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ABSTRACT 

One of the main mechanisms of emulsion formation in porous media is the snap-off; invasion of the wetting 
phase flowing adjacent to the pore wall within a constriction mostly occupied by the non-wetting phase, 
causing breakup into isolated drops of this phase. The current approaches to determine the occurrence of this 
phenomenon have been formulated for quasistatic flow conditions, where the mechanisms governing the flow 
are controlled by the geometry of the capillary. However, some studies suggest that the drop breakup does not 
occur above a capillary number threshold and given a certain viscosity ratio, even if the static breakup criteria 
are met. In this paper, we extend the current numerical analysis of the capillary number upper limit (Calim), in 
which the snap-off is inhibited, by considering the effect of viscosity ratio on the dynamics of immiscible 
two-phase flow through constricted circular capillaries. Based on the results of this study, empirical 
mathematical expressions that relate the main physical variables of the flow were established as breakup 
criteria for dynamic flow conditions. The dynamic breakup criteria takes into account, jointly: some aspects 
of rheology of the two-phase system, such as the viscosity ratio; the dynamic factors of the flow, encapsulated 
in the local capillary number; and an integral form of the capillary geometry, represented by a parameter that 
relates both radii and the distance between them. 

Keywords: Drop breakup; Pore-scale flow; Local capillary number; Capillary geometry. 

NOMENCLATURE 

a radii ratio
(b, m) fitting parameters of the linear 

regression 
(A, B, C , D) fixed fitting parameters  
Ca local capillary number 
Calim local capillary number upper limit 

limCa values of Calim grouped by 
Cak

lim values of Calim grouped by k 
E objective function for fixed 

parameters 
E1 objective function for variable 

parameters  
(d, e, f, g) variable fitting parameters 
k viscosity ratio
ℓ capillary length
L dimensionless capillary length 
P flow pressure  
Pc capillary pressure
Q total volumetric flow 
r radial coordinate  
Rg capillary constriction radius 
RT capillary radius 

t time
u axial velocity
x axial coordinate

α pore wall slope  
  pore geometric gradient 
δ wetting film thickness 
κ interface radius
λ pore wall coordinate 
µ dynamic viscosity
σ surface tension
τ dimensionless time
τs dimensionless snap-off time 

Subscripts 
1 non-wetting phase
2 wetting phase

Superscripts 
* dimensionless variable
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1. INTRODUCTION 

Adequate knowledge of the multiphase flow at 
pore-scale is of vital importance for oil production 
(Blunt et al. 2013). In the reservoirs, the movement 
of water, gas and oil is presented simultaneously in 
a complex system of pores and throats. During the 
secondary oil recovery process, a clear example of 
this multiphase flow occurred. It involved the 
introduction of water by injection wells, to displace 
and recover fluids trapped in the reservoir towards 
production wells. Similar conditions are presented 
in a group of enhanced oil recovery methods, called 
“smart waterflooding”, in which the chemical 
design of the injected water is modified to increase 
oil recovery (Alvarado et al. 2014). However, these 
flow conditions, where there is an interaction 
between the different phases, prove to be favorable 
for the formation of some dispersion types within 
the porous media. These, if not controlled, can 
negatively affect the production.  

Dispersion is a two-phase system constituted by one 
phase that is dispersed in a second phase, thereby 
called continuous. There are different types of 
dispersions with a liquid as a continuous phase. 
Based on the nature of the dispersed phase, 
dispersions can be of three types: foams (gaseous), 
emulsions (liquid) and suspensions (solid). Here we 
focus on emulsions (liquid-liquid dispersion), which 
unlike foams, the viscosity of the dispersed phase is 
not negligible, and is important in their 
characterization (Kokal, 2005). 

Depending on the circumstances, the formation of 
emulsions within the porous media can help or 
hinder the oil recovery. For instance, emulsion 
drops can block some pore clusters and thus divert 
the flow to unswept areas allowing residual oil to be 
mobilized (Cobos et al. 2009; Romero et al. 2011 

Guillén et al. 2012a; Guillén et al. 2012b). On the 
other hand, the formation of uncontrolled emulsions 
in oil production entails several operational 
problems and increases production costs. In order to 
meet crude oil transport specifications in 
downstream facilities, produced emulsions have to 
be treated. Through this treatment, water and 
associated inorganic salts removal takes place; as 
well as corrosion reduction (Peña et al. 2009). 

