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ABSTRACT 

An empirical model is evaluated that is in a very simple form and is often used in automobile industry to relate 
the pressure drop and mass flow rate in internal flows. Despite the simplicity of the model, it is remarkably 
accurate when it is used in a wide range of internal flows. Such accuracy and the theoretical basis of the model 
is not well understood, and this work aims to provide such an understanding. The theoretical basis of the 
empirical model is sought by performing an integral analysis based on the Navier-Stokes equation in a laminar 
developing channel flow. The analysis successfully yields a model that is in the same form as the empirical 
model. The accuracy and sensitivity of the model is then thoroughly examined through the computational 
studies of several internal flows. Two regimes of the model behavior in internal flows are identified, a 
convection dominated flow regime and a diffusion dominated flow regime. In each regime, the sensitivity of 
the model accuracy to the model parameters is found to be substantially different. Finally, the empirical model 
is applied to several more complicated internal flows to demonstrate the applicability of the model in general 
flows. 

Keywords: Empirical model; Internal flows; Pressure drop, Mass flow rate, CFD, Sensitivity Analysis. 

NOMENCLATURE 

a,b empirical model constants 
a*,b* variables of derived model 
A cross-sectional area  
Cf friction factor 
d1,d2 geometry constants of curved channel 
H height of straight channel 
H(x) height of channel at x location 
Hin height of curved channel at inlet 
Hm average height of converging channel  
L length of channel 
m mass flow rate 

n̂  normal vector 

p mean pressure across a cross-section  
Re Reynolds number 
Reτ Reynolds number based on friction 

velocity  
u velocity in x direction
u0 centerline velocity  

ub bulk velocity 
uin uniform inlet velocity 
uτ friction velocity 
u+ mean velocity in terms of wall units 
u′+ RMS velocity in x direction 
ν velocity in y direction 
ν′+ RMS velocity in y direction 
W width of straight channel 
w′+ RMS velocity in z direction 

∆p pressure drop 
∆P pressure drop across car underhood 
ε sensitivity input  
ρ density 
µ molecular viscosity  
ν kinematic viscosity  
σ deviation in pressure 
σ+ positive deviation in pressure 
σ− negative deviation in pressure 
τw wall shear stress 

1. INTRODUCTION

An empirical model that relates the pressure drop to 

mass flow rate in internal flows has been widely used 
in the automobile industry (Personal com-
munication, Bruno, D., Schwarze, M., and Zuck, B., 
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BMW AG, Munich). Typically, the empirical model 
is written as (Pant et al. (2013), Pant (2014)): 

2 ,p am bm                                                     (1) 

where ∆p is the pressure drop inside a channel over 

some distance, m  is the mass flow rate through the 
channel and a, b are dimensional constants. Pressure 
drop along the flow direction in internal flows 
measures the loss of mechanical energy of fluid due 
to viscous dissipation and can be related to the 
entropy generation in fluid. An interesting entropy 
analysis of internal flows based on the second-law of 
thermodynamics can be found in Herwig and 
Schmandt (2013). The empirical model in Eq. (1) 
relates the pressure drop, which measures losses, to 
the mass flow rate. This can be used, for example, to 
estimate the mass flow rate through an auto-mobile 
underhood for cooling analysis (Pant et al.(2013), 
Pant (2014)). It is clarified that fully developed flow 
condition is not assumed in Eq. (1), and indeed it is 
found in this work that this model is surprisingly 
accurate for some highly developing internal flows. 

Although the empirical model has been useful in 
engineering applications, to our best knowledge, it 
has not been studied in previous publications and the 
theoretical basis of the model remains unknown. 
This motivates this work, and the goal of this paper 
is to perform an analysis of the empirical model in 
Eq. (1) based on the theory of fluid mechanics 
(White (2008)) and to examine the accuracy and 
uncertainty of the model through numerical 
simulations in order to provide a theoretical basis to 
the model. 

The empirical model in Eq. (1) is in a similar form 
to the Darcy-Forchheimer equation which is used 
for flows through porous media (Ward (1964), 
Ahmed and Sunada (1969), Lage et al. (2005), 
Straughan (2010), Liao et al. (2016)). Despite the 
similarity, the two models arise from two different 
contexts and the theoretical basis for the models is 
different. In this work, we focus on examining the 
fundamental basis of the empirical model in Eq. 
(1) in simple internal flows without porous 
medium. Both theoretical analysis and 
computational fluid dynamics (CFD) simulations 
will be performed to examine the empirical model 
in the contexts of both laminar and turbulent 
flows. The work is expected to be valuable in 
providing a sound theoretical basis to the 
empirical model that is useful not only in the 
automobile industry but also in engineering 
applications that involve internal flows such as 
pipe flows in the oil and gas industry (Dukler et 
al.(1964), Baker et al. (1953), Rodriguez and 
Oliemans (2006), Ghosh et al. (2009), Ouyang and 
Aziz (1996)) and heat exchangers in power 
generation and aerospace industries (Manglik and 
Bergles (1995), Wang et al. (1997), Muley and 
Manglik (1999), Junqi et al. (2007)). Additionally, 
the empirical model in Eq. (1) is expected to be 
useful for the development of measurement 
techniques for mass flow rate (Oliveira et al. 
(2009), Martin et al.(2006), Shodiya et al. (2012), 
Kim et al. (2005), Payne and O’Neal (2004)), and 

for the design of ventilation systems in buildings 
(Hensen and Lamberts (2012), Awbi (2008)). 

