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ABSTRACT 

One of the essential areas of the study of transport in porous medium is the flow phenomena at the onset of 
inertia. While this area has attracted considerable research interest, many fundamental questions remain. Such 
questions relate to things such as the nature of the multi-dimensional velocities of the flow, the evolution of 
inertia, the differences in flow phenomena at various complexity of porous media, and the best constitutive 
equation for the flow. To resolve some of these questions, the present research program was designed to 
experimentally investigate pressure-driven flow through two- and three-dimensional porous media at the 
onset of inertia. Specifically, the goals in view were to obtain velocity data and pressure measurements, apply 
the benchmark experimental data to study the evolution of inertia, distinguish differences in such evolution 
with respect to the parameters of the porous media, and to establish the constitutive equation that best 
describes the porous media flow when inertia sets in. What particularly sets this work apart, is the use of 
particle image velocimetry (PIV) – an experimental technique that captures multi-dimensional flow 
quantities, as opposed to mere flow rates. Using PIV then, detailed velocity measurements were conducted for 
flows through model porous media of solid volume fraction 6%, 12%, and 22%. The velocities were spatially 
averaged to obtain average streamwise and transverse components. In addition to the velocity measurements, 
differential pressure measurements were obtained using pressure-measurement gauges and transducers. The 
pressure and velocity data sets were then statistically analyzed and presented to provide a complete set of 
experimental data to characterize the flow through the model porous media. The results show that the velocity 
flow domain is dictated by the streamwise velocities, which are at least an order of magnitude greater than the 
transverse components. Furthermore, pressure drag was found to increase with compactness and complexity 
of the porous media. While inertia increases exponentially from particle Reynolds number ~ 1 – 3 onwards, it 
is apparently subdued by the form drag that tends to dominate the flow through complex media. Overall, the 
flow at the onset of inertia is best described by a power law. These results provide insights that are applicable 
to flows such as those near well bores and fractures where seepage velocities are relatively high. 
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NOMENCLATURE 

A plane area 
a Forchheimer equation parameter 
b Forchheimer equation parameter 
c empirical term 
d rod diameter 
dPf /dx streamwise pressure difference gradient 
fUd friction factor  
fVd friction factor  
g empirical term 
h empirical term 
i hydraulic gradient 
K hydraulic conduction coefficient  
k Darcy permeability 
Q volumetric flow rate 
Red particle Reynolds number  

R2 coefficient of reduction  
Ud streamwise seepage velocity  
Ud,max maximum streamwise seepage velocity  
u streamwise velocity
Vd transverse seepage velocity  
v transverse velocity 
x streamwise direction 
y transverse direction 
z spanwise direction 

α empirical parameter 
 empirical parameter 
 empirical parameter 
 solid volume fraction  
f dynamic viscosity of fluid 
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 kinematic viscosity of fluid f density of fluid 

 
 

1. INTRODUCTION 

There are several engineering applications where 
flow through porous media is of important 
relevance. Some examples include permeable 
reactive barriers, groundwater hydrology, filtration 
technology and oil and gas exploration. Porous 
media flow phenomena are largely considered 
under laminar conditions where inertial effects are 
immaterial. Darcy (1856) observed that for a 
steady-state flow in a uniform porous medium 
under such non-inertial conditions, there is a linear 
relationship between the volumetric flow rate Q 
passing through a porous bed of plane area A, and 
the applied hydraulic gradient i. The relationship is 
dependent on an unknown hydraulic conduction 
coefficient K. The relation, known as the Darcy law, 
is stated as: 

QK Ai                                                  (1) 

In differential equation terms, this law may also be 
written as (Arthur, 2012)  

f f ddP U

dx k


                                   (2) 

where dPf / dx, f, Ud and k are respectively the 
constant gradient of the streamwise pressure 
difference, the dynamic viscosity of the fluid, 
seepage velocity and the Darcy permeability.  

Although the Darcy law is generally accepted to 
govern porous media flow, it does not cover all the 
practical ranges of flow in porous media. This is 
particularly the case for areas of application such as 
those near well bores, fractures and tight screens of 
cryogenic propellant tanks, where seepage 
velocities are relatively high. The regime at which 
the flow deviates from the Darcy law is known as 
the Forchheimer regime. Although the onset of this 
deviation is generally attributed to a more 
prominent inertial force (e.g. Chauveteau, 1965), 
the actual origins of these inertial forces have been 
the object of many speculations (Hlushkou and 
Tallarek, 2006). While some researchers ascribe 
this inertial force to pore roughness (Minsky, 1951), 
others point out that this stems from such factors as 
the microscopic inertial force (Ma and Ruth, 1993), 
inertial core development (Dybbs and Edwards, 
1984), interstitial pore space curvature (Hayes et. 
al. 1995), viscous boundary layer formation 
(Whitaker, 1996), and the singularity of patterns of 
streamlines that is sometimes associated with 
microscale non-periodicity of flow (Panfilov et al. 
2003).   

