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ABSTRACT 

Numerical computation of thermally developing laminar flow of viscoelastic FENE-P fluids flowing between 
two stationary parallel plates is investigated using the finite element technique. The influence of the effect of 
the solvent contribution as well as the fluid rheology on the flow field and heat transfer enhancement is 
investigated for the case of imposed constant wall heat flux and neglected viscous dissipation.  Numerical 
results for flow field are compared first against available analytical solutions with and without inclusion of the 
solvent contribution. The obtained results for the viscoelastic case show that increasing Weissenberg number 
(We) leads to an increase in Nusselt number (Nu) while high values of the extensibility parameter (L2) decrease 
the Nusselt number.  Fully developed Nusselt number values for FENE-P fluids flowing between two fixed 
parallel plates are obtained for several values of polymer concentration and the study confirms quantitatively 
that polymer concentration enhances heat transfer rates in FENE-P fluids. 

Keywords: 2D Thermally developing flow; Rheology; FENE-P model; Solvent contribution; Nusselt 
number.

NOMENCLATURE 

a parameter related to the fluid physical 
properties  

A conformation tensor 
Ac cross section area  
cp specific heat   
Dh hydrodynamic diameters  
H half-width of the channel  
hx local heat transfer coefficient  
k thermal conductivity  
LD duct length  
L2 extensibility parameter 
Nu average Nusselt number  
Nux local Nusselt number  
p pressure 
Pr Prandtl number  
px pressure gradient  
qw heat flux  
Re Reynolds number  
T temperature 
U average velocity  
u velocity
UN Newtonian average velocity  
We Weissenberg number  

X dimensionless axial coordinate       
x` normalized axial coordinate  
Y dimensionless radial coordinate      

Greek letters 
solvent viscosity ratio   
λ relaxation time  
θ dimensionless temperature  
η viscosity  
ρ fluid density  
δ unit tensor     
τ stress tensor     

Subscripts 
0 vanishing shear rate 
b bulk 
i inlet 
p polymeric 
s solvent 
w wall 
x axial direction 
y radial direction 
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1. INTRODUCTION   

Many industrial applications require the 
understanding and solution of heat transfer analysis 
of hydrodynamically fully developed and thermally 
developing flows. This case that is known as Graetz 
problem is relevant to different industrial 
applications, such as heating and cooling processes 
in ducts of different cross-sections, and the design 
and optimization of compact heat exchangers in 
chemical, pharmaceutical and food industries.  

Solution of Graetz problem for Newtonian fluids 
between two parallel plates is well documented by 
Shah and London (1978).  Also, solutions have been 
obtained for non-Newtonian inelastic fluids of the 
power law type, see the work of Cotta and Ozisik 
(1986), Etemad et al. (1994) and Jambal et al. 
(2005).  The analytical solution of a viscoelastic fluid 
can only be obtained for fully developed conditions.  
The drive to understand the flow and heat transfer 
behaviour of viscoelastic fluids is due to the 
enhanced heat transfer that can be obtained, see 
Hartnett and Kostic (1985).  

A number of viscoelastic rheological models have 
been developed over the years exhibiting various 
degrees of successes in modelling the behavior of 
real viscoelastic fluids.  In contrast to inelastic fluids 
flowing between parallel plates, relatively fewer 
investigations were conducted for viscoelastic fluids 
and were limited to fully developed flow, as 
indicated in Coelho et al. (2003). In addition most of 
them have used the Phan-Thien-Tanner (PTT) 
model. Thus, Coelho et al. (2003) derived an 
analytical solution for the simplified version of the 
PTT model with a linear stress function for two 
imposed boundary conditions of constant heat flux 
and constant wall temperature. Previous studies and 
solutions to the heat transfer problem of the same 
viscoelastic fluid flowing through pipe and channel 
geometries were carried out by the same group, 
Pinho and Oliveira (2000) and Coelho et al. (2002) 
and also by Filali et al. (2012). Pinho and Oliveira 

(2000) investigated the viscous dissipation effect on 
the heat transfer rate for imposed constant heat flux 
conditions (qw = constant), while Coelho et al. 
(2002) investigated similar problem for constant wall 
temperature condition (Twall = constant). Later, 
Hashemabadi et al. (2004) presented an analytical 
solution for fully-developed laminar forced 
convection of SPTT fluids flowing between heated 
stationary and moving insulated plates. It was 
reported that viscous heating has a significant effect 
on decreasing Nusselt number and the influence of 
the elongational parameter and the Deborah number 
in increasing the heat transfer coefficient depending 
on the values of dimensional pressure gradient. 

