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ABSTRACT 

The corrections for log law must be taken into account the presence of bubbles in the two phase turbulent 
boundary layer. In the present study, a logarithmic law for the wall based on the supposition of additional 
turbulent viscosity associated with bubble wakes in the boundary layer was proposed for bubbly flows. An 
empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble 
was determined for the new wall law, this constant was deduced from experimental measurements. In the case 
of a turbulent boundary layer with millimetric bubbles developing on a vertical flat plate, the wall friction 
prediction achieved with the wall law was compared to the experiences. We obtained a good concordance 
between experimental and numerical result. This significant agreement for wall friction prediction was 
particularly important for the low void fraction when bubble induced turbulence have a considerable role. 

Keywords: Bubbly two phase flows; Wall law; Turbulent boundary layer.  

NOMENCLATURE 

B two-phase correction in two-phase wall law 
Cε2 single phase turbulence constant
CD drag force coefficient 
CL lift force coefficient 
CTD turbulent dispersion force coefficient 
Cvm virtual mass force coefficient 
CW wall lubrication force coefficient 
Cw1 first wall lubrication force 
Cw2 second wall lubrication force coefficient 
Cµ single-phase turbulence constant  
Cε1 single-phase turbulence constant 
K von karman constant  
Kl non-linearity factor in two-phase wall law 
v turbulent viscosity 

SP refers to single-phase 
TP refers to two-phase 
Ur slip velocity 
Uw frictional velocity 
v velocity 
x coordinate 
Y0

+ non-dimensional viscous sublayer thickness 

α void fraction 
ρ density 
σ instant general stress tensor 
τ instant shear stress tensor 
+ wall normalized value

1. INTRODUCTION

In a wide variety of engineering systems, the 
turbulent bubbly two phase flows play an essential 
role in many domains such as heat exchangers, 
petroleum transportation systems and nuclear 
reactors. Therein, accurate predictions of the flow 
characteristics are essentially required for the 
design, process optimization and safety control. 
With the development of the experimental 
techniques and computational fluid dynamics 

(CFD), numerous researches on the turbulent 
bubbly flow have been carried out (Lopez de 
Bertodano et al. (1994), Frank et al. (2008), Dhahri 
et al. (2013), etc. on the basis of the improvement 
of understanding and modeling the turbulent bubbly 
flow. Nevertheless, the presence of the multi-
deformable and moving interfaces therein could 
make considerable discontinuities of the complex 
flow properties near the interface. To understand 
the physical process and develop the model of the 
turbulent bubbly flows, the detailed flow 
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Table 1 Summary of proposed near –wall function for two phase flow simulation 
Parameter Marie (1997) Troshko (2001) Mikielewics(2003) Ramstorfer (2008) 
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information such as the drag resistance, the 
temporal and spatial evolutions of velocities and 
turbulence in two phases and the detailed 
characteristic of bubbles such as the bubble 
concentration, the bubble size, the bubble shape and 
the bubble motion are necessary. 

In the case of boundary layer flow multiple efforts 
for the modeling and understanding of the flow 
characteristics and physical process have been 
performed. The experimental data in two-phase 
bubbly flows developed on a vertical flat plate show 
that the velocity profiles has a logarithmic behavior 
near the wall and indicate that the constants of the 
logarithmic profiles are sensibly modified and 
depend on the amplitude of the wall void fraction 
peaking by the use of the k-� model for the closure 
of Reynolds stress in the continuous phase. Over the 
last few years, there have been serious efforts to 
understand the near-wall region of gas-liquid, 
bubbly turbulent flows and to propose wall-
functions specifically designed for these flows 
(Guan et al. (2015), Santarelli et al. (2016)). 
Moursali et al. (1995) developed and focused their 
measurements on the distribution of the mean liquid 
velocity, the wall shear stress and the void faction in 
an upward turbulent bubbly boundary layer with the 
LDV technique. According to their study, the lateral 
bubble migration toward to the wall occurs depending 
on the bubble mean diameter and the void fraction 
similar to the duct flow. In addition, the wall skin 
friction coefficient was observed to increase because 
of the presence of the bubbles, which modifies the 
universal logarithmic law near the wall. This supports 
the experience of Marie et al. (1997) on a vertical flat 
plate. The authors showed that the slope of the 
logarithmic law tends to decrease when the peak of 
void fraction is located in the logarithmic region. 
Based on the asymptotic methodology, Mikielewicz 
(2003) proposed a near wall function and they 
developed two approaches: The first based on the 
effect of an assumed constant on the void fraction 
distribution, the second based on the prediction of the 
wall peaking effect. Mikielewicz (2003) compared his 
advances with the measurements of Marie et al. 
(1997). Hideki Murakawa et al. (2003) performed 
experiment of a turbulent boundary layer for bubbly 
flow in a 20mm×100mm vertical rectangular channel. 
The authors obtained the acceleration of the liquid 
velocity in the vicinity of the wall when liquid flow 
rate is reduced. Recently, Yassin A et al. (2014) used 