Regardless of these propositions, it is safe to state 
that as a matter of general observation, as seepage 
velocities increase in porous media flows, a gradual 
transition occurs, resulting in a flow in which the 
relationship between the seepage velocity and the 

driving pressure gradient is no longer linear. In this 
case, inertia is no longer negligible and has to be 
accounted for in the flow description. In order to 
correct for the non-linearities in the inertial 
Forchheimer flow regime, Forchheimer (1901) 
proposed an ad hoc equation of the following form 
for an isotropic porous medium 

2f
d d

dP
aU bU

dx
                                        (3) 

Here, a is the ratio of the dynamic viscosity to an 
equivalent Forchheimer permeability, and b is the 
product of the inertial coefficient and the fluid 
density.  

Equation (3), also known as the Forchheimer 
equation, is perhaps the most widely used 
formulation for describing inertial effects in steady 
laminar flow through porous media. Its veracity has 
been corroborated both experimentally (Sedghi-Asl 
et al. 2015) and theoretically (Marušic-Paloka and 
Mikleic, 2000). However, the certainty of the 
Forchheimer equation is also not without doubts on 
a number of issues. The first is that its empirical 
verifications rest mainly on global measurements of 
flow rates and pressure differences across various 
porous media sample. This means that details 
(particularly of velocity) may not have been fully 
captured in those bulk measurements. Further to 
this, there have also been a number of experiments 
that have been at variance with the Forchheimer 
equation. These include the notable experiments of 
Forchheimer (1930) and Barree and Conway (2004, 
2005). In fact, after re-examining earlier reported 
data of Darcy (1856), Hazen (1895) and 
Chauveteau (1965), Firdaous et al. (1997) 
concluded that the data followed a cubic law. To re-
enforce these observations, Ruth and Ma (1992) and 
Ma and Ruth (1993) also showed the non-
uniqueness of the equation that governs the steady 
nonlinear flow, pointing out that any number of 
polynomials could be used to describe the nonlinear 
behavior of the flow. This conclusion is in 
concurrence with Mei and Auriault (1991) who had 
earlier shown that at low, finite velocities a 
homogenization technique yields a cubic law, not a 
quadratic law.    

These latter findings are not surprising, given that 
other equations have been suggested in the past to 
describe inertial steady laminar flows in porous 
media (Basak, 1977). Forchheimer (1901) himself 
suggested two other equations of the following 
forms, which are relatively less known 

f g
d d

dP
aU bU

dx
                                              (4) 

2 3f
d d d

dP
aU bU cU

dx
                                    (5) 
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where g and c are empirical terms. Izbash (1931) 
also proposed an empirical power law of the form 

f h
d

dP
U

dx
                              (6) 

and h are empirical parameters, depending on the 
flow conditions. Although this power law rivals the 
Forchheimer equation (as it is the preferred choice 
in modeling drainage systems; Bordier and Zimmer, 
2000), its physical soundness seems to be relatively 
less established. White (1935), after analyzing dry 
air flow through packed towers (Scheidegger, 
1960), also gave a correlation belonging to the 
family of Eq. (5), but setting h equal to 1.8. There 
have been other less known empirical and semi-
empirical power laws by Escande (1953), 
Wilkinson (1956) and Slepicka (1961) which are 
reviewed by Basak (1977), all demonstrating the 
non-uniqueness of the Forchheimer equation to 
describe the inertial flow.  There are other 
formulations that may also be seen as extensions of 
the Forchheimer equation. These, such as those of 
Wooding (1957) have been passed over because 
they are mainly suited for unsteady flows. 

