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ABSTRACT 
This paper aims to present a detailed analysis of the free vibration of a cantilever microbeam submerged in an 
incompressible and frictionless fluid cavity with free boundary condition approach. In other words, in addition 
to the kinematic compatibility on the boundary between microbeam and its surrounding fluid, equations of the 
potential functions are modeled assuming the free boundaries. Galerkin’s method is used for simulations. The 
results of the proposed model are validated by comparing with the early analytical and numerical studies of 
pertinent literature. Finally, it is inferred that by involving the free boundary conditions, which is closer to the 
physical reality, the natural frequencies of the system have instability, especially in higher modes. In addition, 
the values obtained for natural frequencies are smaller than what were calculated by fixed bounary approach. 
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1. INTRODUCTION

The theory of beams have been studied over the 
years by many scientists in various majors. 
Microbeams with different end conditions are used 
in many micro-devices such as biology, geology, 
micro-resonators, nuclear science, and micro-
actuators, Hung (1999). Fluid-structure interaction 
problems have been considered since 1963 (Eisley 
(1964), Leissa (1969), Liang (2012)). Lindholm et 
al. (1965) examined the vibration of cantilever 
plates in air and water in 1965. They compared their 
results with theoretical predictions using simple 
beam theory and thin-plate theory. Atkinson and 
Manrique de Lara (2007) provided a method to 
calculate the frequency response of a rectangular 
cantilever plate vibrating in a viscous fluid. Their 
work dealt with obtaining an expression related to 
the pressure of the surrounding fluid on the plate. 
This expression constituted the fluid reaction 
needed to solve the balance of forces on the plate. 
Esmailzadeh et al. (2008) studied numerically the 
dynamic behavior of a 3D thin flexible structure in 
invisid incompressible stationary fluid using a 
combination of classical thin plate theory and finite 
element analysis. Rezazadeh et al. (2009) 
investigated the effects of surrounding fluid on the 
mechanical behavior of electrostatically actuated 
cantilever micorbeams. They considered that 
increasing the aspect ratio of the beam of increasing 
the fluid density increases the added mass and 

decreases the natural frequency of the beam. 

Akgoz and Civalek (2014) studied thermo-
mechanical buckling behavior of functionally 
graded microbeams embedded in elastic medium 
based on trigonometric shear deformation beam and 
modified coupled stress theories. They determined 
effects of thickness to material length scale 
parameter ratio, material property gradient index, 
length to thickness ratio and temperature change. 
Wang et al. (2015) introduced a mathematical 
model and a numerical algorithm for the bending 
and post-buckling of a microbeam within the 
context of Euler- Bernoulli beam theory involving 
geometric nonlinearity. 

Park and Kim (2005) studied the existence of the 
solution to the mixed problem for Euler-Bernoulli 
beam equation with memory condition at the 
boundary. They proved that the energy decay with 
the same rate of decay of the relaxation function. In 
this paper, we present a detailed analysis of the 
frequency response of a cantilever beam submerged 
in fluid and excited by an arbitrary driving force 
with free boundary approach. It is important to 
mention that we do not neglect the free boundary 
effects. The dynamic response of an 
electrostatically actuated micro-beam immersed in 
an incompressible viscous fluid cavity was analyzed 
with free boundary approach by Abdollahi et al. 
(2016a). 

The approach of this study is based on both finite 
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difference and finite element methods for the 
solution of cantilever microbeam. An imaginary 
fluid-fluid interface with equal kinematic conditions 
around the beam-fluid interface is considered for the 
analysis of the derived eigenvalue problem. 
Galerkin’s method is applied for the simulation of 
the proposed system, because of its ability to deal 
with complex 2D and 3D domains with ease. 
Moreover, we would be able to overcome the 
nonlinearity of the boundary conditions in free 
boundary approach by this method. Furthermore, we 
have used the free vibration modes of beam in air as 
basis in our simulation. 

In Section 2, the governing equations are derived 
from applying linear superposed mode shapes. 
Section 3 verifies the model for various aspect and 
thickness ratios. In Section 4, an example is 
investigated by free boundary conditions. Finally, 
Section 5 completes this study with a brief 
conclusion. 

2. MATHEMATICAL MODEL 

The free vibration and natural frequencies of a 
cantilever microbeam submerged in a bounded 
incompressible and inviscid fluid domain was 
analyzed by Shabani et al. (2013) regarding fixed 
boundary. We sketched the following model for the 
same system with free boundary approach 
considering that the beam-fluid interface has not 
fixed hight throughout the length of the microbeam 
along the x coordinate (see Abdollahi et al. (2016b) 
for more details). Fig. 1 shows a cantilever 
microbeam with the length l submerged in a cavity 
with the width a longer than l making it possible for 
two fluid domains to interact. The off-center position 
of the beam is specified by its distance from the 
lower and upper sides of the cavity, 1H and 2H , 

respectively. The width of the microbeam and cavity 
are assumed equal to b. It should be noted that the 
fluid is assumed incompressible and the amplitude of 
vibration must be small. 