Another model used for polymeric fluids is the non-
linear dumbbell model proposed by Peterlin (1966) 
known as the FENE-P model (Finite Extensible 
Nonlinear Elastic while P stands for Peterlin). Using 
such a model, a fully developed solution for the 
velocity field under laminar conditions was derived 
by Oliveira (2002) for pipe and channel flows. Later, 
Oliveira et al. (2004) investigated the Graetz 
problem and developed a semi-analytical solution of 

a pure FENE-P fluid for tube and slit flow under 
prescribed constant heat flux and wall temperature. 
They neglected solvent contribution and took into 
account the viscous dissipation. Further 
investigations were carried out numerically by Filali 
and Khezzar (2013) to study the Graetz problem in 
ducts using the FENE-P model. Mixing Newtonian 
solvent with small amount of polymer was reported 
to show a different behaviour compared to a pure 
polymeric fluid. That’s due to the increased 
resistance to flow and it was shown by McKinley and 
Sridhar (2002) and Lindner and Vermant (2003). 
These dissolved polymers can be found in several 
industrial applications, such us biopolymer 
solutions, see Fano (1908) (e.g. plant extracts, bile 
and egg white), inkjet printing where the polymer 
concentration and the molecular weight must be 
chosen carefully for a better printing quality, see 
Morrison and Harlen (2009) and Hoath et al. (2014).  
In this context, Cruz et al. (2005) derived an exact 
combined solution for the velocity field for fully 
developed flow in an axisymmetric pipe and plane 
channel for the affine PTT and FENEP models 
taking into account a non-zero solvent Newtonian 
viscosity. It is worth mentioning that no analytical 
solution can be obtained for three-dimensional 
geometries as concluded by Khezzar et al. (2014) 
and hence closed form analytical solutions for 
complex fluid flows, remain confined to a class of 
problems with simple geometries and fully 
developed conditions.   

While a solution for the hydrodynamic problem of 
flow between parallel plates using a FENE-P fluid in 
the fully developed region does exist even with a 
solvent contribution, it is clear that a solution to the 
flow and heat transfer problem of developing flow 
between parallel plates for a FENE-P fluid when the 
solvent contribution is present does not exist. The 
present paper aims to fill this gap. The main focus of 
this paper is the consideration of the effect of the 
solvent contribution, the fluid viscoelasticity and the 
rheological parameters of the FENE-P model on heat 
transfer enhancement for the two dimensional 
thermally developing entry flows between two 
stationary parallel plates. In particular, the influence 
of Weissenberg number (We) and extensibility 
parameter (L2) on flow, and specifically the heat rate 
quantified. The present results of the FENE-P fluids 
including the effects of the solvent contribution and 
the fluid rheology on the heat transfer rate can find 
extensive use in many industrial applications 
whenever enhanced heat transfer rates are sought. 

2. MATHEMATICAL MODEL 

The simulation considers a steady laminar flow with 
constant fluid properties. The FENE-P viscoelastic 
model is selected in the present study to characterize 
the Non-Newtonian behaviour of the fluid. The 
dimensionless governing equations for 
incompressible non-isothermal viscoelastic flows 
where obtained by scaling the dimensional equations 
with the characteristic length (hydraulic diameter 
(Dh) considered to be equal to 4H for channel flow, 
were H is the half channel width.), U (average fluid 
velocity), pressure term with 1/(ρ/U2), the polymeric 
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stress tensor with Dh/(U(ηs+ηp)), where ηs is the zero 
shear rate solvent viscosity and ηp is the zero shear 
rate polymeric viscosity. The dimensionless 
temperature term (θ) is scaled as θ = (T-Ti)/(qw.Dh/k), 
where Ti is the inlet fluid temperature and k is the 
fluid thermal conductivity. This yields the following 
dimensionless equations (when viscous dissipation is 
neglected), 

. 0 u                                                                 (1)  

  2 1 1
.

Re Re pp
We

 
   u. u u+ 


                     (2)                                                    

  21
.

RePr
  u                                                 (3)                                          

For simplicity, the notation used in Eqs. (1-3) for the 
unknown variables is similar to the notation used for 
non-dimensional Navier Stokes equations. In Eq. (2), 
β, defined as in Eq. (4) represents the ratio of the zero 
shear rate solvent viscosity to the total zero shear rate 
viscosity (η)  

/s                                                                 (4) 

/s p                                                                (5) 

The fluid elasticity is characterized by the 
Weissenberg number; 

/ hWe U D                                                         (6) 

where λ is the relaxation time. The Reynolds number 
is defined as  

 /h s pRe D U                                                   (7) 

In Eq. (3), Pr is the Prandtl number defined as 

Pr /pc k                                                               (8) 

The fluid properties are considered to be constant.  