In view of the foregoing, the present research 
program seeks to experimentally investigate 
pressure-driven flow through two- and three-
dimensional porous media to study the onset of 
inertia in porous media flow. Specifically, the goals 
are to apply benchmark experimental data to study 
the evolution of inertia, to distinguish differences in 
such evolution with respect to the parameters of the 
porous media, and to establish the constitutive 
equation that best describes the porous media flow 
when inertia sets in. Apart from the goals in view, 
what particularly sets this work apart from others, is 
the use of particle image velocimetry (PIV) – an 
experimental technique that captures multi-
dimensional flow quantities – as opposed to mere 
global quantities. Particle image velocimetry allows 
for the instantaneous whole flow-field measurement 
of pore-scale two- and three-dimensional velocities 
from which averages of flow quantities can be 
obtained. Using a high-resolution PIV technique 
then, detailed velocity measurements were 
conducted both within the porous medium. To 
capture the variations of velocities in all directions 
various planes were measured along various 
sections along the span of the test section. The 
velocities were averaged spatially. In addition to the 
velocity measurements, differential pressure 
measurements were obtained using pressure-
measurement gauges and transducers. The refined 
pressure and velocity data sets were then 
statistically analyzed and presented to provide a 
complete set of experimental data to characterize 
the flow through the model porous media and to 
determine the requisite constitutive equations.  

2. EXPERIMENTAL METHOD 

In this section, the experimental method is 
described. This includes the test channel, porous 

media models, velocity and pressure measurement 
set-ups, as well as the general experimental rig.  
Subsequently, an account is given of how certain 
preliminary measurement concerns regarding 
uncertainty and measurement procedure were 
resolved. An outline of the test conditions is then 
presented. 

2.1 Test Channel and Porous Media 

The tests were conducted in a 25-mm thick 
transparent acrylic channel of refractive index (RI) 
1.47. The length, span, and depth of the test channel 
were respectively 500 mm, 115 mm and 83 mm. 
The channel was so designed to conduct flow 
through a central entry hole at the upstream end, 
then through a 200-mm flow conditioning section, 
and subsequently through a 300-mm test section, 
before exiting through another central hole at the 
downstream end. It should be noted that each of the 
long faces of the channel at the test section was 
reserved for either velocity or pressure 
measurements. The side reserved for pressure 
measurement was arrayed with pressure tap holes of 
3.18 mm diameter. 

In this work, regular arrays of circular rods are used 
to model real porous media. This was done because 
of the relative simplicity and adaptability of such 
model media in controlled studies, and the practical 
utility of such model in simulating real cases such 
as banks of heat exchanger tubes. Two kinds of 
models were tested, as shown in Fig. 1. For the first 
kind (hereafter called horizontal models), the rods 
were aligned in one direction (i.e. spanwise 
direction), to simulate a two-dimensional porous 
medium. In the second model kind (henceforth 
called mesh models), the rods were alternately 
arrayed in a regular fashion in both spanwise and 
transverse directions to simulate a three-
dimensional porous medium. As for the test 
channel, each of the porous media models was 
constructed from acrylic rods, two side plates, and 
one lower acrylic plate, all of RI, 1.47. For models 
of circular rod of diameter d = 3.18 mm, the rods 
were arranged to achieve solid volume fractions 
of 6%, 12%, 22% respectively. To do this, rods 
were spaced at a distance l determined from: 

l = d/2√(π/)                                                (7) 

The range of solid volume fraction was so selected 
to cover the entire range of solid volume of fibrous 
and dense porous media practically suitable for the 
PIV technique.     

2.2 PIV System  

Velocity measurements were obtained using a 
planar particle image velocimetry (PIV) system, 
schematized in Fig. 2(a). The system used in the 
present tests was made up of a source of 
illumination, a camera system, a synchronization 
hub, and a computer system. A laser generator 
providing a Nd-YAG 120 mJ/pulse laser at 532 nm 
wavelength of light, was connected to a lens system 
to provide a thin (~1.5mm) laser sheet to illuminate 
the flow. A Dantec Dynamic HiSense 4M digital 
charge coupled device (CCD) camera of 2048-pixel 



J. K. Arthur / JAFM, Vol. 11, No.2, pp. 297-307, 2018.  
 

300 

by 2048-pixel chip and pitch 7.4 μm, was fitted 
with a C–mount 58 mm – 62 mm diameter EX 
Sigma lens. With such a camera system, images of 
the flow were captured in synchrony with the laser 
and computer. The synchronization was achieved 
using the hub connection. A Dantec Dynamic 
DynamicStudio v.2.30 commercial software, 
installed on the hard-drive of a desktop computer, 
was used to operate the PIV system, and to process 
the data that was acquired. 