The rest of the paper is organized as follows. Section 
2 performs an integral analysis of the empirical 
model based on the Navier-Stokes equation to 
establish a theoretical basis for the model. Section 3 
examines the dependence of a model coefficient in 
the empirical model on the mass flow rate. This 
dependence directly determines the accuracy of the 
empirical model. Sensitivity analysis of the 
empirical model and the characterization of channel 
flows is then conducted in Section 3 to provide a 
thorough understanding of the empirical model over 
a wide range of conditions. The model’s 
performance is examined further in several internal 
flows in Section 4 to show the applicability of the 
empirical model to more general flows. The 
conclusions are drawn in Section 5. 

2. NAVIER-STOKES EQUATION 
ANALYSIS OF THE EMPIRICAL 
MODEL 

2.1 Analysis of Laminar Developing Channel 

To seek the theoretical basis of the empirical model 
in Eq. (1), we first consider a simple steady state, 
laminar, spatially developing channel flow as shown 
in Fig. 1. From this point onwards we per-form an 
integral analysis of the channel flow based on the 
Navier-Stokes equation (White (2008)). The channel 
has length L and height H. The flow is assumed to be 
incompressible and all thermo-transport properties 
are assumed to be constant. The flow is two-
dimensional and a unit width is considered in the 
span-wise direction so that the cross-sectional area of 
the channel is A = H ×W where W = 1m. The 
governing equation for the momentum in the x 
direction can be written as (White (2008)), 

2 2( ) ( ) 1 ,
2 2

uu uv p u uv vx y x x y
            

         (2) 

 

 
Fig. 1. A steady-state laminar spatially 

developing channel flow. 
 

where u and v are the velocity components in the x 
and y directions, ρ is the density and ν is the 
kinematic viscosity. At a location x, we integrate Eq. 
(2) in the y direction from y = −H/2 to H/2, i.e. from 
the bottom wall to the top wall to obtain, 

( ) 1/2 /2
/2 /2

./2 /2

uuH Hdy pdyH Hx x
u uv vy H y Hy y


     

   

            (3) 
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During the integration, the second term on the left 
hand side of Eq. (2) has been eliminated because no-
slip condition on the wall. The integral of the second 
term on the right hand side of Eq. (2) is also 
eliminated because the mass flow rate through the 

channel /2
/2 b

Hm uWdyH u HW     is a constant, 

where ub is the bulk fluid velocity. We can further 
simplify Eq. (3) to 

2 ,1 /2 /2
pH u uc u v vb y H y Hx y y

        
(4) 

by introducing the following notations, 

( )/2
/2 ,1 2

uuH dyH xc
ub


                                            (5) 

1 /2 ./2
Hp pdyHH 

                                              (6) 

The viscous wall stress terms in Eq. (4). 

/2w y H
u
y

  



 , can be expressed in terms of 

the Reynolds number Re / /bu H v m W    for 

fully developed laminar channel flows (Pritchard 
(2011)), 

12 .
1 2
2

wC f Reub




                                              (7) 

Using fully developed condition for the evaluation of 
the viscous wall stress terms is a significant 
approximation involved in this analysis. Combining 
Eqs. (4) and (7), we obtain the following equation, 

1221 .
3 3

cp m mx H H W


 
   

                              (8) 

The pressure drop after a distance of l in the flow 
direction is then estimated by integrating Eq. (8) in 
the flow direction, 

120 21 .
3 3

1c dx lp m m
H H



                                  (9) 

Eq. (9) can be re-written as, 

2* * ,p a m b m                                             (10) 

where 

120 1* , *
3 3

1c dx la b
H H



                                    (11) 

Here we use notations a* and b* in Eq. (10), which 
are derived based on the flow equations. The model 
constants in the empirical model in Eq. (1) are 
differentiated as a and b. For clarity, we call Eq. (10) 
as the derived model as opposed to the empirical 
model referred to in Eq. (1). It is noted that Eqs. (9) 
and (10) are not exactly valid since several 

assumptions are involved in the derivation. We have 
also forced the convection term to look like the 
quadratic term in Eq. (10) with the assumption that 

a* is not strongly dependent on m  (to be examined 
in detail later). Nevertheless, the expressions in Eqs. 
(9) and (10) are in the same form as the empirical 
model in Eq. (1). This pro-vides a theoretical support 
to the empirical model expressed in Eq. (1). The 
assumptions involved in the derivation of Eq. (9) are 
summarized as follows: 1) Steady state; 2) Laminar 
flow; 3) Incompressible flows; 4) Constant transport 
properties; 5) Friction coefficient Cf in Eq. (7) based 
on fully developed channel flows. 