an innovative measuring techniques PTV (Particle 
Tracking Velocimetry). Measurements of the liquid 
parameters such as the velocity, RMS of the liquid 
velocity, and Reynolds stress were provided. More 
recently, Avinash et al. (2016) proposed a new two-
fluid model averaging near the wall; this advance is 
tested with the boundary layer experience, laminar 
flow and turbulent flow in pipes. Best agreements 
between the numerical results with the experimental 
data are obtained by the models based on a single-
phase logarithmic wall law without the validation of 
this law for turbulent bubbly boundary layer.  

Table 1 summarizes some proposed models based 
on a logarithmic assumption to develop a near wall 
function taking into consideration the good 
prediction for the single phase turbulent flows. 
Different constant and empirical correlations are 
obtained.  This lack of detailed information is the 
purpose of the motivation of this present work. The 
idea of this paper is to obtain a direct formulation of 
two-phase logarithmic wall law. The presented wall 
law contained empirical constant which was 
deduced from experimental data. In this first part, 
we presented the wall law for two-phase turbulent 
boundary layers. Finally we compare our results to 
the measurements of a turbulent boundary layer 
obtained by Marie et al. (1997) developing on a 
vertical flat plate with millimetric bubbles. 

2. TWO-FLUID MODEL FOR 

TURBULENT BUBBLY FLOWS  

2.1 Mass and Momentum Equations 

The CFD calculations were performed with the 
numerical ANSYS CFX 15.0 code. In the case of 
stationary and incompressible two phase flows, the 
mass and momentum equations without mass 
transfer are expressed in this code for each phase k 
as: 
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Where km  is the interfacial mass source and kiM  

is the interfacial momentum exchange on phase k. 
In the equation, the average stress tensor is written 
as: 

,k ij k ij kjp                                                (3) 

t
kj Represent the turbulent stress tensor, it’s 

defined as: 

' 't
kj k kj kju u                                                         (4) 

2.2 The Momentum Interfacial Transfer 
in CFD Model   

The momentum interfacial transfer includes the 
contributions of the average forces (drag, turbulent 
diffusion, lift and added mass forces): 
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Drag Force 

The drag force obtained from the classical theory is: 
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Where d is the bubble diameter and DC is the drag 

coefficient of the bubbles. Different correlations for 
the drag coefficient are implemented in CFX code 
(Shiller and Naumaan (1933), Ishii and Zuber 
(1979)). 

Lift Force 

The lift force is given by: 

j i
G i
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C
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(7) 

The lift coefficient value used in CFX code is 
calculated by different correlations (Saffman Mei et 
al. (1968), Legendre and Magnaudet (1998) and 
Tomiyama et al. (1998)) 

Mass Force  

The virtual mass force is expressed as Troshko and 
Hassen (2001):   

Vm G G L L
C G L vm

D U D U
M C

Dt Dt
     

 
           (8) 

Where Cvm is the virtual mass coefficient that 
depend on the void fraction.  Many authors have 
used constant values for Cvm. As an example, Drew 
and Lahey (1982) used 0.5, Kuo and Wallis (1988) 
proposed values within the range 2.0 ~ 3.0, Lance 
and Bataille (1991) suggested values between 1.2 
and 3.4. Lopez de Bertodano (1994) suggested the 

value of 1.2 for the high void fraction case and the 
value of 2 for the ellipsoidal bubbles. 
The interfacial pressure difference Lamb (1932) is: 

  2
i C p L R Lp P C U                           (9) 

Drew and Lahey (1982) recommended Cp =1.0. 
The constant of Schiller and Naumann (1933) was 
used in there model Cp =0.   

Turbulent Dispersion Force 

The turbulent dispersion force is calculated by CFX 
code with two formulations which the dispersion 
effect is proportional to void fraction gradients: the 
Favre (2006) and the Lopez de Bertodano (1994) 
models respectively written as: 
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Where Lk is the liquid turbulent energy and TDC  is 

a turbulent dispersion coefficient that take a value 
between 0 and 1.   