 

(a)  
 

(b)  
 

(c)    
 

(d)    
Fig. 1. Schematic of (a) test channel, (b) pressure 
measurement face of the channel, (c) front view 
of horizontal model porous medium, (d) front 
view of the mesh model porous medium. All 

numeric dimensions are in millimeters. 
 

A Cargille Immersion liquid (Code 5040) of 
kinematic viscosity  = 20 × 10-6 m2/s (at 25oC), 
density f = 848 kg/m3 and RI = 1.47, was used as 
the working fluid. The fluid was in turn seeded with 
silver-coated hollow glass spheres of mean diameter 
10 μm and specific gravity 1.4. With such 
properties, the particles were sufficiently large to 
scatter light that is detectable by the recording 
medium. Given that the particle settling velocity 
and response time (based on the working fluid and 
seeding particles) are approximately 1.77 μm/s and 
7.98 ps, respectively, and therefore very small 
compared with the typical velocity and time scales 
used in the experiment, the particles were 
considered to follow the fluid faithfully.  

2.3 Pressure Measurement System 

Differential pressure measurements were 

consecutively made using two 4000 Series 
Capsuhelic pressure gauges, rated to measure 
pressures ranging from 0 to 0.5 and 0 to 1 inches of 
water respectively. These measurement devices 
were connected to the pressure ports on the test 
channel by a system of tubes, brass quick 
disconnect fixtures, and other accessory connectors 
(Fig. 2b). A DTD+ electronic transducer rated to 
measure 0 to 1 inches of water was also used. This 
transducer was connected to a digital Model Pax 
read-out meter and a personal computer to display 
the measurements. 

2.4 Arrangement of Test Facility 

The flow circuit of the test facility is schematized in 
Fig. 3. The facility consisted of the test channel 
with test models, a reservoir, a single speed 
centrifugal pump, two piston–spring loaded flow 
meters (to provide a quick readout of flow rate from 
the pump), interconnecting hoses, tubing, and 
valves. The test channel was seated in a set of 
metered acrylic plates so that the tank could be 
moved in the streamwise and lateral directions. The 
channel and the metered plates were both placed on 
a black PVC panel and supported on a structural 
frame at a 1-meter elevation off the ground. The 
laser and the camera were fixed on the frame 
mechanism in such a way that they could be 
traversed in a parallel plane. The camera and test 
channel were respectively fixed onto translation 
stages of a least count of 0.5 mm.   

 

(a)  
 

(b)  
Fig. 2. (a) Schematic drawing of particle image 
velocimetry set-up; (b) A picture showing the 

rear end of the test channel fitted with pressure 
port connectors. 
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Fig. 3. Schematic diagram of the flow circuit. 

 

2.5 Measurement Procedure 

The seeded working fluid was recirculated through 
a flow circuit, starting from the reservoir to the 
pump and then through valves, flow meter(s) to the 
test channel and then back to the reservoir. Various 
test conditions were achieved by modifying flow 
rates, and by inserting different test models into the 
measurement section of the test channel. 

Prior to velocity measurements, the PIV system 
was calibrated using the optimal background 
contrast and resolution settings. The field of view 
used was 27 mm per side so that the scale factor 
was typically 1.8. Peak-locking errors were 
minimized by ensuring that the particle image 
diameters were of 2.3 pixels (Raffel et al. 2007). 
To maintain a good signal to noise ratio, images 
acquisitions were done using laser pulses that 
were timed in such a way that the particle 
displacement in an interrogation area (IA) was less 
than a quarter of the side of the IA (Prasad, 2000). 
Using a typical interrogation window of 32 pixels 
by 32 pixels, and a sub-pixel accuracy of 0.1 
(Scarano and Riethmuller, 1999), the dynamic 
range in the present tests is estimated to be 80. In 
choosing optimal time pulses, the ratio of the 
displacement field variation to the root mean 
square of the pixel size and particle image 
diameter was maintained at a value far less than 1 
so that velocity gradient bias errors were kept 
minimal. 