In the empirical model, the model constants a and b 

are not dependent on the mass flow rate m  From 

Eq. (11), we can see that b* is independent of m  
with the above assumptions while a* is mostly not. 
It is important to examine the dependence of a* on 

m  because it directly affects the accuracy of the 
model and this will be conducted in the following 
discussion. From Eqs. (1), (5) and (10), we can see 
that the quadratic term in the derived model in Eq. 
(10) is from the convection term and the linear term 
is from the viscous term. When the channel flow 
becomes fully developed, the quadratic term 
vanishes and the model is exact. 

2.2   Remarks on General Internal Flows 

For the steady state laminar channel flow in Fig. 1, 
we are able to perform the integral analysis in 
Section 2.1 to find the basis of the empirical model 
in Eq. (1) after introducing a number of assumptions. 
For variable area channel flows, we can perform a 
similar analysis to obtain an equation for the pressure 
drop in the same form as the empirical model in Eq. 
(1) with some additional assumptions: 1) Flow is 
primarily in the x direction; 2) The radius of 
curvature of channel walls is large enough so that 

n̂ y
 


 

, where n̂  is the normal direction of the 

wall. Given the empirical nature of the model in Eq. 
(1), we do not show this analysis. For more general 
flows (e.g., transient flows, compressible flows, 
variable transport properties), the analysis in Section 
2.1 can be extended as well, but will lead to more 
complicated model formulations. The empirical 
model in Eq. (1) captures the leading order effect of 
flows and if high-order effect is needed, the model 
naturally becomes more complicated. We are not 
aware of much interest in more complicated models 
in real-life engineering applications and hence the 
focus of this work is on the empirical model with the 
leading order effect in Eq. (1). 

For turbulent flows, a similar analysis can be per-
formed. The major difference is that for turbulent 
flows, the viscous wall scaling is different from 
laminar flows and Eq. (7) is not applicable. For 
turbulent rectangular duct flows, a wall scaling of Cf ∼ Re-0.25 is proposed in Dean (1978). With this 

scaling, a model of form p = a* m 2 + b* m 1.75 can 

be derived. In general, if we assume a wall scaling of 
Cf ∼ Re-2+β with β a constant, we obtain a model in 
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the form of ∆p = a* m 2 + b* m β which is a 
generalized version of the empirical model in Eq. (1). 
In this work, we only consider the special case β = 1 
due to the empirical nature of the model. It will be 
shown in the later discussions that the second term 

bm  in the generalized empirical model is 
negligible in high Re number flows so that the 
accuracy of the model is not sensitive to the value of 
β. 

After having established the theoretical basis of the 
empirical model in Eq. (1), in a limited sense, we 
now assess the model accuracy and uncertainty in the 
following sections. In the empirical model in Eq. (1), 
the coefficients a and b are constant, i.e., they are 

independent of the mass flow rate m . From Eq. (11) 
we can see that the coefficient b* for the linear term 
depends on the geometry and transport property and 

hence is independent of m  while the coefficient a* 
for the quadratic term is dependent on m  because 
the normalized convection term c1 defined in Eq. (5) 

is dependent on m . Such dependency will be 
examined in detail in the following Section 3 in the 
laminar channel flow. The performance of the 
empirical model will then be examined in Section 4 
in several test cases including two laminar channel 
flows with variable areas, a turbulent channel flow 
and a complicated flow involving turbulent flow 
through the underhood of a car. 

3. DEPENDENCE OF THE 
COEFFICIENT a* ON MASS FLOW 
RATE 

In the empirical model in Eq. (1), both coefficients a 
and b are assumed to be independent of m . As 
discussed above, in the laminar channel flow, 
although b* in the derived model does not depend on
m , the coefficient a* does. It is important to 
understand such dependency to help estimate the 
accuracy of the empirical model. As can be expected, 
the coefficient a* must have a weak dependence on 
m  in order for the model to have reasonable 
accuracy. If this is not the case, i.e., a* strongly 
depends on m , the accuracy of the empirical model 
is generally expected to be poor. In this section, we 
test the dependence of the model coefficient a* on 
m  based on the CFD simulation results of the 
developing laminar channel flow. 