Emulsions in the porous media can be formed 
during the immiscible two-phase flow when the 
non-wetting phase loses continuity by generating 
droplets. One of the main mechanisms responsible 
for emulsification is the so-called snap-off; invasion 
of the wetting phase flowing adjacent to the pore 
wall within a constriction mostly occupied by the 
non-wetting phase, causing breakup into isolated 
drops of this phase. The current approaches for 
determining the occurrence of this phenomenon 
have been formulated for quasistatic flow 
conditions, where the mechanisms governing flow 
are controlled by the capillary geometry. Roof 
(1970) was the first to propose a criterion for snap-
off occurrence in constricted capillaries, consisting 
of a relationship between the major and minor radii 
of the capillary. This criterion is based on the 

analysis of the capillary pressure and considers that 
the pressure in the continuous phase is constant 
throughout the geometry of the capillary. The Roof 
criterion has been used in studies related to foam 
generation by snap-off in porous media (Kovscek 
and Radke, 1996). However, there is a controversy 
in trying to explain under what conditions snap-off 
occurs or is inhibited (Rossen, 2000; Kovscek and 
Radke, 2003; Kovscek et al. 2007; Rossen, 2008). 
Beresnev et al. (2009) introduced the wavelength of 
the capillary in a new geometric breakup criterion 
based on a detailed analysis of the pressure 
gradients of both phases inside the capillary. The 
validity of this criterion was examined using a 
mathematical model that describes the temporal 
evolution of the interface in liquid-liquid two-phase 
flow system and both microfluidic and 
computational fluid dynamics experiments 
(Beresnev and Deng, 2010; Beresnev et al. 2011a). 

Recently, in a numerical study Deng et al. (2015) 
prove the existence of an upper limit of the local 
capillary number in which snap-off is inhibited, 
even if the geometric breakup criteria are met (for 
example that of Beresnev et al. 2009). Although a 
broad range of geometries was covered in the study 
of Deng et al. (2015), their analysis has been 
limited to the study of a system where the viscosity 
ratio was equal to unity. Furthermore, these authors 
attribute the snap-off inhibition to the critical 
conditions that arise due to the presence of fast flow 
in the pores, related to the local capillary number 
increases, which prevent the growth of the wetting 
film in the pore constriction.  

Similarly, Peña et al. (2009) based their study on a 
simple theoretical model and their microfluidic 
experimental results. They found that the 
occurrence or inhibition of the snap-off was not 
only governed by the capillary number, but also it 
was influenced by the viscosity ratio. Additionally, 
it was observed that a high viscosity of the non-
wetting phase suppresses the drop breakup, whereas 
in low viscosities this always occurred. Moreover, 
snap-off was observed only at low capillary 
numbers at moderate viscosities ratios. These 
authors relate the breakup time and snap-off 
occurrence with the flow of the continuous phase 
towards the constriction, and establish that this flow 
is affected by the interaction of three forces acting 
competitively: the capillary pressure difference that 
drives the wetting phase to constriction, the 
resistance to the flow of the wetting liquid and the 
squeezing process of the non-wetting phase. 

In this context, it is pertinent to have a breakup 
criterion that takes into account, jointly, the 
parameters that adequately describe the geometry of 
the capillary (geometric slope, wavelength, radii 
ratio), dynamic flow factors (local capillary 
number), and some aspects of the rheology of the 
two-phase flow system (viscosity ratio). This study 
examined numerically the behavior of the local 
capillary number upper limit to identify the 
inhibition of snap-off, for different geometry 
configurations of constricted circular capillaries and 
viscosity ratios. Moreover, empirical mathematical 
expressions were established to relate these 
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variables, which can serve as breakup criteria for 
dynamic flow conditions. A new variable, the 
geometric gradient   has been introduced in this 
work, which integrally relates the main parameters 
of the geometric breakup criteria; namely, the 
wavelength (Beresnev et al. 2009) and the radii 
ratio of the capillary (Roof, 1970). The research is 
based on the dynamics of the two-phase flow 
described by the model proposed by Beresnev and 
Deng (2010). This model is derived from the 
simplified incompressible Navier-Stokes equations, 
conservation of mass and continuity principles, and 
Young-Laplace equation. The model consisted of a 
nonlinear fourth order partial differential equation 
that was solved with the “Method of Lines” 
framework implemented in MATHEMATICA® 
(Knapp, 2008). 

This article is divided in four parts. In section 2 
called methods, the geometry of the problem is 
presented. Later, the governing equations are 
exposed in order to derive the snap-off model. 
Following, the model is evaluated for different 
cases in which the geometrical parameters, the 
viscosity ratio, and the capillary number are varied. 
For each case, the capillary number upper limit and 
the snap-off time are determined. Afterwards, 
section 3 includes the results of applied empirical 
formulations that are proposed to predict the Calim. 
Right after, discussion takes place. Finally, 
conclusions and some recommendations are 
provided in section 4. 