Vector correlations of images were obtained by 
post-processing camera-captured images using the 
fast-Fourier transform adaptive-correlation option 
of Dantec Dynamic DynamicStudio v.2.30 software. 
Accordingly, a Gaussian window function of width 
0.1 pixels was used as an input filter, and a low-
pass Gaussian output filter of width 1.8 pixels was 
chosen as a filter on the correlation plane prior to 
peak detection. Additionally, a dual-step correlation 
process of acceptance factor 0.05 was used to 
ensure that ample valid vectors were obtained. Two 
iterations were performed at the first step, and then 
one at the final step. The resultant spatial resolution 
was about 0.42 mm when the velocity data was 
processed using an interrogation window of size 32 
pixels by 32 pixels. Using a 50% overlap between 
neighboring interrogation areas during the 
processing of data, additional vectors were provided 

so that the distance between adjacent vectors was ~ 
0.21 mm. Extensive velocity measurements were 
conducted at various sections of the 
streamwise/transverse (x-y) plane for various test 
conditions. The channel was moved along the 
streamwise/spanwise (x-z) in 2-mm intervals to 
measure the spanwise variations in velocity 
typically over 2-unit cells of the porous media.   

Differential pressure measurements were 
concurrently made with the velocity measurements. 
Each of these pressure-measuring instruments was 
calibrated under standard conditions prior to 
measurements. Due to the high sensitivity of these 
instruments, they were connected and installed so 
that the potential for any clogging of the unit by 
seeding particles, and the effect of external 
vibrations was kept minimal. Further precautions 
were taken to ensure that bubbles in the tapping 
lines were bled off. To optimize the dynamic 
response of the instruments, the pressure lines were 
generally short, and of internal diameters of the 
order of 3 mm. The least count of the gauges were 
respectively 0.05 and 0.1 inches of water, for the 0 
– 0.5 and 0 – 1 inches of water ranged 4000 Series 
Capsuhelic gauges. The least count of the DTD+ 
electronic transducer was 0.0002 inches of water. 
The differential pressure measurements were 
therefore computed from an average of the pressure 
differences recorded for each round of 
measurement. Most of the pressure measurements 
were done with the electronic transducer. This is 
because its precision was better, compared with the 
gauges. 

2.6 Measurement Uncertainty 

Several preliminary tests were conducted to 
determine the sample size of images required to 
attain statistical convergence of velocity data, 
determine the accuracy of the velocity data, 
optimize velocity measurement resolutions, verify 
the dimensionality of the horizontal porous media 
models, verify the accuracy of pressure 
measurements, and to estimate measurement 
uncertainties. With respect to the latter, a formal 
assessment was undertaken based on the 
methodology outlined by Coleman and Steele 
(1995) and Stern et al. (1999). The velocity and 
pressure uncertainties in measurements were 
determined using the bias and precision errors. In 
particular, the precision limit was obtained using a 
minimum of 11 experiments. Further details of this 
assessment are presented in Arthur (2012). The 
uncertainty in streamwise velocity u within the 
porous medium of  = 6% is estimated to be 1.5% 
of the local maximum velocity umax. For model 
porous media of  = 0.12, 0.22, the uncertainties of 
u approximately 2.5%, and 4% respectively of umax. 
For the transverse velocities v, total uncertainties 
are also estimated to be 1% of umax and in porous 
media of  = 6%; and 2% and 3% of umax in model 
porous media of  = 12%, 22% respectively. The 
total uncertainty in the differential pressure 
measurement is also estimated to be 3% of the 
average pressure drop. All error estimates are at 
95% confidence level. 



J. K. Arthur / JAFM, Vol. 11, No.2, pp. 297-307, 2018.  
 

302 

2.7 Test Conditions 

The test conditions are summarized in Table 1. 
The geometrical descriptions of the models are 
also summarized. The Reynolds number Red = (Ud 
d) / ν was used in each case. Here, the seepage 
velocity Ud was obtained by averaging the 
velocities within the core of the porous media 
model. It is to be noted that for these experiments, 
the goal was to obtain measurements to cover the 
range of Red where inertia is non-existent, as well 
as just apparent (i.e. 0.1 < Red < 12.7. However, 
this was not always possible because pressure 
values for Red > 1 exceeded the range that could 
be measured by the instruments that were used in 
this work.   
 

Table 1 Summary of test conditions. 