3.1   Simulation of Laminar Channel Flow 

The CFD simulations of the 2D laminar channel flow 
are performed in ANSYS FLUENT 14.5 (Fluent, 
2009). The computational domain is chosen to cover 
the air flow inside the channel as shown in Fig. 1 with 
the ratio of the length of the channel L to the height 
of the channel H, L/H = 200. A uniform inflow 
velocity profile is imposed at the inlet of the channel 

and a pressure-outlet boundary condition is imposed 
at the outlet. The no-slip boundary condition is 
specified at both walls. The Reynolds number, Re = 
ubH/ν, varies from 1 to 2000 corresponding to the 

mass flow rate m  varying from 0.01 kg/s to 20 kg/s. 
The pressure-velocity coupling is treated with the 
SIMPLE algorithm and the spatial discretization for 
the convection terms is done using a second-order 
accurate upwind scheme. The convergence criterion 
is set to be less than 10-6 for the residuals. The 
convergence and accuracy of the laminar channel 
flow simulations are verified in Fig. 2. In the figure, 
a case with the highest Re considered above (Re = 
2000) is tested. Six grids are considered with the 
number of grid nodes, 4000 (Grid 1), 9000 (Grid 2), 
16000 (Grid 3), 25000 (Grid 4), 100000 (Grid 5) and 
200000 (Grid 6). The left plot of Fig. 2 shows the 
profile of the component of velocity parallel to the x 
direction, u, at the channel exit (x/H = 200) with three 
different grids, Grid 3, Grid 4 and Grid 5. 

 

 
Fig. 2. The velocity profiles u/ub at the channel 
exit x/H = 200 with different grids (left) and the 

convergence of the centerline velocity u0/ub at the 
channel exit where ∆ is the nominal grid size 

(right). 

 
The analytical solution of a fully developed channel 
flow at the same Re = 2000 is also shown in the figure 
as circles. Very close agreement is observed between 
the simulations and the analytical solution, 
indicating a fully developed condition at the channel 
exit. The grid convergence of the centerline velocity 
u0 at the channel exit is shown in the right plot of Fig. 
2. Second-order grid convergence is evidently 
observed of the simulation results which is consistent 
with the second-order accurate schemes used in the 
simulations. In the following discussions, Grid 4 
with 25000 nodes is employed for all the straight 
laminar channel flow simulations with which less 
than 1% error is incurred based on the convergence 
results in Fig. 2. A total number of 500 nodes are 
used in the stream-wise direction and 50 nodes in the 
cross-stream direction. 

For the analysis of the FLUENT simulation results, 

we measure the pressure drop p  in Eq. (6) over a 

distance of H around a location x, i.e., measuring the 

pressure difference p  between x/H ±1/2. The  
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Fig. 3. The pressure drop p  between x/H ± 1/2 at the different stream-wise locations, x/H = 5, 10, 20 

and 40, in the laminar channel flow. 
 

 

 

 
Fig. 4. The coefficient a* defined in Eq. (11) at the different stream-wise locations, x/H = 5, 10, 20 and 

40, in the laminar channel flow, computed from the FLUENT simulation results. 
 

 

simulated results for p  against m  at the different 

stream-wise locations, x/H = 5, 10, 20 and 40 are 
shown as circles in Fig. 3. The simulation results are 
fit to the empirical model in Eq. (1) which is 
represented by solid line in Fig. 3. From the figure, 
we can see that the model fit is in excellent 
agreement with the simulation results with a 
maximum relative difference of 1%. Here the 

relative difference is defined as, (∆p − p )/max(

p ), where ∆p is the empirical model result based 

on Eq. (1), p  is the FLUENT simulation result and 

max( p ) is the maxiumum value of the pressure 

drop from the simulations in the entire range of 
massflow rates that are computed. The relative 
difference between the CFD results and the empirical 
model indicates a good accuracy of the empirical 
model for the laminar channel flow. This seems to 

suggest that the coefficient a* in Eq. (11) in the 
laminar channel flow does not have a strong 

dependency on m  as having been assumed in the 
empirical model. We evaluate this independency 
using the simulation results for the laminar channel 
flow in the following Section 3.2. 

3.2   Dependence of a* on m  

The dependence of the coefficient a* in Eq. (11) on 
m  is examined in Fig. 4 where the values of a* 
computed from the simulation results are plotted 

against m . When m  is relatively small, the flow 
may reach fully developed, e.g., for m < 2 kg/s at 
x/H = 20. As a result, a* = 0 in Eq. (10) because of 

the fully developed condition. When m  increases, 
the flow moves from fully developed to developing 
stage at a specified location and the value of a* 
increases, e.g., when m > 3 kg/s at x/H = 20 in Fig.  
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Fig. 5. The sensitivity of the empirical model to the perturbation ε = 0.5 of the model coefficient a in Eq. 

(1) at the different stream-wise locations, x/H = 5, 10, 20 and 40, in the laminar channel flow. 
 

 

4. When m  is large enough, further increasing m  

can cause some slight decrease of a∗, e.g., when m
> 8 kg/s at x/H = 10 in Fig. 4. The results in Fig. 4 
show a strong dependence of a* on m , which 
contradicts our speculation discussed in Section 3.1. 
Despite the fact that a* has a strong dependence on 

m  as shown in Fig. 4, the empirical model performs 
excellently well as shown in Fig. 3. This creates a 
puzzle about the model accuracy and the unexpected 

dependence of a* on m . To gain deep insights into 
the puzzling results in the laminar channel flow, we 
perform a sensitivity analysis of the empirical model 
and examine the characteristics of the flows under 
different mass flow rate m  in the following Section 
3.3.  