In the present study, the polymeric component that is 
contributing to the stress (τp) in Eq. (2) is calculated 
using the FENE-P viscoelastic model; see Bird et al. 
(1987).  

The basis of the FENE-P model has been described 
in several research papers such us Oliveira (2002), 
Bird et al. (1987), Bird et al. (1980) and Purnode and 
Crochet (1998). The FENE model is used to model 
long-chained polymers. It represents the polymers by 
connecting a sequence of beads with nonlinear 
springs. The FENE model is found to properly model 
shear-thinning fluids. In Eq. (2), the polymer 
contribution to the stress needs modelling. Thus, the 
polymer stress is calculated from: 

21-tr( )/( )
p

p a
L



 

  
 

Aτ δ
A

                             (9) 

where tr(A) is the trace of  the configuration tensor 
A and A can be obtained from: 

21-tr( )/( )
a

L




 
A A δ

A
                              (10) 

where L2 must always be greater than unity and also 

appears via the parameter a, which is defined as a ≡ 
1/(1-3/ L2) in Eqs. (9) and (10).  Furthermore, when 
L (or L2) goes to infinity, the FENE-P model 
becomes similar to the Maxwell model. The 
convected derivative by  

In this representation, the temperature dependent 
factor of A is ignored; see Khezzar et al. (2014).  This 
simplification is however, strictly valid only under 
fully developed conditions.  Oliveira (2002) made 
use of it and with additional simplifications of the 
momentum equation he was able to obtain his closed 
form analytical solution.  We maintain the same and 
assume that its influence will remain negligible. 
While this assumption is introduced in the transport 
equation for the configuration tensor, the momentum 
and energy equations remain complete. Local heat 
transfer coefficient (hx) is calculated from: 

( ) w x b wq h T T ,                                               (11) 

where the fluid bulk temperature denoted by Tb is 
defined by Shah and London (1978)                   

1
.

c

b c
c A

T u TdA
A U

 
                                              (12)                         

Consequently, the local heat transfer coefficient is 
defined as    

 
x w h

x
w b

h H q D
N u

k k T T
 


                                  (13) 

and its average along the pipe length is defined as 

0

1 L

xNu Nu dx
L

                                                (14) 

3. NUMERICAL SCHEMES AND 
METHOD CONVERGENCE  

The present simulations are carried out using ANSYS 
POLYFLOW, the finite element based flow modelling 
software package. The discrete elastic-viscous split 
stress (DEVSS) method incorporating the streamline 
upwinding (SU) scheme is used to improve 
convergence and deal with the numerical instabilities 
related to the non-linear terms in the modelling of 
viscoelastic flows. Additional to the DEVSS/SU 
technique, the use of an evolution variable to deal with 
the viscoelastic stress terms was necessary. The 
technique can be applied directly to the parameters that 
cause non-linearity such as the relaxation time (λ). In 
this case, the relaxation time value is reduced to a 
minimum value allowing a successful convergence of 
the problem, then it is increased gradually by an 
incremental step until the final set value is reached. 
Convergence of the numerical computation in 
POLYFLOW is ensured when the relative error for 
each variable (p, u and ) reaches10-4.  

4. GEOMETRY, BOUNDARY 
CONDITIONS AND MODEL 
MESHING  

The present work addresses itself to the 
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determination of Nusselt number and the 
hydrodynamic behaviour of FENE-P fluid flowing in 
a 2D channel duct. The imposed boundary conditions 
can be summarized as follows:  

 At the inlet section, X = 0, a fully developed 
velocity profile and constant temperature (θ = 0) 
are imposed. 

 At the wall, Y = y/Dh, no-slip condition u = v = 
0 and a uniform heat flux qw are applied.  

 At the symmetry axis, Y = 0, ∂θ/∂Y = 0. 

 At the outlet, X=LD/Dh, outflow boundary 
conditions are applied.  

Figure 1 illustrates the geometry and boundary 
conditions considered in the present simulation. 

 

 
Fig. 1. Geometry for flow between parallel plates 

and boundary conditions. 

 
The local Nusselt number variations are presented 
and plotted versus the normalized longitudinal 
distance (x`) where x` = x/H.Re.Pr. The assumed 
value of the Prandtl number Pr = 30.   

