all 
Da, but it gives the lowest Sh in range Da < 10−4  
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Fig. 7. Average Nusselt number (a) and Sherwood number (b) on the hot wall (left) and the cold wall 
(right) with Da for different MaT at ε=0.7 and Le=10. 

 

 

(Darcy regime) and the highest Sh in range Da > 10−3 
(non-Darcy regime). From the Nu and Sh profiles in 
the Fig. 7 also observes that the presence of the 
thermocapillary force effects at the non-Darcy 
regime had greater influence than those at the Darcy 
regime. 

Figure 8 (a) shows the average Nusselt number along 
the hot and cold walls against the Marangoni number 
for different porosities at Le = 10 and Da = 0.01. As 
shown in the figure, the Ma varies from -1000 to 
1000. The Nuh and Nuc decreases by reducing the 
counteracting surface tension force and increases by 
augmenting the surface tension force. In general, 
increasing the porosities increases the Nuh and Nuc 
for the considered MaT . This is due to low porosity 
means more resistance to fluid flow. It observed that 
the insignificant effect of changing the porous 
medium porosities were obtained about MaT = −90. 
This location also presents the minimum values of 

the both Nusselt number. The Sher-wood numbers is 
also showed minimum about the MaT = −90 as 

displayed in Fig. 8 (b).Similar to the Nu , the hSh  

and cSh decreases by reducing the counteracting 

surface tension force and increases by augmenting 
the surface tension force. This happen because the 
heat transfer rate and mass transfer rate are enforcing 
for the augmenting case, but both rates are 
suppressed by the local flow direction opposite to the 
main flow direction for the counteracting case. 

5. CONCLUSIONS 

The present numerical simulation study the double-
diffusive natural and Marangoni convection in a 
porous cavity. The dimensionless forms of the 
governing equations are modelled and solved using  
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Fig. 8. Average Nusselt number (a) and Sherwood number (b) on the hot wall (left) and the cold wall 
(right) with Ma for different ε at Le=10 and Da=0.01. 

 

 

the COMSOL program. Detailed computational 
results for flow, temperature and concentration field 
and the heat transfer rate in the cavity have been 
presented in the graphical form. The main 
conclusions of the present analysis are as follows: 

1. The thermosolutal convection weakens while 
Marangoni convection strengthens by increasing 
the Lewis and Darcy numbers. The presence of 
the Marangoni forces effects at the non-Darcy 
regime had greater influence than those at the 
Darcy regime. 

2. The performance between the global heat and 
solute transfer is significantly varied at relative 
small thermocapillary force effects. 

3. The global heat and solute transfer rate decreases 
by reducing the counteracting surface tension 
force and increases by augmenting the surface 
tension force. The minimum values of the global 
heat and solute transfer rate were obtained about 

MaT = −90 for the all porosities. 
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