3.3 Sensitivity Analysis and 
Characterization of Flows 

The sensitivity of the model is examined by 
perturbing the coefficient a in Eq. (1) by a factor of 
1 ± ε, where ε is the sensitivity input. The effect of 
the perturbation on the model accuracy is then 
analyzed. The sensitivity results based on the 
FLUENT simulation results for the channel flow are 
shown in Fig. 5 where the simulation results are 
shown as circles and the empirical model results are 
shown as solid lines with error bars. The sensitivity 
input is ε = 0.5 and the error bars in Fig. 5 show the 

absolute deviation [ p  − σ−, p  + σ+] of the 

empirical model given the sensitivity input, where 
σ− and σ+ show the deviation. The results in the 
figure show that the error bar size at the relatively 
low mass flow rate is small while it becomes larger 
at the relatively large mass flow rate. The results 
suggest a monotonic increase of the sensitivity of the 
empirical model to the model coefficient a when the 
mass flow rate m  is increased. This monotonic 
increase of the sensitivity is confirmed in Fig. 6 
where the error bar size σ = σ− + σ+ against m  is 
shown for three different sensitivity inputs ε = 0.5, 

1.0, and 2.0. This sensitivity behavior needs more 
exploration which is delayed till Section 3.4. At this 
point, given the sensitivity results in Figs. 5 and 6, 
we can readily explain the puzzle we observed in 
Section 3.2. In the region where the coefficient a* 
varies significantly at low mass flow rate as shown 
in Fig. 4, it turns out that the model is quite 
insensitive to the variation of a. In this case, even 
though the model coefficient a* is not constant as can 
be seen in Fig. 4, the accuracy of the empirical model 
is not significantly compromised because of the 
lesser sensitivity of the model to the perturbation of 
a at the relatively low mass flow rates. In the region 
where the coefficient a* varies only slightly, 
corresponding to the relatively large mass flow rates, 
the empirical model’s accuracy is expected to be 
good because of the approximate constant value of 
the model coefficient a* in this region. This 
observation clearly solves the puzzle we encountered 
in Section 3.2 as to why the empirical model 
performs so well even though the model coefficient 
a* is found to vary significantly. This finding 
provides a better understanding of the empirical 
model. From the sensitivity analysis we also 
observed two distinct regions in which the empirical 
model behaves differently. The two distinct regions, 
a convection dominated region and a diffusion 
dominated region are explored in the following 
Section 3.4. 

3.4 Convection Dominated and Diffusion 
Dominated Flows 

To understand the two distinct regions of the model’s 
behavior discussed in Section 3.3 and the reason for 
having them, we examine the model further in Fig. 7. 
In the figure, the two individual terms of the 
empirical model are plotted separately along with the 
model fit itself. From the figure, we can see that the 
relative magnitudes are quite different for different 

values of m . When m  is relatively small, e.g., m
< 10 kg/s at x/H = 5 in Fig. 7, the square term a m 2 
is much smaller than the  



T. Pant and H. Wang/ JAFM, Vol. 11, No.2, pp. 419-432, 2018.  
 

425 

 
Fig. 6. The model sensitivity σ against the mass flow rate m  for the different sensitivity input ε = 0.5 

(circles), 1.0 (squares), 2.0 (diamonds), at the different stream-wise locations, x/H = 5, 10, 20 and 40, in 
the laminar channel flow. 

 

 
Fig. 7. The variation of the square term a m 2 and linear term b m against the mass flow rate m  at the 

different stream-wise locations, x/H=5, 10, 20 and 40, in the laminar channel flow. 
 

 

linear term b m , while when m  is relatively large, 

e.g., m > 20 kg/s at x/H = 5 in Fig. 7, the square term 
is much larger than the linear term. This creates two 
distinct regions of the model’s behavior as discussed 

in Section 3.3. In one region where m  is relatively 
small, the linear term dominates and the model 
performs quite well even if in this region the 
quadratic term coefficient a* varies significantly as 

shown in Fig. 4. In the other region where m  is 
relatively large, the quadratic term dominates and the 
model also performs quite well because in this region 
the quadratic term coefficient is approximately 
constant (or at least varies only slightly) as shown in 
Fig. 4. Since the quadratic term comes from the 
convection term and the linear term comes from the 
diffusion term as discussed in Section 2.1, we 

characterize the two distinct regions as a diffusion-
dominated flow region and a convection-dominated 
flow region. The two characteristic flow regions are 
illustrated in Fig. 8. 