A grid sensitivity study was conducted considering 
the variation of the Nusselt number for We = 10 and 
L2 = 10 to obtain optimum mesh size that can be used 
to obtain accurate results with a minimum 
computational cost. Results for the three different 
meshes used are shown in Fig. 2. A minor difference 
is exhibited between meshes M2 and M3. Hence, to 
optimize the numerical calculations, mesh M2 is 
considered in all computations of the present study.  

 

 

 
Fig. 2. Mesh independency test for 2D channel 
case: heat transfer coefficient vs. normalized 
longitudinal distance x` for We = 10, L2 = 10. 

 

5. RESULTS AND DISCUSSION  

The results presented in this analysis are reported 

for FENE-P viscoelastic fluids flowing between 
fixed parallel plates under constant heat flux 
boundary condition. The main aim here is to seek 
to quantify the effect of the solvent concentration 
( which can take values in the interval [0, 1] on 
flow parameters such as the axial velocity, stress 
profiles, but mainly on the Nusselt number with L2 
and We as parameters. A zero value of 
corresponds to zero solvent viscosity and 1 to a 
purely viscous Newtonian fluid. The numerical 
results for the velocity and stress profiles are 
compared with the existing analytical solution 
developed by Cruz et al. (2005), for a pure 
polymeric FENEP fluid in which the solvent 
viscosity ratio is very small  ≈ 0, which 
correspond also with the analytical solution 
developed by Oliveira (2002)  for  = 0. Only 
Sample results for  = 0 will be presented here for 
validation and comparison purposes. Extensive 
results for pure polymeric FENE-P fluid can be 
found in a previously published paper, see Filali et 
al. (2014), in which important results showing the 
effect of We and L2 on the Nusselt number were 
presented for two imposed boundary conditions; 
constant heat flux (qw=constant) and constant wall 
temperature (Twall=constant). 

Subsequently, the solvent contribution effect is 
considered ( ≠ 0) for an imposed constant heat flux 
thermal boundary condition and the analytic 
solution for velocity distribution of Cruz et al. 
(2005), is used as a benchmark and validation for 
the present approach.  The results of the FENE-P 
fluid flowing within a plane-parallel duct will then 
contribute and provide extensive numerical results 
to the heat transfer problem. This is done by 
examining the effect of  on the calculated Nusselt 
number in the thermally developing region for 
high level of elasticity and extensibility parameter 
as well as the effect of  on the fully developed 
Nusselt number for different values of the 
parameter We2/(aL)2. 

5.1 Results Without Solvent Contribution 
( = 0) 

For a pure polymeric FENE-P fluid = 0, Cruz et al. 
(2005) obtained a theoretical solution for the velocity 
profile of fully developed flow between parallel 
plates for a FENE-P fluid with solvent contribution. 
This solution is used to benchmark the numerical 
solution obtained herein: 

 

 

2
6

1

3

8

N

R R r r R R r r
s

U y
u y

H

F G F G F G F G
C




       

             

   
            (15) 

where  

2

012
x

N

p H
U





                                                     (16) 

where η0 is the shear-thinning viscosity for 
vanishing shear rate and the functions F and G are 
defined as: 

1.E+00

1.E+01

1.E+02

0.00001 0.0001 0.001 0.01 0.1 1

Nu

X`

                    Nb of elements         Nb of nodes 
              M 1         1661                     1500  
              M 2         4816                     4500  
              M 3         8016                     7500   
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and 
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The comparisons of the velocity profiles against the 
existing theoretical solution of Cruz et al. (2005) are 
shown in Fig. 3 and 4.  

 

 

 
Fig. 3. Predicted velocity profiles for β = 0, L2=10 

and varying We. 
 

Excellent agreement can be observed between the 
present numerical profiles and the analytical 
profiles of Cruz et al. (2005) for the FENE-P and 
Newtonian fluids. It was reported in the analysis 
of the effect of We and L2 on the flow that these 
two parameters have an opposite effect on the 
velocity profiles which tends to be flatter for low 
extensibility values and high elasticity levels due 
to the enhanced shear-thinning behaviour, see 
Filali et al. (2014). The same effect of We and L2 
was reported for the heat transfer results where 
increasing We to a value of 10 for constant value 
of L2 =10, increases Nusselt number by 9% and 
10.1% over the Newtonian value for both imposed 
boundary conditions (qw = constant, Tw = 
constant). On the other hand increasing L2 from 10 
to 1000 decreases the heat transfer coefficient. The 
physics behind the enhanced heat rate for 
viscoelastic fluids characterized by the shear-
thinning behaviour can be explained by the 
changes in the flow field as a result of the reduced 
fluid viscosity. This change affects the 
temperature field by increasing the fluid bulk 
temperature and as a consequence decreases the 

temperature difference (Tw-Tb) used in the 
determination of heat transfer rate. 