2. METHODS 

2.1 Snap-Off Geometry 

The porous structure of a reservoir presents 
complex geometric shapes; among these, the 
presence of constrictions in the capillary channels 
called pore throats is found. This basic geometry of 
the porous medium, consisting of a capillary with 
one or more constrictions, has been used to study 
the mechanism of drop breakup during the 
immiscible two-phase flow at pore-scale. During 
this type of flow, the pores have preference to be 
wetted by one of the phases, either water or oil; 
whereby one layer of the wetting phase will be 
present between the pore-wall and the non-wetting 
phase. The schematic of the fluid configuration is 
given by Fig.1: 

 

Fig. 1. Geometry of axisymmetric constricted 
capillaries and configuration of the liquid 

phases. 
 
The following sinusoidal function was used to 
represent the geometry of axisymmetric capillaries 

with constriction: 

       0.5 1 1 cos       T Tx R a a x R      (1) 

where λ is the radial coordinate of the capillary 
wall, x refers to the axial coordinate, a is the ratio 
between the throat (Rg) and capillary (RT) radii, 
and α is a geometric parameter which represents 
the ratio between the capillary radius (RT) and half 
of the capillary length (ℓ), α=RT/(ℓ/2), as shown in 
Fig. 1. The parameter α, also called pore wall 
slope (Gauglitz and Radke, 1990; Beresnev and 
Deng, 2010), does not consider the throat radius. 
Therefore, it does not totally represent the 
capillary geometry. Here, we introduce the 
dimensionless parameter   that relates the 
wavelength and both radii of the form   =(RT-
Rg)/(ℓ/2), and represents the geometric gradient of 
the pore wall (see Fig. 1). Thus, the sinusoidal 
function [Eq. (1)] results in the next equation: 

       
0.5 1 1 cos

1

         



  


T

T

x
x R a a

a R
 (2) 

2.2 Governing Equations 

To simulate the drop breakup process in capillaries, 
the mathematical model developed by Beresnev and 
Deng (2010) was applied. This model is based on 
the equation of conservation of mass in the “small-
slope” approximation [α=RT/(ℓ/2)«1] for arbitrary 
viscosities of the fluids and the presence of an 
imposed base flow.  

The small-slope approximation (Gauglitz and 
Radke, 1990) assume the smallness of the capillary 
and Reynolds numbers, which allows to 
approximate the fluid flow in the capillary as a 
Poiseuille flow. According to the obtained results to 
verify the limits of validity of this model through 
both microfluidic and computational fluid dynamics 
experiments (Beresnev and Deng, 2010; Beresnev 
et al. 2011a), it was proved that the smaller the pore 
wall slope α and the capillary number, the better the 
small-slope approximation is. 

The basic equations for the model are the 
simplified incompressible Navier-Stokes, 
conservation of mass, continuity and Young-
Laplace equations: 

1,2 1,2
1,2

1
0

P u
r

x r r r

  
      

                               (3) 

21 2 T

Q
dx R dx

x t

            
                                (4) 

1 2Q Q Q                                                               (5) 

2

1 2 2

1
cP P P

x

  
       

                                     (6) 

or in differential form (solving for ∂P1/∂x): 

3
1 2

2 3

1P P

x x x x

     
         

                                 (7) 
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where P is the pressure, subscripts 1 and 2 denote , 
respectively, the non-wetting and wetting phase, µ 
is dynamic viscosity, r the radial coordinate, u is the 
axial velocity, t the temporal variable, Q the total 
volume flux of both fluids through the capillary, Pc 
is the capillary pressure, κ the radius of interface 
and σ the surface tension. The volume flux, defined 
as Q=2π∫(u)rdr, is related to the local capillary 
number, which links the competition between the 
viscous and capillary forces, through the expression 
Ca=(Q/πRT

2)µ2/σ, where the term in parentheses 
refers to the average velocity of the local flow in the 
capillary. 

The drop breakup problem needs to determine the 
interface position change over time. The equation 
pair (one for each phase) that is derived from Eqs. 
(3), (4), (5), and (7), and the definition given of 
the volume flux applied in each phase, form a 
seven-equation system which unknowns are P1, 
P2, u1, u2, Q1, Q2, and κ. Instead of solving this 
equation system, Beresnev and Deng (2010) 
derive an evolution equation to describe the free 
liquid-liquid dynamic interface from the mass 
conservation expression, Eq. (4), which can be re-
written as: 

 1
2

1

2

 
       T

Q

t R x
                                           (8) 