In summary, in Section 3, we examined the 
dependence of the coefficient a* on the mass flow 
rate. This coefficient is related to the coefficient a in 
the empirical model in Eq. (1). It is found that in the 
simple channel flow, the empirical model performs 
excellently well while a* is strongly sensitive to the 
mass flow rate. This creates a puzzle since a constant 
model coefficient a is used when examining the 
model. The puzzle is successfully solved by 
performing a sensitivity analysis of the empirical 
model to the coefficient a. The analysis reveals that 
there are two distinct regions where the model 
behaves completely different. Although the  
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Fig. 8. The diffusion dominated flow region and the convection dominated flow region. The model fit 

results are taken at x/H=5 in the laminar channel flow. 

 
 

model shows consistent performance over a wide 
range of mass flow rates, the reason for getting such 
a good performance is actually different for different 
mass flow rates due to the existence of the two 
distinct regions of the model. This provides a 
thorough understanding of this empirical model that 
is in simple form yet not simple for a complete 
understanding. 

It is noted that the above discussion is limited to a 
simple channel flow. In more complicated flows, the 
analysis is more involved and the model is probably 
not as accurate as in the channel flow. Nevertheless, 
the analysis is very useful for providing a theoretical 
basis to the model and for providing a complete 
understanding of the model. In the following Section 
4, we provide a quick examination of the 
performance of the empirical model in several more 
complicated internal flows with the aim to provide a 
brief assessment of the general applicability of the 
model to a wider range of flows. In the examination, 
we use CFD simulation results to fit the empirical 
model for the assessment. 

4. APPLICATION OF MODEL TO 
SAMPLE INTERNAL FLOWS 

Four more internal flows are considered in this 
section to demonstrate the applicability of the 
empirical model in Eq. (1) : a laminar flow inside a 
converging channel, a laminar flow inside a curved 
channel, a turbulent channel flow and a complicated 
turbulent flow through the hood of a car. 

4.1 Laminar Flow inside a Converging 
Channel 

A converging channel is considered which represents 
a more challenging case than the straight channel 
since the flow can never reach fully developed state. 
The converging channel considered in this work is 
shown in Fig. 9. The length of the channel is L and 
the height of the channel is H(x) at a stream-wise 
location x. The channel geometry is defined as 
H(0)/H(L) = 2.5 and L/H(L) = 5. The angle of 
inclination of the wall with the horizontal is θ = 8.53◦. 
The average channel height is Hm = (H(0)+H(L))/2 

and L/Hm = 2.857. Unit width is considered in the 
span-wise direction, W = 1m. The working fluid is 
air at room temperature. The computational domain 
covers the fluid flow region inside the channel. The 
grid generated in ICEM CFD (ICEM-CFD (2009)) 
has a total number of 20000 nodes with 200 nodes in 
the y direction and 100 nodes in the x direction. A 
uniform velocity boundary condition, uin, is defined 
at the inlet of the channel and a pressure-outlet 
boundary condition is defined at the outlet of the 
channel. No-slip boundary condition is specified at 
both walls. The Reynolds number, Re = uinHm/ν, 
varies from 1.75 to 14 corresponding to the mass 

flow rate m from 2.5 kg/s to 20 kg/s. The solution 
algorithm and the convergence criterion are the same 
as in the straight channel case in Section 3.1. To 
examine the accuracy of the empirical model for the 
converging laminar channel flow, we define p  to 

be the pressure drop between x/Hm ±0.15, where Hm 
is the average height. 

 

 
Fig. 9. A steady-state laminar spatially 

developing flow through a converging channel. 
 

The computed values of p  in the converging 

laminar channel flow are shown as open circles in 
Fig. 10 at the four different locations in the stream-
wise direction, x/Hm = 1, 1.5, 2 and 2.5. The 
simulation results are then fit into the empirical 
model in Eq. (1) which is shown as the solid lines in 
the figure along with the error bars that correspond 
the sensitivity input ε = 0.5. From the figure we can 
see that the model performs exceptionally well for 
the flow conditions that are considered. The results 
from the converging laminar channel flow are  
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Fig. 10. The pressure drop p  between x/Hm±0.15 at the different stream-wise locations, x/Hm= 1, 1.5, 

2 and 2.5, for the laminar converging channel flow along with the error bars for ε = 0.5. 
 

 

qualitatively similar to those from the straight 
channel in Fig. 3. Specifically, the results are 
insensitive to the model constant a for the small mass 
flow rates and the sensitivity grows when the mass 
flow rate is increased. The excellent performance of 
the empirical model can be explained by the same 
reasons explored in the straight channel in Section 3. 

4.2  Laminar Flow inside a Curved Channel 

A laminar flow with more complicated geometry is 
further considered as shown in Fig. 11. The profile 
of the wall is specified according to, 

( ) 1 sin( 2 ) ,1 22
H xinH x d d Hin


 
 
  

            (12) 

 

 
Fig. 11. A steady-state laminar spatially 

developing flow through a curved channel. 