 

 
Fig. 1. Cantilever microbeam submerged in a 

fully contained cavity. 
 

The governing equations of the system were written 
as follows: 
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where EI is the bending stiffness of the microbeam, 

B  is the mass per unit length and w(x,t) describes 

the deflection at point x along the length of the 
microbeam with the following set of boundary and 
initial conditions: 
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in which f (x) and g(x) are the values of transverse 
displacement and velocity, respectively. 1P  and 2P  

are the fluid pressures in the cavity with the relations 
(Shababi (2013)) as follows: 
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where 1  and 2 are the velocity potential of the 

fluids of the microbeam in the lower and upper 
regions with the density f  which should be 

satisfied in the following Laplace equations with free 
boundary domains: 
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which the boundary conditions reads as follows: 

(6) 

  
                         (7) 
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in which 
Qn




is the directional derivative of φ in the 

direction of the unit vector Qn . Eqs. (6a) and (6b) 

mean that there is no fluid velocity close to the walls 
of the cavity in the directions of both x and y axes. 
These boundary conditions are the same for the 
velocity of fluid in the upper domain of the cavity, as 
well. Moreover, Eqs. (6c) and (7c) show that the 
velocities of the fluid is equal to of the microbeam 
throughout the length of the beam in the common 
boundary. Likewise, Eqs.(6d) and (7d) state that the 
fluids of upper and lower domains have the same 
velocity at the height 1 1y H via l x a  . 

A system of boundary integral equations was 
established to solve the Eqs. (1-7) in Abdollahi et 
al. (2016b). The existence and uniqueness of the 
solution were proved by the use of Banach fixed 
point theorem. As a result, the natural frequencies 
were affected in comparison with pertinent 
literature Liang (2012), Lindholm (1965) and 
Shabani (2013). The aim of this paper is to 
investigate the problem with free boundary 
approach. The method of separation of variables is 
applied to solve Eqs. (4) and (5) by imposing the 
fixed boundary conditions (6a, 6b) and (7a, 7b). 
Therefore, the following relations are obtained for 

the velocity potential functions  1 1, ,x y t and 

 2 2, ,x y t as follows: 
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where the eigenvalues i  is equal to i
a

 , and 

 iA t and  iE t are unknown modal amplitudes of 

fluid oscillation. The lateral motion of the 
microbeam, w(x,t) is formulated as a linear 
superposition of the free vibration modes in air as 
follows: 
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in which  i x is the natural mode shapes of the 

microbeam in air and the unknown generalized 
coordinates  iq t should be estimated. The mode 

shapes are written as (Abdollahi et al. (2013) ): 
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where values of i l must satisfy the transcendental 

equation 

cosh( )cos( ) 1.i il l                                         (11) 

For i = 1,2 the solutions are 1 1.875104,l  , 

2 4.694091l   and as i  , the values of βil 

approaches to the value 
1

2
i   
 

. It should be 

mentioned that the values i l  and the natural 

frequencies of the dry beam  i is satisfied in 

Abdollahi et al. (2016b) 

2
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By substituting Eqs. (8) and (9) into the kinematic 
beam-fluid conditions (6c and d) and (7c and d) 
yields the following relations: 

 1 2
1

1
( ) cos( )sinh ( ( , ))

1 ( , )
i i i i

i x

A t x H w x t
w x t

  



 


   

 1 2
1

( , )
( ) sin( ) cosh ( )

1

x
i i i i

i x

w x t
A t x H w

w
  




   


   

       

 2
1

( ) ( ),

( ) cos( ) tanh( ) ,

i i
i l

i i i i
i

q t x

E t x H



  












 





             (13) 

1

( ) cos( )i i i
i

E t x 



     

       2sinh( ( , )) tanh( ) cosh ( , )i i iw x t H w x t         

     
2

1

1 xw



 

1

( ) sin( )i i i
i

E t x 



   

      2cosh( ( , )) tanh( )sinh ( , )i i iw x t H w x t       

   
2

1
1

( ) ( ),

1 ( ) cos( )sinh( ),

i i
i lx

x
i i i i

i

q t x
w

w A t x H



  










  







 (14) 

Both sides of the Eqs. (13) and (14) are multiplied by 

 cos i x and then integrated over 0 < x < a to obtain 

the following relations: 
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where coefficients ji , ji αji and 

  Λ 1 4i t i  are defined as: 
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(17) 