 

 

 
Fig. 4. Predicted velocity profiles for β = 0, 

We=10 and varying L2. 

 
5.2 Results With Solvent Contribution (≠0) 

Next, results including the effect of the solvent 
contribution (meaning when  ≠  are presented. 
Figure 5a shows fully developed velocity profiles for 
, L2=10 while varying We. The numerical 
solution is shown to agree perfectly with the 
theoretical velocity profile given by Eq. (15). The 
small difference in the core velocity remains way 
below 1%. The effect of We can also be clearly seen 
in Fig. 5b in good agreement with the theoretical 
solution, i.e. an increase in We leads to a small 
decrease in the core velocity. The same trend was 
predicted for the axisymmetric geometry by Khezzar 
et al. (2014) but the influence of We on the core 
velocity in that case was much more pronounced. 
 

 

 
Fig. 5a. Predicted fully developed velocity 
profiles against analytic solution of Cruz  

et al. (2005) for β = 0.3, L2 = 10 and 
varying We (We = 1 and 10). 
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Fig. 5b. Velocity profiles for constant L2 = 10 and 

β = 0.3 and varying We. 
 
For a constant value of the polymer concentration 
and a constant value of We = 10, the 
influence of the extensibility parameter L2 on the 
velocity profile is depicted on Fig. 6a. A good 
agreement between the present numerical 
predictions and the theoretical solution of Cruz et al. 
(2005) is shown in Fig. 6a with a difference less than 
1%. Furthermore, the trend of the effect of increasing 
L2 leading to a flatter velocity profile is predicted 
correctly, see Fig. 6b. 

The polymeric shear stress component could be 
obtained explicitly by solving Eq. (19); see Cruz et 
al. (2005) 

  1x
yx

s s

du y p y
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

 
 

                                              (19)  

where 

   2 23 33 3
yx Cy A Cy Cy A Cy

 
      
 (20) 

and M and C are constant factors defined by Eq. (18). 
The axial normal stress is given by Eq. (21).  

22
xx yx

p

 



                                                       (21) 

 

 
Fig. 6a. Predicted fully developed velocity 

profiles against analytic solution of [Cruz et al. 
(2005)] for β = 0.3, We = 10 and varying 

L2 (L2 = 10, 100 and 1000). 

 
Fig. 6b. Velocity profiles for constant We = 10 
and β = 0.3 and varying L2 (L2 = 10, 100 and 

1000). 
 
Figures 7a and b show the profiles of the normalized 
total extra stress for the axial and tangential 
components respectively.  A very good agreement is 
shown between the numerical and the theoretical 
solution of Cruz et al. (2005) given by Eq. (15). 

In Fig. 7a, the normal stress component shows a 
marked decrease when  increases to reach 1 as the 
polymer concentration decreases. In such conditions 
the behaviour approaches that of a Newtonian fluid. 
As for the shear stress component plotted in Fig. 7b, 
increasing the polymer concentration when is 
decreased, leads to a decrease in the shear stress 
levels to lower values due to the shear thinning 
behaviour which becomes more important.  

 
Fig. 7a. Normalized normal stress profiles for 

fixed We = 10, L2 = 10 and varying β. 

 

 
Fig. 7b. Normalized shear stress profiles for 

fixed We = 10, L2 = 10 and varying β. 
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Figure 8 represents the effect of the polymer 
concentration on the dimensionless temperature 
profile for a constant fluid elasticity and extensibility 
parameter (We = 10 and L2 = 10). Results indicate 
that increasing the fluid concentration leads to an 
increase in the temperature profile specifically near 
the wall region which will degrade the heat transfer 
rate.  

 

 

 
Fig. 8. Normalized temperature profiles for fixed 

We = 10, L2 = 10 and varying β. 
 

Figure 9, shows that combination of increasing We 
or decreasing L2 defined by the ratio We2/(aL)2 (for 
We2/(aL)2 < 20) leads to a decrease in the temperature 
profile specially near the wall region. This is due to 
the intensified shear-thinning effects that affect the 
velocity profiles which become flatter and leading to 
a higher shear rate near the wall and therefore 
improving the heat transfer rate. For We2/(aL)2 > 20, 
no changes are observed in the temperature profiles 
and therefore, Nusselt number becomes constant and 
reaches an asymptotic value. This is clearly shown 
later in Fig. 11. 