Model 
Solid Volume 

Fraction 


Range of Ud 
(mm/s) 

Range of 
Red 

Horizontal 6% 2.2 to 79.7 0.4 to 12.7 

Horizontal 12% 2.6 to 25.0 0.4 to 4.0 

Horizontal 22% 2.2 to 28.1 0.3 to 4.5 

Mesh 6% 2.3 to 37.5 0.8 to 6.0 

Mesh 12% 1.5 to 17.7 0.2 to 2.8 
Mesh 22% 0.3 to 4.1 0.1 to 0.7 

 

3. RESULTS AND DISCUSSION 

In this section, results of particle image velocimetry 
and differential pressure measurements are 
presented with brief comments. It should be noted 
that particle image velocimetery provides a whole 
flow field of two-dimensional velocity 
measurements. However, the flow phenomena 
under consideration were mainly that of spatially 
averaged distributions. For the Cartesian frame of 
reference used in this work, the components of the 
microscopic (pore-level) velocity in the streamwise 
(x) and transverse (y) directions are designated 
respectively by u and v. Similarly, superficial 
velocities in the x and y directions are signified 
respectively by Ud and Vd.  

3.1 Velocity Distribution 

The section begins by drawing attention to some 
important observations from the averaged 
velocity results. In Fig. 4, the normalized 
pressure drop gradients (i.e. friction factors fUd = 
(-dPf /dx)(d/(fUd

2), fVd = (-dPf /dx)(d/(fVd
2) are 

plotted against the averaged velocities 
normalized by the recorded maximum superficial 
streamwise velocity Ud,max. This is done for the 
streamwise components (Fig. 4a) and transverse 
components (Fig. 4b) of the superficial velocity 
(respectively Ud and Vd) in log-linear plots. These 
are important depictions of the flow because it 
shows the relative contributions of the 
streamwise and transverse components of the 
velocity in the flow, and the variation of the 
friction factor with respect to the varying solid 

volume fraction and dimensionality of the porous 
media. Furthermore, the presentation of the 
transverse components in particular in such an 
experiment is virtually non-existent in the 
literature.  
 

(a)  
 

(b)
Fig. 4 (a) Friction factor fUd = (-dPf /dx)(d/fUd2) 

plotted against the averaged streamwise (Ud) 
velocities; and (b) friction factor fVd = (-dPf 

/dx)(d/fVd2) plotted against averaged transverse 
(Vd) averaged velocities for various test 

conditions. 
 

The figures show that for each model, the 
normalized streamwise velocity measurements bear 
a quasi-power law relationship with the normalized 
pressure drop measurements. The results show that 
there is no discernible friction factor difference 
between the streamwise velocity models of two- or 
three-dimensionality for a solid volume fraction of 
6%. However, the friction factor as the porous 
media solid volume fraction reaches 22%, the 
friction factor of the three-dimensional model 
porous media is much higher (about twenty times or 
more) than that of the two-dimensional porous 
media. These findings hint that as porous media 
tend to be more compact ( > 12%), the effects of 
complexity play an important role in the global 
flow, magnifying the effects of the pressure drag 
and inertia. Indeed, the impact of inertia, through 
the streamwise velocities, is proven in Fig. 4(b). 
Those plots reveal that the differences in the flow 
phenomena for the various media are actually the 
result of the permeating influence of the streamwise 
velocity. When the streamwise velocities are 
discounted, the transverse components of the 
velocities, being much smaller than the streamwise 
velocities (by at least an order of magnitude), have 
a relatively little distinguishing effect on the flow 
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phenomena. They, therefore, yield high friction 
factor values that fall on the same power law, 
irrespective of the porous media. 

3.2 The Force Interplay at the Onset of 
Forchheimer Regime 

To investigate the forces at play at the onset of 
inertia, the streamwise flow data was studied further 
for both two- and three-dimensional porous media. 
This was done using the friction factor fUd (= (-dPf 