Wall Force  

The wall force formulation proposed by Antal et al. 
(1991) is implemented in CFX code. This force 
represents the effect that keeps the centers of the 
bubbles no closer than approximately one bubble 
radius from the wall and it given as: 

2
L W R w αρ C u nW

LiM                                   
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                    
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Where nw is the normal inward vector and ywall is 
the distance from the wall. The values of the 
coefficients appeared in the equations are defined in 
CFX code by:  

1 0.01wC   , 2 0.05wC  . 

2.3  Turbulence Modeling  

The formulation for the momentum turbulent 
diffusivity of the continuous phase in CFX code is 
given by Sato et al. (1981) where the authors 
proposed the sum of the shear-induced and bubble-
induced turbulent viscosities: 

, ,t t SI t BI                                            (14) 

Where the first term corresponds to the k-ε model 
for the shear induced diffusivity and the second 
term corresponds to Sato et al.’s (1981) model for 
the bubble induced diffusivity that written 
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respectively as: 

2

,
L
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k
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, 0.6t BI L Rd u                                                (16) 

The coefficient Cμ = 0.09 is the standard value for 
the k-ε model. In case of a standard k-ε model 
implemented in CFX code, two additional balance 
equations have to solve. The turbulent kinetic 
energy of the liquid phase is written as: 
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And the conservation equation for the dissipation 
rate is written as: 

t,
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Here  is the molecular viscosity; ,t SI is the shear 

induced turbulent viscosity; ,kS S are source terms 

due to presence bubbles and PL is the turbulence 
production rate: 
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Constants 1 21.44, 1.92, 1, 1.3kC C        are 

defined in the standard single-phase flow k-ε model. 

3. TWO PHASE WALL LAW 

In this section, we use the experimental results 
obtained by Marie et al. (1997) for the turbulent 
boundary layer case on a vertical flat plate with 
millimetric bubbles. The logarithmic plot of the 

velocity in terms of the inner variable, *u y
y


  , 

shows that the presence of three zones usually 
encountered in a single-phase boundary layer 
(viscous sublayer, logarithmic zone, and the wake 
region) are preserved (Fig. 1). 

In the logarithmic zone, 30 ≤ y+ ≤ 200, the 
experimental data of Marie et al. (1997) shows that 
the velocity distribution can be described by a 
logarithmic law whose constants κ and C differ 
from the single-phase flow values, κSP and CSP and 
functions of the peak void fraction and the mean 
liquid velocity. By attaching the turbulent friction in 
two-phase flow to the one in the single-phase flow, 

we will determine the constants κTP and CTP of the 
logarithmic law in two-phase flow: 

 1
ln TP

TP TP
w

U
y C

U 
                                (21)  

 

 
Fig. 1. Velocity profile plotted in inner variables. 

(Marie et al. (1997)). 
 

In single-phase flow, the logarithmic law is given 
by:  
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is the normalized liquid velocity parallel to the wall 
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w

C

yU
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is the normalized distance normal to the wall 

TP
wU                                                               (25)  

is the two-phase frictional velocity defined as, 

TP
TP w
wU




                                                       (26) 

T P
w is the two-phase wall shear stress applied on 

continuous phase. 

Let us consider a two-dimensional, developed, 
incompressible two phase turbulent boundary layer 
with y is the distance from the wall, the x 
component of the continuous phase momentum 
equation can be written as Troshko (2000): 
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Where Uc and Vc are the wall tangential and normal 
components of the mean liquid velocity. 

In the inner layer the turbulence is predominant so 
that the interfacial force density is neglected  .it is 
assumed that  in the coquette assumption of the 
single phase the variation of all dependent variables 
in the longitudinal direction are neglected with 
these assumptions equations 1 reduces to: 
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Using the eddy viscosity model, the Reynolds stress 
equation can be obtained as: 

R e t l
l x y l

U

y
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                               (29) 

Integrating the Eq. (28) and taking into account Eq. 
(29) the equation that describes boundary layer is as 
follows: 
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                  (30) 

Holds the log layer is dominated by the turbulence 
effects, Eq. 4 reduces to: 
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U
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y
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                                  (31) 