In order to close the evolution equation, the 
volume flux of the non-wetting phase Q1 requires 
to be explicitly expressed through the interface 
position κ. Then, first, Eq. (3) is analytically 
solved for each phase with the following boundary 
conditions: 1) non-slip on the wall 2) equilibrium 
of both the shear stress and from the velocities at 
the interface. As a result, the axial velocities are 
obtained. By integrating the velocities between the 
corresponding limits, the volume flux in each 
phase is obtained: 

 
4

4 2 21 2
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4
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2
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x x
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x x

4 4
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2
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2
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1
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4 2





    
           
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
P
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x

P P

x x

At this point, the volume flux of non-wetting phase Q1 
expression has three unknowns, the pressure gradients 
of both phases (∂P1/∂x, ∂P2/∂x) and the interface 
position κ. Then, to reduce the number of variables, 
Eq. (7) is substituted in Eqs. (9) and (10). The 
resulting expressions of the volume flux where P1 does 
not appear anymore, are written in the continuity 
equation (Eq. 5), which is solved for ∂P2/∂x: 

2
4 4 4

2 18


 

      
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                   
    
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x x

In such a way, we have the pressure gradient 
equations [Eqs. (7) and (11)], in which only the 
interface position κ is the unknown variable. These 
equations are written in Eq. (9), so Q1 is now 
expressed explicitly through the interface position 
κ:  

 4 2 2 4

2 1

1 4 4 4

2 1

3
2 2

3

2
2

2
4

2 1

4 4 4
1 2

2 1

2

8
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                    
 
 
 
 

Q

Q

x x

              (12) 

Finally, Eq. (12) is substituted in Eq. (8), closing 
the evolution equation. Nondimensionalizing in 
accordance with κ*=κ/RT, r*=r/RT, x*=x/RT, λ*=λ/RT, 
δ*=δ/RT, L=ℓ/RT, τ=t/(µ1RT/σ), Ca=Q/(σπRT

2/µ2), 
P*=P/(σ/RT), the evolution equation in its 
dimensionless form is obtained: 
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 
 
 
 
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 



     (13) 

The model representing Eq. (13) describes the 
evolution of the interface radius κ* over time τ 
(dimensionless) for an imposed capillary number Ca, 
and includes the impacts of the rheology on the 
dynamics. In our simulations it is considered that when 
the interface radius reaches a value very close to the 
axial axis (x*) at any point, it indicates the theoretical 
instant in which snap-off occurs. Equation (10) was 
solved, following Beresnev and Deng (2010), using a 
semi-discretization finite difference method known as 
Method of Lines (Schiesser, 1991), which is 
implemented in MATHEMATICA® (Knapp, 2008). 
The solution consider periodic boundary conditions, in 
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which it is assigned that the interface radius is equal at 
the boundaries for all simulation time, that is, κ*(-L/2, 
τ)=κ*(L/2, τ). A uniform thickness of the wetting film 
δ* was considered throughout the capillary wall as an 
initial condition (see Fig. 1); which was calculated 
using the fitting made by Deng et al. (2015) of 
Beresnev et al. (2011b) experimental data. This fitting 
was established as a function of the local capillary 
number as δ*=0.0412log10(Ca)+0.1475, and is valid in 
the range of 3×10-4 ≤ Ca ≤ 1×10-2. In the simulations 
presented here, we explored the same ranges of 
dimensionless geometric variables that Deng et al. 
(2015) did, namely: 2 ≤ L ≤16 and 0.20 ≤ a ≤ 0.50. 
The maximum dimensionless simulation time was also 
established in τmax= 2×105. 

2.3 Grouping of Values of Calim by   

The viscous forces predominate over the superficial 
ones at high capillary number flows. Due to this, 
the force that drives the flow of the wetting phase 
towards the constriction tends to disappear and 
thereby inhibits the snap-off. Peña et al. (2009) 
observe that under limit conditions, that is, Ca→∞, 
σ/(Q/πRT2)μ2→0, “There should be a finite critical 
value of capillary number above which the viscous 
stress at the wall is stronger than the capillary 
driven flow and snap-off is not observed”. 

As already mentioned, Deng et al. (2015) conducted 
a numerical study analyzing the existence of an 
local capillary number upper limit in which the 
snap-off is inhibited, even if the static breakup 
criteria are met. This local capillary number limit 
can be obtained with the aid of the model that 
represents Eq. (13). If this model is evaluated 
starting from the lower limit Ca=3×10-4, given 
values of length L and radii ratio a that meet the 
static breakup criteria, it is expected that the snap-
off will occur; but when Ca increases, a critical 
value of Ca where the breakup is inhibited exists. 
This upper limit is called Calim. 