Substituting Eqs. (8) into Eq. (3) and inserting the 
outcome into Eq. (1), the equation of motion for the 
microbeam yields the following form: 
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Making use of the orthogonality of beam mode 
shapes over 0 ≤ x ≤ l, the following equation is 
derived: 
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Now, the microbeam and fluid vibration modes are 
truncated to n and m modes, respectively. Therefore, 
the finite set of matrix equations is derived by 
rewriting Eqs. (15), (16) and (19) as follows: 
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where the elements of the coefficient matrices are 

calculated by the following relations: 

 (23) 

By considering the time step size 0t  , the 

solution would be estimated at times it i t . First, 
the generalized fluid coordinates A and E are 
calculated from Eqs. (20) and (21). Then, the 
outcomes are substituted into Eq. (22) by using the 

notation  i iq q t and forward difference 

approximation. Therefore, the following linear 
algebraic system with n unknowns and equations is 
obtained as an iterative scheme: 

1 1 2
1 2

1 1 1
1 1 2 2

2
1 2

([ ] [ ]) [ ]){ } ([2 ]

[ ( )] [ ( )]){ }

([ ] ( ) [ ] [ ] [ ]){ },

i i i i i i i

i i i i i i i

i i i i i i i

M C M J M q M

C M M J M M q

M t F C M J M q

  

  

  

   

   

   

 (24) 

where 1M  and 2M  are defined as follows: 
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and the superscripts of the coefficient matrices have 
been introduced for the time index. 

The terms 1
1

i iC M  
  and 1

2
i iJ M  

   [JiMi2+1] in 

Eq. (24) are the added mass matrices of the fluid 
domains 1 and 2, respectively. These two-part added 
mass are the result of the presence of the fluid around 
the microbeam. 

The right-hand side of Eq. (24) is known, but the left-
hand side involves n unknown generalized 
coordinates {q}. Using Eq. (9) in the first initial 
condition of Eq. (2), we get 
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for j = 1,2,...,n and the second initial condition (2c) 
can be approximated as 
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Table 1 Comparison of(fundamental) frequencies in air ω1 (Hz) 

Aspect ratio, L/b 

Thickness ratio, h/b 

5 

0.124 

3 

0.061 

2 

0.061 

1 

0.024 

Analytical (Liang et al. (2012)) 20.57 28.37 64.29 101.2 

Experimental (Lindholm et al. (1965)) 19.4 27.3 60.7 96.3 

Fixed boundary (Shabani et al. (2013)) 20.51 28.07 63.15 98.4 

Proposed method 20.49 27.98 63.12 98.54 

 

 
Table 2 Comparison of (fundamental) frequencies in water ω1 (Hz) 

Aspect ratio, L/b 

Thickness ratio, h/b 

5 

0.124 

3 

0.061 

2 

0.061 

1 

0.024 

Analytical (Liang et al. (2012)) 15.63 18.30 42.30 51.93 

Experimental (Lindholm et al. (1965)) 14.60 17.80 40.30 51.40 

Fixed boundary (Shabani et al. 
(2013)) 

15.62 18.82 46.80 57.90 

Analytical (Abdollahi et al. (2016)) 13.09 17.89 40.24 59.33 

Proposed method 14.93 18.12 43.62 54.38 

 
 

Table 3 The data used in the calculations 

Parameters Value 

Microbeam width, b 50 ݉ߤ 

Microbeam length, l 250  ݉ߤ 

Microbeam thickness, h 3 ݉ߤ 

Container length, a 350 ݉ߤ 

Liquid depth of domain 1, H1 200 ݉ߤ 

Liquid depth of domain 2, H2 300 ݉ߤ 

Container height, H 500 ݉ߤ 

Young’s modulus, E 169 Gpa 

Fluid density, ߩ௙ 1000 kg/m3 

Microbeam mass, ߩ஻ 3.4965×10-7 kg/m 

Poisson’s ratio, ߭ 0.06 

 
 

 

1 0

2 0

0

1
( ) ( ) .

( )

l

j j jl

j

q q tg x x dx

x dx

 



  


            (27) 

for j = 1,2,...,n. Therefore, Eq. (24), using Eqs. 
(26) and (27) as initial guesses can be solved to 

find 2iq  in any step i = 0,1,... . So, the unknown 
functions w(x,iδt) can be found in any time t = iδt,i 

= 1,2,.... For this aim, the intervals [0,l] and [l,a] 
are divided to 70 and 30 nodes throughout x 
direction in the cavity, respectively. Moreover, 
seven fluid oscillation modes (m = 7) in Eq. (8) 
and five modes (n = 5) in Eq. (9) are selected to 
get the results. 

3. VERIFICATION OF THE METHOD 

Tables 1 and 2 present the comparison of 
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fundamental frequencies in air 31.3 kg
m

  
 

and 

water 31000f
kg

m
  
 

with the experimental 

results of Lindholm et al. (1965), and the analytical 
results of Liang et al. (2012), Shabani et al. (2013) 
and our recent work in Ref. Abdollahi et al. (2016b). 
These results validates the proposed method with 
free boundary approach for various aspect and 
thickness ratios. 