In the log region it is assumed that the liquid 
turbulent stress can be represented as the sum of 
two components. The first component accounts for 
shear induced turbulence. The second component is 
associated with the wakes of bubbles present in the 
inner layer. Holds under the condition that 
Boussinesq hypothesis is valid for the following 
components, we shall write the total turbulent 
viscosity as Troshko (2000): 

t out in
l l l                                                           (32) 

Where out
l and in

l is associated with the first and 

second stress components, respectively. The 
conventional shear induced turbulent viscosity 
defined by (Wilcox, 1993): 

out SP TP
l wyU                                                   (33)   

To determine the induced turbulent viscosity, we 
suggest that it is the product of the void-fraction 
peak near the wall αp, the slip velocity, a large flat 
profile portion at the constant value αE and the 
distance from the wall y. This assumption is 
supported by the experimental data.  Thus, we have 
proposed the following formulation for in

l : 

 in
C l p E ry U                                   (34) 

Ur is the local slip velocity and l  is an empirical 

correction factor. This correction is introduced to 
take into consideration the non-linear interaction 
between bubbles and shear induced turbulence 
fields.  

Substitution of Eqs. (33) and (34) into Eq. (32) and 
subsequently into Eq. (30), we can derive the 
velocity gradient for low void fraction in a two-
phase boundary layer:  

C
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is the correction coefficient. 

A new frictional velocity is introduced 

( )T P c T P
w wU U                                        (37)  

Then, a solution of (27) will be the logarithmic law: 
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Where all wall variables are calculated using new 
velocity scale: 

( )T P c T PU U                                          (39)  

1TP SP                                   (40)  

Local slip velocity in (36) was evaluated using the 
distorted bubble expression (41): 
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(41)   

Where σ: the surface tension, g: gravitational 
acceleration, J: superficial velocity, ρ: Density of 
liquid. 

KL can be approximated after extensive computer 
tests by: 

 0.0021 ln 1.497 TP
L WU                              (42) 

On the other hand and in spite of some spread data, 
Moursali et al. (1995) showed that the non-
dimensional thickness of the viscous sublayer that it 
can determined in the velocity profile as the 
ordinate of the intersection of the linear and 
logarithmic parts is almost constant. So, we can 
determine the constant C(TP)c as: 

 ( ) 11 0 1 4 . 9
CT PC          (43)  
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4. RESULTS AND DISCUSSIONS  

4.1  CFD Simulation Set-Up 

In the present study, we performed the geometry 
configuration of Moursali et al. (1995). The 
measurements developed in a vertical turbulent 
bubbly boundary layer based on LDV technique. 
The experimental data are obtained at typical 
conditions with atmospheric pressure, ambient 
temperature and at liquid velocities less than 1.5 
m/s in a 2.5 m square channel with a 50 m3tap water 
tank, Fig.2. The cross section is 400 × 400 mm2   
where the gas is injected uniformly into the liquid. 
Therein; the authors interested on the void fraction 
data, the wall shear stress, and the mean liquid 
velocity measurements. 

According to their study, the lateral bubble 
migration toward to the wall occurs depending on 
the bubble mean diameter and the void fraction 
similar to the duct flow. 

 

 
Fig. 2. The Computational Domain and Typical 

CFX Mesh. 
 

 
Fig. 3. Computational Domain. 

 

The computations were performed using (CFX 
15.0). In this work, the drag force and the lift force 
proposed respectively by Ishii and Zuber (1979) and 
Tomiyama (1998) are used. The Lopez de 
Bertodano et al. (1994) formulation for the 
turbulent dispersion force, the wall force by Antal et 
al. (1991) and the Sato et al. (1981) eddy viscosity 
are also obtained. Geometric modeling and meshing 
was made by the Pointwise 16.0 software. 
Convergence was tested by requiring the sum of the 

absolute residual values to be less than 10-6. The 
residual value is calculated for each solved variable 
and it is equal to the absolute difference between 
left- and right-hand sides of the different equations 
are solved at each node point. The final mesh is 
shown in Fig. 2. 

4.2 Single-Phase Boundary Layer 

In this part, the computational results are compared 
with experimental data of Moursali et al. (1995) 
obtained for an air-water flow in a vertical channel. 
Figs.4, 5 represent respectively the liquid velocity, 
the logarithmic profile of velocity. Fig. 4 shows that 
the velocity profile was well predicted by the 
model. The profile of experimental velocity 
represents a boundary layer located at section x=22 
mm from the wall; this result has been found by the 
numerical simulation in Fig. 5. The agreement 
between our model and data is shown by 
comparison with data of the single-phase wall-
bounded flow theory where the presence of three 
classical zones is conserved: Viscous sublayer, 
logarithmic zone, and the wake region. The 
concordance is quite good except near the wall. 