The values of Calim for various combinations of 
dimensionless lengths L, radii ratios a, and for a 
viscosity ratio k = µ1/µ2 =1, obtained by Deng et al. 
(2015) by following a similar procedure to the one 
above, are shown in Fig. 2. In this figure, the Ca 
upper limits shows a singular behavior for a specific 
value of a: the Calim increases and then decreases as 
L increases. This behavior can be interpreted by the 
competition between the imbalance in the capillary 
pressure and the wetting phase travel time from the 
crest to the throat; since both increase as L grows. 
For example, the increase of the capillary pressure 
difference has a quadratic dependence on L (see 
Beresnev et al. 2009; Eq. 5). Moreover, for an L 
value given, as the radii ratio decreases the 
imbalance in the capillary pressure increases, while 
the breakup times (therefore those of travel) are 
reduced (see Deng et al. 2015; Fig. 4). Consequently, 
for lower values of a, Calim increases. 

According to the results listed above, the behavior 
of the critical conditions of the Ca depends on the 
combination of the geometrical parameters (length 
and radii ratio); so that a relationship between these 
critical conditions of the flow dynamics and an 

integral form of the geometry, in this case the 
geometric gradient  , was sought to be 
established. 

It should be noted that the value of   is not exclusive 
of a single geometric configuration, that is, different 
combinations of a and L result in a same value of  . 
For example, values of L={16, 15, 14,…, 10} and 
a={0.20, 0.25, 0.30,…, 0.50}, are grouped in �=0.10. 
Thus, for this study n groups of geometric 
configurations were defined to cover the range of both 
geometric variables, where each group is represented 
by a value of  . For each group of geometric 
configurations, the corresponding associated values of 


limCa  were obtained using the model of Eq. (13). As it 

was intuitively predicted, these values of 
limCa , being 

grouped by  , have some relation with the pore 
geometry, in such a way that they fit properly if a 
linear model of the form   

lim i iCa m L b  is used; 
where im  and ib  are fitting parameters. In Fig. 2, for 

example, the fitting straight lines of 
limCa  are shown 

for the groups of geometric configurations 
corresponding to  i,j,k={0.125,0.105,0.088}, which 
coincide with the values of Calim obtained by Deng et 
al. (2015). Moreover, the values of the coefficients 
that take the whole set of linear relations of the type 

  
lim i iCa m L b  follow a power law with  i : 
  e

i im d  and   g
i ib f , where the fitting parameters 

are d, e, f and g. 

Based on the exposed linear behavior and the 
empirical relationships, we present an expression to 
reproduce the family of curves of Calim as a function of 
the capillary geometry and four fitting parameters:  

lim    e gCa d L f                                               (14) 

In the determination of the parameters of the best 
fitting for the model of Eq. (14), the method known 
as Differential Evolution (Storn and Price, 1997) 
was considered, where the objective function was 
established as a least squares optimization problem: 

      
2

lim lim1
min 1 2


    M

i
E x Ca Ca        (15) 

given the correspondence: ψ={d, e, f, g}. 

In Fig. 2 is shown the comparison of the Calim 
values obtained by Deng et al. (2015), and those 
obtained from the fitting of Eq. (14), for a viscosity 
ratio equal to unity; in this figure the vertical left 
lines were determined by the quasistatic criterion 
(Deng et al. 2015). 

2.4 Attribution of Viscosity Ratio k in Calim 

In the case of arbitrary viscosities of the fluids, 
shear stress at the interface, which resists the 
continuous phase flow, exists and increases with the 
viscosity ratio. For this reason, the snap-off might 
not occur at certain values of viscosity ratio. In 
order to know the effect of the viscosity ratio on the 
Calim behavior, a series of simulations of the drop 
breakup model [Eq. (13)] was performed amongst a 
range of 0.75 20 k . 
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Fig. 2. Local capillary number upper limits (Calim) in which the snap-off is inhibited, given a porous 

length L and pore radii ratio a; for a viscosity ratio k=1.00. 
 

 

Figure 3 shows the Calim behavior for a=0.20 and 
different combinations of viscosity ratio while Fig. 
4 shows the Calim values by fixing the k value and 
by varying the radii ratio. From Figs. 3 and  4. it 
can be seen that the Calim follows a general trend for 
all the range of values. It is important to notice that 
as the k value increases, the increase of Calim values 
starting from the left boundary becomes 
increasingly smoother, as can be seen in Fig. 3. The 
decrease in Calim, starting from its maximum point, 
is more pronounced as k grows. Even right 
boundaries begin to appear starting from 
moderately high k values. In the series of graphs of 
Fig. 4, it is worth noting that the range of radii ratio 
in which snap-off occurs under dynamic conditions 
is constrained by the increment of the viscosity ratio 
k. For example, for k=1.50 and a=0.5 there are no 
values of Calim at any length, i.e., drop breakup, 
given these conditions, can only occur for static 
conditions. 