4. AN EXAMPLE 

In this section, an illustrated example is presented 
to compare the natural frequencies and mode 
shapes of the microbeam submerged in water with 
both fixed and free boundary approach. The 
material properties and the values of the used 
constants are listed in Table 3. The values of 
transverse displacement f (x) and the velocity g(x) 
in Eq.(2) are assumed as −0.05x and zero, 
respectively. The width of the microbeam meets b 
≥ 5h. Consequently, the microbeam strain 
conditions should be taken into considration. 

Therefore, E is replaced by  2E / 1   , where υ 

is Poisson’s ratio. Fig. 2 shows the mode shapes of 
the microbeam with both fixed and free boundary 
approach. It is shown that the deviation increases 
for higher modes. The fluid movement patterns in 
Figs. 3 and 4 confirm the mode shapes presented 
in Fig. 2 as it was expected. The fluid movement 
intense for higher modes around the microbeam. 
Fig. 5 presents the natural frequencies of the 
microbeam with fixed and free boundary states. It 
is inferred that the free boundary conditions in the 
velocity potential functions affect the consecutive 
modes of the microbeam. Therefore, the 
oscillatory property of w(x,t) has been transmitted 
on the natural frequencies of the microbeam. It 
means that by assuming free bouandary conditions 
in the equations of the potential functions, which 
is closer to the physical reality, the natural 
frequencies of the system are not fixed. Fig. 6 
depicts that as the number of fluid modes 
increases, the rate of convergence grows 
reasonably. Fig. 7 suggests the natural frequencies 
of the wet microbeam as a function of its off-
center position  1 1 2H / H   H . The graphs depict 

that the natural frequencies decrease when the 
micobeam is close to the top or bottom surfaces. 
Nevertheless, the frequencies are not affected 
much for different off-center location of the 
microbeam. Fig. 8 proves that increasing the 
length of the microbeam decreases the natural 
frequencies and changes the fluid moving patterns 
in the two proposed approach. It is well known 
that the natural frequencies of a beam is strongly 
dependent on the fluid in which it is submerged. 
Fig. 9 investigates the sensitivity of the system to 
the fluid density. It illustrates that the sensitivity of 
frequencies decreases for the higher densities. Fig. 
11-13 depict the values of velocity and pressure of 
fluid inside the cavity. 

 
(a) First mode 

 

 
(b) Second mode 

 

 
(c) Third mode 

 

 
(d) Fourth mode 

Fig. 2. The deviation of the mode shapes of the 
wet microbeam. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 
Fig. 3. The fluid movement patterns in domain 1. 

 
(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
Fig. 4. The fluid movement patterns in domain 2. 
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Fig. 5. Variations of the natural frequencies of 

the wet microbeam with fixed and free boundary 
approach. 

 

 
Fig. 6. Convergency of the natural frequencies of 
the wet microbeam by free boundary condition. 

 

 
(a) 
 

 
(b) 
Fig. 7. The comparison of the effects of vertical 
position on natural frequencies in fixed and free 

bounday states. 

 
Fig. 8. Variations of the natural frequencies of 

the wet microbeam with free boundary 
conditions. 

 

 
(a) 
 

 
(b) 
Fig. 9. Natural frequencies as a function of fluid 

density with free boundary conditions. 
 

 
Fig. 10. The comparison of the four natural 
frequencies of the beam with free boundary 

conditions. 
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(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
Fig. 11. The fluid velocities patterns in domain 1. 

 
(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
Fig. 12. The fluid velocities patterns in domain 2. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 13. The fluid pressure patterns. 
 

 

5. CONCLUSIONS 

This paper investigates the effect of fluid-structure 
interaction on the free vibration of a microbeam 
submerged in an incompressible fluid with free 
boundary condition approach. The potential 
equations governing on the fluid have been modeled 
considering the free boundary conditions which is 
closer to the physical reality. Galerkin’s semi-
analytical method was utilized to solve the coupled 
equations. Fig. 10 reveals that the natural frequencies 
of the microbeam are influenced by the presence of 
w(x,t) in the domains of the velocity potential 
functions 1  and 2  in Eqs. (4) and (5). It shows 

that the consecutive natural frequencies of the system 
have oscillations and this instability increases for 
higher modes, whereas, the all similar results by 

fixed boundary conditions were fixed and greater in 
pertinent literature. Consequently, it is inferred that 
in addition to the conditions of kinematic 
compatibility of the fluid-structure, involving of free 
boundary condition in the proposed model affects the 
natural frequencies, especially in higher modes. 
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