/dx)(d/(fUd
2)) and the characteristic Reynolds 

number Red (= Ud d/. The log-linear plot of fUd 

against the characteristic particle Reynolds number 
Red in Fig. 5 shows that fUd reduces with increasing 
Red. Additionally, for a given Red, fUd increases with 
increasing solid volume fraction  of the porous 
medium, and fUd of the mesh models is significantly 
higher than that of horizontal media. The fUd values 
of mesh models of = 12% and 22%, in particular, 
are about ten times the value of the corresponding 
horizontal porous media. Again, in consonance with 
earlier observations, these results indicate that the 
friction factor increases as the porous medium 
becomes more compact and complex in 
arrangement. However, the question that remains is 
this – how do the forces at play really interact at this 
regime of inertia If fUd is interpreted as the ratio of 
the pressure drag to the inertial forces along the 
stream, and Red the ratio of inertial and viscous 
forces, then at the very least, a study of the relative 
proportions of pressure (normal) drag, inertial and 
viscous forces as Red increases will be helpful in 
providing a better picture regarding the evolution of 
inertia in the presence of complex porous media 
parameters. To study such relative contributions of 
forces, the pressure (normal or form) drag, viscous, 
and inertial forces were extracted from the 
measurement data and assessed individually. In 
Figs. 6 – 8, the distributions of the forces computed 
per unit area (stresses), are shown in dimensional 
(N/m2) and dimensionless (fractional) units. It is 
important to note the relevance of these three 
notable stresses. Two of these stresses – the normal 
and viscous stresses – are frictional (drag per unit 
area). The normal drag per unit area (approximated 
by the product of the characteristic diametrical 
length and the pressure gradient: d(dPf /dx))) is the 
normal frictional stress induced by the pressure 
difference upon the flow. This is a direct result of 
the geometrical effects of the porous media. The 
viscous stresses (estimated by the product of the 
dynamic viscosity and the ratio of the superficial 
velocity and the characteristic diametrical length: 
fUd /d), are the flow’s characteristic tangential 
frictional stresses, responsible for smoothening out 
the microscopic heterogeneous velocity scales at 
neighboring points of the flow. The inertial stresses 
on the other hand, (estimated as fUd

2) are the 
stresses that bring about the transfer of energy from 
large-scale components to small-scale components, 
thereby ensuring a characteristic heterogeneity in 
the flow. It is emphasized here that the values of the 
stresses shown in Figs. 6 – 8 are only estimates – 
they are only measures of the actual stresses. 
However, they provide a useful assessment of the 
relative proportions involved in the flow. 

 
ig. 5. The friction factor, fUd plotted against the 
Reynolds number, Red for the test conditions. 

(a)  

(b)  

(c)  

(d)  
Fig. 6. The relative stress and normalized stress 

(i.e. stress divided by the sum of the inertial, 
viscous and normal stresses) distributions as 

Reynolds number Red increases for (a, b): 
horizontal porous media, (c, d): mesh porous 

media at  = 6%. 
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(a)  

(b)  

(c)  

(d)  
Fig. 7. The relative stress and normalized stress 

(i.e. stress divided by the sum of the inertial, 
viscous and normal stresses) distributions as 

Reynolds number Red increases for (a, b): 
horizontal porous media, (c, d): mesh porous 

media at  = 12%. 

 

Starting with the plots in Fig. 6, it is noted that for 
both porous media, the inertial stresses are the most 
dominant stresses at the Reynold number that 
inertia is expected to set in. However, each media 
shows a distinctive phenomenon. For the horizontal 
porous medium of φ = 6%, the friction and inertial 
stresses begin with similar values. However, by Red 
~ 1 – 3, the inertial component shoots up 
considerably to ~60% of the sum of the inertial and 
frictional stresses, while the frictional stresses 
remain low and of similar values thereafter. The 
inertial stress increases exponentially from Red ~ 1 
– 3 until peaking at Red ~ 12. In the case of the 

mesh porous media, the normal form drag is 
significantly larger than (nearly twice) the viscous 
stresses as Red increases beyond 2. Thus, the normal 
drag grows significantly larger compared with the 
horizontal porous media (up to 150% more) as Red 
increases beyond 2. Comparatively, it would seem 
then that due to the impact of the form drag, the 
inertial forces are less subdued in the mesh porous 
medium, than the horizontal porous medium. 
 

(a)  

(b)  

(c)  

(d)  
Fig. 8. The relative stress and normalized stress 

(i.e. stress divided by the sum of the inertial, 
viscous and normal stresses) distributions as 

Reynolds number Red increases for (a, b): 
horizontal porous media, (c, d): mesh porous 

media at  = 22%. 

In Fig. 7, the distinction between horizontal and 
porous media are much clearer than in Fig. 6. While 
the inertial stresses are the most dominant at the 
onset of inertial for horizontal porous media, for the 
mesh porous media, the normal frictional stresses 
are the most dominant throughout the flow. In Fig. 
8, another picture is painted with respect to the 
differences between horizontal and mesh porous 



J. K. Arthur / JAFM, Vol. 11, No.2, pp. 297-307, 2018.  
 

305 

media. For both media in Fig. 8, the most dominant 
stresses are that due to the normal drag, even 
though the mesh media seem to have 30% more 
compared with the horizontal media. The 
conclusion then is that as φ increases and the porous 
medium becomes more complex, the form drag 
expectedly becomes more prominent. However, a 
more important indication of these plots is the fact 
that as the form drag dominates the flow, it impedes 
the growth of inertia. This consequently leads to a 
wider transitional interval between the Darcy 
regime and the Forchheimer regime.  