 

 
Fig. 3. Calim values for a radii ratio a=0.2 and 

different viscosity ratios. 
 

These descriptions of the effect of the viscosity 
ratio k on the Calim values shown in Figs. 3 and 4, 
coincide in that an increase of k invariably leads to 
a decrease of the cases in which snap-off occurs; 
either in a lower range of pore lengths L, radii ratio 
a or capillary numbers Ca. 

2.5 Effect of Ca and k on Snap-off Time 

In this section, the effect of the viscosity ratio k in 
the dimensionless snap-off time τs for different 
geometric configurations and Ca values is analyzed. 
Here, the dimensionless snap-off time τs is defined 
as the elapse of time between the start of the 
simulation, initial conditions being established, and 
the instant in which the snap-off occurs. 

For this analysis, first the model was evaluated for a 
fixed geometry (L=10, a=0.20), equal viscosity of 
the phases (µ1=µ2 → k=1), and Ca was slowly 
increased from its inferior limit (Ca=3×10-4) until it 
reached the Calim. The same procedure was repeated 
for other viscosity ratios. In each simulation τs was 
obtained. These results are illustrated in Fig. 5, 
which shows the effect of Ca and k in snap-off time, 
given a geometry. Similarly, families of curves for 
different viscosity ratios k were obtained (Fig. 6). 
For each family of curves k and L remains fixed, 
and different radii ratios are evaluated. 

At first inspection, it can be noticed that the graphs 
in Figs.5 and 6 vary meaningfully from the snap-off 
time lineal behavior observed for foams (Gauglitz 
and Radke,1990; Fig. 11). The general behavior of 
the curves shown in Figs. 5 and 6 is characterized 
for presenting the maximum value of τs for the 
minimum value of Ca. This value gradually 
decreases as Ca increases, but is interrupted by the 
sudden rise of τs. After this rise, τs continues to 
decrease in other Ca range of values, until an 
increase is presented again. This behavior is 
repeated, until the Calim is reached. As reported by 
Deng et al. (2015) [Fig. 5], the τs sudden increase is 
due to the snap-off position migration. 

The most notable effect of viscosity ratio in the 
snap-off time is shown in Fig. 5. In this figure, the 
increase in the viscosity ratio k tends ¨to compress¨ 
the snap-off time curves. The curves maintain their 
characteristic behavior as there is a greater k value, 
but the Ca upper limit decreases. In other words, 
the increase in the viscosity ratio causes the snap-
off change position to occur in Ca intervals  
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Fig. 4. Families of Calim curves for different viscosity ratios a) k=0.75 b) k=0.90 c) k=1.5 d) k=3.0. 

 

 

increasingly minor. Thus, the τs range segments 
tend to be shorter. It should be pointed out that for 
the same Ca value, the τs can be augmented or 
diminished with the viscosity ratio, without an 
existent tendency; therefore, the τs curves at some 
points cross one another. The foregoing does not 
occur in the graphs shown in Fig. 6. In this figure, 
two behaviors are distinguished with respect to the 
radii ratio increase: 1) that snap-off time increase 
reflect the dependency of the wetting phase travel 
time, and consequently snap-off time with the 
geometry 2) the Ca value range decreases for each 
curve, which is consistent with the Calim behavior 
shown in Figs. 2 and 4, and discussed above. 

 

Fig. 5. Snap-off time for for different k and Ca 
values. L=10, a=0.20. 

3. RESULTS AND DISCUSSION 

The methodology presented in this study is based 
on the grouping of Calim values, which were 

obtained through Eq. (13), linked to a same 
geometric gradient value  , and its subsequent 
fitting to an empirical model represented by Eq. 
(14). This methodology was used to reproduce the 
family of Calim curves for viscosity ratios different 
from the unity. Table 1 shows the values of the 
fitting parameters and those that the objective 
function acquires after the optimization process, for 
different values of k. 

On the other hand, well-defined trends of the fitting 
parameters (see Table 1) in relation to k were 
detected, for example, of logarithmic type; allowed 
establishing a general model, with few parameters, 
of the local capillary number upper limit in terms of 
the capillary geometry and viscosity ratio: 

2
lim

         k DCa L C                                   (16) 

where β=Ak+B and η=ln(k0.5). The fitting 
parameters are then Ψ={A, B, C, D}; which, after 
applying the optimization algorithm, taken the 
values: Ψ={0.0039,0.0586,1.8945,-0.6667}. 