 

where Hin is the height of the channel at the inlet and 
d1 and d2 are constants. For this study, the values are 
specified to be d1 = 0.2, d2 = 0.6 and Hin = 4m. The 
average height of the channel given by 

0
1 / ( ) ( )

L
mH L H x d x   is also 4m. The L/Hm ratio 

for the channel is 8.6375. The computational grid for 
this flow in FLUENT has 99301 cells. With the 
Reynolds number defined as Re = uinHm/ν, the 
Reynolds number varies from 2 to 20 corresponding 
to the mass flow rate m  from 2 kg/s to 20 kg/s. 

Similar to the converging channel in Section 4.1, we 

measure the pressure difference p  across the two 

streamwise locations x/Hm ± 0.15, at four different 
axial locations x/Hm = 3.5, 4, 4.3 and 4.7. These 
locations are selected to capture the different features 
of the periodic channel. The simulation results along 
with the model fit for the curved channel are shown 
in Fig. 12. From the figure, again we observe 
excellent performance of the empirical model despite 
its simplicity. It is suggested that the empirical model 
examined in this work can probably be used in many 
laminar internal flows with good accuracy. In the 
following section, we examine two turbulent cases to 
further demonstrate the performance of the simple 
empirical model. 

4.3   Turbulent Channel Flow 

A turbulent straight channel flow is considered. The 
channel has the same geometry as the laminar one as 
shown in Fig. 1, with L/H = 200. The Reynolds 
number, Re = uinH/ν varies from 7000 to 200000 

corresponding to the mass flow rate m  from 0.7 
kg/s to 20 kg/s. The grid generated for the FLUENT 
simulation has 39601 cells. Turbulence is modeled 
using the Reynolds Stress Transport model (RST) 
with the standard wall function model in FLUENT 
(Fluent (2009)). The turbulence intensity at the in-let 
and outlet is set to 5% and the turbulent length scale 
to H. 

We validate the CFD simulations by using Direct 
Numerical Simulation (DNS) results for a fully 
developed turbulent channel flow with Reτ = 590 
(Moser et al. (1999)). The length of channel in the 
current simulations is sufficiently long to reach the 
fully developed state at the exit x/H = 200. For 
Re=21500, the Reynolds number 
Reτ=uτ(H/2)/ν=592.5 based on the friction velocity 
uτ (Pope (2001)) and channel half-width is close to  
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Fig. 12. The pressure drop p  between x/Hm±0.15 at the different stream-wise locations, x/Hm = 3.5, 4, 

4.3 and 4.7, for the laminar curved channel flow along with the error bars for ε = 0.5. 
 

 
Fig. 13. The mean velocity u+ in terms of wall units for fully developed turbulent channel flow (left). 

The Reynolds stress component u v


   velocity in terms of wall units for fully developed turbulent 

channel flow (center). The components of root mean square velocity ,u v    and w   in terms of wall 
units for fully developed turbulent channel flow (right). 

 

 

the DNS Reτ. The leftmost plot in Fig. 13 com-pares 
the profile of the predicted mean velocity u+ in the 
wall units with the DNS results. It can be observed 
that the predicted mean velocity profile is in good 
agreement with the DNS results, including the near 
wall region. The center and the rightmost plots in 

Fig. 13 compare the Reynolds shear stress u v


   and 
the root mean square (RMS) velocity profiles 

, ,u v w      respectively. The simulated shear stress 
and RMS velocities match the DNS results well with 
the maximum relative error of 14%. The good 
agreement with the DNS data evidently validates the 
current FLUENT simulations. The same level of 
accuracy is expected for other Re that is considered, 
and this accuracy is adequate for the purpose of this 
study. 

The mean pressure drop p  is measured over a 

distance of H at x/H ± 1/2. The simulated values of 

p  from the FLUENT simulations are plotted 

against m  as circles at the different stream-wise 
locations, x/H = 5, 10, 20 and 40 in Fig. 14. The 
performance of the empirical model in the turbulent 
channel flow is similar to the laminar flows above. 
The maximum relative error of the empirical model 
defined in Section 3.1 is estimated to be about 3% in 
the turbulent channel flow in Fig. 14 which 
demonstrates the applicability of the empirical model 
to turbulent flows. 

4.4   Turbulent Flow through Underhood of 
Car 

Lastly, we examine the application of the empirical 
model in Eq. (1) in a practical application with a very 
complicated geometry, the flow through the 
underhood of a car (Pant et al. (2013), Pant (2014)),  
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Fig. 14. The mean pressure drop p  between x/Hm ± 1/2 at the different stream-wise locations, x/H = 

5, 10, 20 and 40, for the turbulent straight channel flow along with the error bars for ε = 0.5. 
 

 

 
Fig. 15. Underhood architecture of car model A (top). Section of the 3D volume mesh passing through 

the suction fan (bottom). The normal of the section plane points in the direction of the motion  
of the car. 