 

 

 
Fig. 9. Normalized temperature profiles for fixed 

β = 0.3 and varying ratio We2/(aL)2. 
 

For many entry flow problems in industry, the 
thermal entry length is an important parameter that 
needs to be characterized since it can affect the 
performance of an industrial device. Therefore, it is 

important to analyse the heat transfer rate in both, the 
developing and fully developed regions.   

Figure 10 represents the effect of the polymer 
concentration () on the calculated local Nusselt 
number in both, the thermally developing and fully 
developed regions at high levels of elasticity and 
extensibility parameter (We = 10 and L2 = 10). 
Results indicate that the highest values of the Nusselt 
number can be obtained for the case of pure 
polymeric fluid (= 0) while increasing the solvent 
concentration (1) provides a heat transfer 
coefficient closer to the Newtonian limit. Results 
also show that the polymer concentration and the 
fluid rheology do not affect the thermal entry length 
which is found to be similar for both Newtonian and 
viscoelastic fluids. This confirms that similar to 
Newtonian fluids, the thermal entry length for 
viscoelastic fluids, depends only on Re and Pr 
number.   

To cover the combined effect of the different 
parameters such as  We and  L2, on the heat transfer 
enhancement, results in Fig. 11 represent the 
variation of the fully developed Nusselt number 
versus the ratio We2/(aL)2 with the polymer 
concentration taken as a parameter for the case of a 
prescribed constant wall heat flux. Increasing 
We2/(aL)2 leads to a monotonic increase in the 
Nusselt number from the well-known Newtonian 
value of 8.235 to reach an asymptotic limit of 
9.08754 for the lowest solvent concentration or pure 
polymer case (= 0) where shear thinning behaviour 
is more pronounced. This represents a net increase of 
10.35%. It is interesting to note that for a fixed value 
of  the Nusselt number increases rapidly to its 
asymptotic value. 

 

 

 
Fig. 10. Effect of solvent contribution β on the 
variation Nusselt number versus normalized 

longitudinal distance x`, for We = 10 and L2 = 10. 
 

This is usually achieved for a value of We2/(aL)2 of 
about 20 and sometimes lower for larger  values. 
This means that large values of We2/(aL)2 have no 
influence on the Nu .  A similar behaviour was 
predicted by Oliveira et al. (2004) and Khezzar et al. 
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            β = 0.3         8.368  
            β = 0.1         8.615 
            β = 0           8.958 
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(2014) for the case of the axisymmetric geometry 
and is typical of FENE-P fluids. It is worth 
mentioning also that for (> 0.5), there is no 
significant enhancement of the fully developed 
Nusselt number which tends towards a value close to 
the Newtonian limit. 
 

 
 

 

 
Fig. 11. Nusselt number vs. the parameter We2/(a 
L)2, under imposed heat flux, positive qw, effects 

of the viscosity ratio β. 
 

6. CONCLUSION 

Heat transfer and flow behavior of FENE-P fluid 
flowing between two stationary plates is investigated 
numerically using the POLYFLOW commercial 
code. The effect of the solvent concentration on this 
flow and heat transfer was assessed for an imposed 
constant heat flux condition. The study investigated 
the effects of the rheological parameters such as 
Weissenberg number (We) which defines the fluid 
elasticity, the extensibility parameter (L2) and the 
polymeric concentration through the parameter β on 
the flow field and Nusselt number.  

The results of the flow simulations have shown an 
excellent agreement between the theoretical and 
numerical velocity fields. This serves to validate 
both the numerical approach and provide further 
confirmation of the theoretical results. 

For the FENE-P fluid, it was shown that 
increasing the elasticity (through Weissenberg 
number (We)) or decreasing the extensibility 
parameter (L2) enhances the Nusselt number due to 
the enhanced shear-thinning behavior of FENE 
fluids. The increase can reach up to 10% over the 
Newtonian value. It was also found that for a 
constant polymer concentration the effect of the 

parameter We2/(aL)2 on enhancing the heat rate 
vanishes rapidly beyond values just above 20.  The 
present results of the heat transfer for FENE-P fluids 
flowing between parallel plates with different 
solvent concentrations will contribute and provide 
useful knowledge of the development and the design 
of industrial applications using plane passages where 
heat transfer enhancement is sought.   
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