3.3 The Constitutive Equation at the 
Onset of Inertia 

To explore the empirical equation that best applies 
to the flow for the conditions tested, the non-
dimensionalized data (friction factor versus 
Reynolds number) were fitted to the best equation. 
Figure 9 shows the empirical fit for all test cases 
(except for mesh porous medium at 22% where that 
range of Reynolds number does not extend into the 
inertial regime range), together with the respective 
coefficient of determination, R2. It is clear from the 
figure that the fUd – Red relationship is that of a 
power law. To show which of the form of 
constitutive equation represented in the best line fit, 
non-dimensionalized forms of Eqs. (3) to (6), are 
derived as follows: 

2

U d
d

a d d b
f

R e 
                                  (8) 
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d
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f Re
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h
d

U d d d

U
f R e Re  



 
  
 

              (11) 

where  and  are empirical values. Equation (11) 
indicates that the best-matched equation is that of 
Izbash (1931).  

 

 
Fig. 9. The friction factor, fUd against the 

Reynolds number, Red for the test conditions 
except for 22% - mesh. The plots are presented 

with best line fits. 

Writing Eq. (10) in terms of the Eq. (6) shows that 
the exponential parameter h is not a fixed number. 
It ranges between 1.10 and 1.42 for cases of flow 
extending into the onset of inertia. The results are 
summarized in Table 2. The data fall within the 
range of equivalent values published in several 
papers that put it between 1 and 2 (e.g. Basak, 1976, 
Bordier and Zimmer, 2000, Rong et al. 2016). 
Nothing conclusive can be said about the difference 
between two- and three-dimensional porous media 
results in the data presented in Table 2. However, 
for the two-dimensional horizontal porous medium, 
it is worth noting that the parameter h tends to 
reduce with increasing solid volume fraction φ. This 
implies the deviation from the Darcy law at the 
onset of inertia is less obvious at low φ, and that at 
� lower than 6%, the Darcy law may be sufficient 
to describe the flow at the Forchheimer regime. The 
results also indicate that, a single equation may be 
feasible for flow in both Darcian and Forchheimer 
regime, especially for porous media of very low 
solid volume fraction. This is something to be 
explored in future work. 

Table 2 Data results of parameter h 
Porous Medium h Red 
6%-horizontal 1.10 0.4 to 12.7 
12%-horizontal 1.24 0.4 to 4.0 
22%-horizontal 1.42 0.3 to 4.5 
6%-mesh 1.18 0.8 to 6.0 
12%-mesh 1.15 0.2 to 2.8 

 

4. CONCLUSIONS 

In this work, particle image velocimetry and 
pressure measurements of flow through model 
porous media have been used to investigate the flow 
at the onset of inertia.  

Using the velocity and pressure measurements and 
fluid density and viscosity, the following 
conclusions are evident: 

a)  The streamwise flow dictates the flow 
phenomenon. When the streamwise velocities 
are discounted, the transverse components of 
the velocities, being much smaller than the 
streamwise velocities (by at least an order of 
magnitude), show little differences in flow 
phenomenon in different media. They thus 
result in high friction factor values that fall on 
the same power law, irrespective of the porous 
media. 

b) The more compact ( > 12%), and more 
complex (three-dimensional compared with 
two-dimensional) the porous media, the more 
magnified are the effects of the pressure drag. 

c) An evaluation of stresses shows that inertia 
increases exponentially from particle Reynolds 
number between ~ 1 – 3. 

d) There is an indication that as the form drag 
dominates the flow, it impedes the growth of 
inertia. This consequently leads to a wider 
transitional interval between the Darcy regime 
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and the Forchheimer regime.  

e)  The equation given by Izbash (1931) best 
reflects the porous media flow at the onset of 
inertia. 

f) For the two-dimensional porous medium, as the 
solid volume fraction becomes less and less, the 
Darcy law may be sufficient to describe the 
flow at the Forchheimer regime. 

To further solidify the above-mentioned 
conclusions for a wider range of Reynolds numbers 
and porous media types, further experimental work 
and numerical analyses are required. However, this 
work provides reasonable and further concrete basis 
to use the Izbash (1931) equation at the onset of 
inertia for all sorts of porous media, as applicable to 
modeling of fluid flows pertaining to near well 
bores, fractures and tight screens of cryogenic 
propellant tanks. 
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