The results of the error function E1(Ψ), analogous 
to Eq. (15) but taking into account Eq. (16), are 
shown in Table 1. Fig. 7 illustrates the Calim 
behavior from Eqs. (14) and (16) using the 
parameters of Table 1, which are also compared 
with the Calim values from Eq. (13). For reader’s 
conveniences, in Fig. 7 is included a simplified 
diagram of the capillary with the main geometric 
variables in dimensionless form. Here, the interface 
has reached a value close to zero in one of its point; 
situation that does not occur in the cases in which 
Calim is exceeded, where the interface reach an 
equilibrium position close to the initial condition.  
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Fig. 6. Snap-off time families curves for different viscosity ratios a) k=0.75 b) k=0.90 c) k=1.0 d) 

k=2.0. L=10. 
 

Table 1 Values of the fitting coefficients and the 
objective functionsa 

ki ψi={di, ei, fi, gi} E(ψi) E1(Ψ) 

0.75 
0.0698, 1.9781, 
0.1349, 1.3443 

2.13 E-5 3.94 E-5 

0.90 
0.0661, 1.9928, 
0.1244, 1.3233 

7.91 E-6 9.50 E-6 

1.00 
0.0793, 2.1209, 
0.1518, 1.4593 

8.93 E-6 1.41 E-5 

1.50 
0.0888 , 2.2411, 
0.1620, 1.5001 

3.80 E-6 1.18 E-5 

2.00 
0.1091, 2.4070, 
0.1974,1.6383 

2.48 E-6 1.26 E-5 

2.50 
0.1294, 2.5263, 
0.2302, 1.7269 

3.31 E-6 1.25 E-5 

3.00 
0.1408 , 2.5991, 
0.2483, 1.7836 

3.41 E-6 1.51 E-5 

3.50 
0.1381, 2.6149, 
0.2412, 1.7869 

3.77 E-6 1.55 E-5 

4.00 
0.1358, 2.6376, 
0.2364, 1.8055 

3.91 E-6 1.23 E-5 

4.50 
0.1116, 2.6195, 
0.1961, 1.8071 

3.95 E-6 8.33 E-6 

10.0 
0.3492, 3.1809, 
0.5983, 2.2977 

3.52 E-7 4.39 E-6 

20.0 
0.3424, 3.4302, 
0.6009, 2.5870 

2.91 E-7 3.87 E-6 
a Ψ={0.0039,0.0586,1.8945,-0.6667}. Read 2.13 E-5 as 
2.13×10-5. 
 

As can be seen in the results of Fig. 7, the models of 
the Eqs. (14) and (16) adequately reproduce the Calim 
behavior in the range of the physical variables of study 

and can serve as breakup criteria if it is established 
that: 
 

 lim , , iCa Ca a L                                             (17) 

if Eq. (14) is considered; or 

 lim , , ,Ca Ca a L k                                          (18) 

when Eq. (16) is chosen. 

Examining the results showed in Fig. 7, it can be 
seen that better approximations of the Calim values 
[calculated with Eq. (13)] are obtained if an 
equation of the form Eq. (14) is used, in which the 
parameter value varies for each k; that those 
resulting from applying a fixed parameter fitting for 
the entire range of viscosity ratios [Eq. (16)]. 
However, in spite of its limitations, this last fitting 
equation reproduces in an acceptable way the 
behavior of the family of Calim curves. This can be 
verified by comparing the values that the objective 
function reaches. Table 1 confirms that the global 
error increases, in the worst case, in an order of 
magnitude. 

Although the mathematical fitting applied to 
estimate the Calim value as a function of the 
capillary geometry and the viscosity ratio is 
empirical, it should be noticeable that the physics of 
the phenomenon being studied is well represented 
in the Calim graphs. The models represented in Fig. 
7, as will be discussed in the following paragraphs, 
express the behavior of the snap-off involving the 
three forces that regulate this mechanism: the 
capillary pressure difference that drives the wetting  
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 Fig. 7. Families of Calim curves obtained with different models: 1)  from Eq. 13 (Beresnev and 

Deng, 2010)  2)    e g
limCa d L f       3) 2  k D

limCa L C       . 
 

 

phase to constriction, the flow resistance of the 
wetting liquid and the squeezing process of the non-
wetting phase. These forces are modified as the 
pore geometry  =(RT-Rg)/(ℓ/2), the viscosity ratio 
k=µ1/µ2, and the capillary number 
Ca=(Q/πRT

2)µ2/σ, vary. 