 

with the goal to further demonstrate the applicability 
of the model to flows that are more complicated than 
those examined in Sections 4.1 - 4.3. Two 
geometrically very different car models, BMW F30 
sedan (model A) and Mini Cooper R56 hatchback 
(model B) with widely different underhood 
architecture are considered to examine the 
performance of the model. The underhood of a car 
primarily consists of the engine compartment, the 

cooling module and the air intake grill as can be seen 
in the top image in Fig. 15. The engine compartment 
houses the engine block and the gearbox. The 
cooling module consists of a set of a heat exchangers 
and a suction fan. The air intake grill is used for 
directing air into the underhood and some auxilliary 
components of the engine. Underhood thermo-flow 
analysis is needed for designing an efficient engine 
cooling system for  
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Fig. 16. The mean pressure drop across the underhood of two different car models A and B at the speed 

of 60kmph and 210kmph along with the error bars for ε = 0.5. 
 

 

maximizing its performance in variable conditions. 
For the analysis of the underhood flow, the empirical 
model in Eq. (1) is used to establish the relation 
between the pressure drop across the inlet and outlet 
of the underhood and the mass flow rate of the air 
flowing through it. Due to the complexity of the 
structure of the underhood, the flow can hardly be 
described as a channel flow. Nevertheless, it is 
important to have a quantitative examination of the 
accuracy of the empirical model in this complicated 
flow. 

The CFD simulations of the underhood flow were 
performed using the commercial CFD tool, STAR-
CCM (STAR-CCM (2011)) at BMW AG, Munich 
and the simulation data are used here for our 
analysis. In the CFD simulation, a detailed geometric 
model of the car is placed inside a rectangular box to 
simulate the effect of a wind tunnel. The total 
number of cells is about 50 million with the majority 
of the cells concentrated in the underhood region. 
The bottom plot in Fig. 15 shows a section of the 
volume mesh passing through the suction fan in the 
cooling module. The normal of the section plane 
points in the direction of motion of the vehicle. 
About 50% of the total cells are in the underhood 
flow region. The total computational cost for one 
simulation is around 12 hours on 96 processor cores 
(1152 cpu-hours in total per simulation). The 
turbulence is modeled using the k − ε model and the 
standard wall function is used. A range of mass flow 
rate from 0 to 4 kg/s is considered. A uniform 
velocity inlet boundary condition is specified and a 
10% turbulence intensity is specified with the ratio 
of the turbulent to the molecular viscosity set to 10 
at the inflow. A pressure outlet boundary condition 
is specified. The RANS simulations have known to 
show good agreement with the experimental results 
with regards to massflow through the underhood 
(Pant et al. (2013), Pant (2014)). 

In order to calculate the pressure drop ∆P, two 
sections are defined at the inlet and outlet of the 
underhood. ∆P is the difference between the area 

averaged pressure over these two surfaces. The 

variation of the simulated values of ∆P with m  for 
two widely different car models, A and B is shown 
in Fig. 16. Two different vehicle speeds, 60 and 210 
kilometers per hour (kmph) are considered. From the 
figure, we can see that the empirical model provides 
a good fit to the simulation data despite the simplicity 
of the model. This clearly demonstrates the 
performance and applicability of the empirical model 
to complicated flows such as the flow through the 
underhood. When compared to the other flows 
discussed in Sections 3 and 4, the empirical model in 
Fig. 16 also shows similar sensitivity to the 
sensitivity input ε = 0.5. 

To summarize, we examined the accuracy and 
sensitivity of the empirical model in Eq. (1) in four 
different flows in this section, a laminar flow in a 
converging channel in Section 4.1, a laminar flow in 
a curved channel in Section 4.2, a turbulent flow in 
straight channel in Section 4.3 and a complicated 
turbulent flow through a car hood. The results 
strongly support the wide applicability of the 
empirical model despite the simplicity of the model. 

5. CONCLUSION 

In this work, a theoretical analysis is conducted of a 
simple empirical model that relates the pressure drop 
and the mass flow rate in internal flows in or-der to 
provide a theoretical basis for the model. An integral 
analysis based on the Navier-Stokes equation in 
laminar developing channel flows yields a model that 
matches the empirical model well. The model’s 
accuracy is speculated to be largely deter- mined by 
the dependence of a model coefficient a* on the mass 
flow rate. A weak dependence of a* on the mass flow 
rate is required in order to yield good accuracy of the 
empirical model. In the laminar developing channel 
flow, the model is found to be highly accurate. 
However, the model coefficient a* is also found to 
vary significantly with the mass flow rate which 
creates a big puzzle in the understanding of the 
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simple model. Sensitivity analysis of the model is 
then performed to understand the puzzling results. 
The results of the sensitivity analysis of the model 
and the characterization of the flows into diffusion 
dominated and convection dominated flow regime 
eventually help us to resolve the puzzle completely. 
The empirical model is then applied to several more 
complicated internal flows to demonstrate the 
applicability of the empirical model. The established 
theoretical basis for the empirical model and its 
thorough understanding gained from this work can 
be expected to be useful in engineering applications 
involving internal flows. 
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