 

 
Fig. 4. Comparison of the liquid velocity profile 

with experimental results single phase flow. 

 

 
Fig. 5. Mean velocity predictions: Comparison 

with experimental results. 

 
4.3 Two Phase Boundary Layer 

The applications of the wall law postulated in wall 
bounded bubbly flows confirm the importance of 
the significant developments proposed to ameliorate 
the predetermination of the turbulence structure. 
Figs. 6-8 show a satisfactory concordance accord 
between the simulated results and the experimental 
points of Marie et al. (1997): our results have led to 
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the adjustment for the constant KL.  

This result is confirmed by the good concordance 
with all near-wall experimental measurements for 
y+ ranging between 40 and 1000 for the two low 
void fractions (0.2% and 0.5%). Remember that 
these experiences indicate a logarithmic behaviour 
of velocity profiles in bubbly flows near the wall; 
however the logarithmic law applies to these 
profiles with constants different from those of the 
case of single-phase boundary layer.  

 

 
Fig. 6. Velocity profile plotted using the model 
(UL=1m/s; void fraction=0.5%): Comparison 

with experimental results. 

 

 
Fig. 7. Velocity profile plotted using the model 
(UL=1m/s; void fraction=0.2%): Comparison 

with experimental results. 
 
 

For the higher void fraction case (1.5%) as can be 
seen from Fig. 8, in the range y+ = 40-200, the 
increase of the wall function curve is steeper than 
the inclination of experimental data. This designates 
that we should improve more the proposed model. 
This lack may be explained by one of the missing 
effects like the influence of detached bubbles on 
turbulent mixing in bubbles boundary layer and the 
buoyancy effect. However, the present model shows 
important perfection over the single-phase wall law 
and is establish to be correct the calculation of 
velocity in the first near wall cell of numerical 
domain. 

In this work we study also the void fraction profile 
in the vertical bubbly boundary layer in comparison 
with Moursali et al. (1995) experimental data. The 
Fig. 9 shows clearly that the two-fluid model with 
the wall law proposed succeeds to reproduce the 
near wall void fraction distribution. We can 

observed in the void fraction distribution a 
maximum sharp at the wall, αp, and a large flat part 
at the constant value, αe=0, 01. The same figure 
shows also that the peaking void fraction αp is 
located at a distance from the wall of the order of 
mean equivalent radius of the bubbles. 

On the other hand, consider that the quality of the 
determination of the void fraction profiles is 
directly related to the excellence of the prediction of 
the fluctuating flow fields in bubbly flow in an 
opposite manner. For that reason, we plotted the 
Fig. 10 that present the numerical turbulent 
intensity distribution in two boundary layer flows 
for the void fraction (α=0.015) in comparison with 
the experience of Moursali et al. (1995). 

 

 
Fig. 8. Velocity profile plotted using the model 
(UL=1m/s; void fraction=1.5%): Comparison 

with experimental results. 
 

 
Fig. 9. Void fraction profile in vertical bubbly 

boundary layer: Comparison with the 
experimental data of Moursali et al. (1995) - 

(void fraction=0, 01). 
 

 
Fig. 10. Turbulent intensity profiles in vertical 

bubbly boundary layer. Comparison of the 
numerical results with the experimental data of 

Moursali et al. (1995)-(u=1m/s void 
fraction=0,015). 
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The predetermination of the turbulence is in good 
agreement with the measurement points. It should 
be noted also that the results show that in low 
velocity gradient zone and outside the boundary 
layer, we observe correctly an significant 
improvement of the turbulent intensity in the bubbly 
flows.  

5. CONCLUSIONS 

Diverse experimental works are studied the 
boundary layer development on a vertical flat plat. 
The results show the logarithmic behaviour for the 
near wall average velocity profiles in two phase 
flows. These data also prove that the constants of 
the logarithmic contours are sensibly modified in 
bubbly flows and depend on the amplitude of the 
wall void fraction peaking. A new law of wall was 
proposed where mixing velocity scale is a function 
of local parameters for two-phase flows. The 
present wall law was compared against 
experimental data using a CFD code. A good 
concordance between the profiles from the 
logarithmic phase flow model and the experiments 
was achieved. 
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