As to the capillary pressure difference at the crest 
and at the constriction, present at the beginning of 
the snap-off process, it is known that this depends 
on the difference in the curvature of the interface 
profile. Since an initial condition of the wetting film 
parallel to the pore wall and coupled with the local 
capillary number was established, the capillary 
pressure difference has a direct relationship with Ca 
and the geometry. In fact, the Beresnev et al. (2009) 
static breakup criterion comes from the condition 
Pc

throat > Pc
crest, for snap-off occurs. After a series of 

algebraic operations, this condition can be written 

in terms of the geometry and the local capillary 
number as: 

  * *12 aL                                             (16) 

where δ*=0.0412log10(Ca)+0.1475. 

This criterion is fulfilled in all cases evaluated here, 
even if it is evaluated at the maximum value of Ca 
analyzed (Ca=1×10-2). However, for dynamic flow 
conditions the capillary driven flow will no longer 
be the only determining force in the breakup, so this 
criterion is no longer valid. Although, as shown in 
Fig. 2,   retains some influence on the Calim 
behavior, for example, we have that for a same 
value of  , the upper limit of the local capillary 
number will grow (linearly) as the length increases 
and the radii ratio decreases. 
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On the other hand, if the viscosity of the wetting 
phase (µ2) is fixed, the increase in the viscosity ratio 
k=µ1/µ2 will occur as the viscosity of the non-
wetting phase (µ1) increases. Under these 
conditions, the flow of the wetting phase towards 
the constriction decreases due to the increase of the 
shear stress and the squeezing process of the non-
wetting phase. This situation becomes worse at high 
capillary numbers, where viscous forces 
predominate over the superficial ones. Then, it 
could be expected that as the viscosity ratio 
increases, the wetting-phase collar present in the 
constriction when the snap-off occurs, will not 
reach the development for high capillary numbers. 
This response can be verified if are compared, for 
example, the graphs a) k=0.75 and f) k=3.0 of Fig. 
7. Particularly in the Fig. 7f, the viscosity ratio has 
been increased four times in relation to the first case 
(Fig. 7a), in which it is evident that the range of 
values in which snap-off occurs has decreased.  

4. CONCLUSION 

A numerical analysis of the capillary number upper 
limit (Calim), in which the snap-off is inhibited, was 
performed aiming to establish a dynamic breakup 
criterion that, unlike the static criteria, would 
include: some aspects of rheology of the two-phase 
system, such as the viscosity ratio; the dynamic 
factors of the flow, encapsulated in the local 
capillary number; and an integral form of the 
capillary geometry, represented by a parameter that 
relates both radii and the distance between them. 

As discussed throughout this paper, the critical 
conditions of occurrence of the snap-off involve a 
complex combination of competitive forces that 
vary as the physical variables of study are modified. 
Although observing that geometry determines 
certain general behaviors of Calim, the possibility of 
relating an integral form of this one with the 
inhibition of the drop breakup phenomenon in flows 
at high capillary number was explored. This idea 
resulted in a linear clustering of the upper limit 
values of the capillary number, associated with the 
same   value, with the respective lengths; which 
served as the basis of the series of mathematical 
fittings presented here to estimate Calim as a 
function of pore geometry and viscosity ratio.  

The numerical solution of the snap-off phenomenon 
was established from a dynamic drop breakup 
model [Eq. (13)] proposed and validated by 
Beresnev and coworkers. In principle, this model 
represents by itself a dynamic breakup criterion that 
includes the mentioned variables. However, the 
solution of the model, described by a highly 
nonlinear partial differential equation of fourth 
order, is not an easy task, so it is not feasible to use 
it as such. In fact, implementing it, for example, in 
pore network models would result in high 
computational costs. In contrast, the simple 
formulations proposed here have the following 
advantages: 1) they adequately relate the main 
physical variables of the system with the inhibition 
of the drop breakup 2) their behavior agrees with 
the theoretical explanations of snap-off occurrence 
based on the competition of forces that occurs in the 

liquid phases 3) can be implemented easily on other 
models. 

As mentioned before, the smaller slope wall 
(α=2/L«1) and the capillary number, the better the 
small-slope approximation is. Here, the model was 
evaluated for a range of relative small Ca (3×10-4 ≤ 
Ca ≤ 1×10-2), but also, in some cases for small 
dimensionless lengths L where α≈1. In these limit 
cases, some instabilities in the graphs of Calim 
behavior can be appreciated (see Figs. 3 and 4). 
Thus, the model is expected to fail if the limits of 
the small-slope approximation are exceeded. 

The analysis of the snap-off dynamics presented 
here was restricted to pure interfaces. Future 
research might focus on the study of drop breakup 
criteria for complex rheological behaviors, such as 
the viscoelastic interfacial stress analyzed by Hoyer 
et al. (2016) in the context of the snap-off. 
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