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ABSTRACT 

A numerical study of the transition from steady to oscillatory flow natural convection of low- Prandtl number 
fluids inside the 3D Bridgman configuration has been carried out. The three-dimensional Navier-Stokes and 
energy equations, with the Boussinesq approximation have been discretized by means of a finite volume 
procedure which employs a second order accurate central difference scheme to treat diffusive and convective 
fluxes. In natural convection, the buoyancy force is only driving the flow and its intensity can be move a 
harmful effect on the crystal growth, such as the striation. Naturally, the steady state flow is obtained for low 
Rayleigh number and shows a great dependence between the Rayleigh number, the flow structure and the heat 
transfer rate. A low increase in the Rayleigh number we guide to determine the critical point in which the 3D 
flow became oscillatory. This regime appears by a sinusoidal signal in the time and developed in each period 
of time. 

Keywords: 3D Natural convection, Steady-oscillatory flow, Low-Pr fluid, Numerical study. 

NOMENCLATURE 

g 
L 
Nuavr

P 
Pr 
Ra 
T 
U 
V 
W 
X,Y,Z 
α

gravitational acceleration, m. s-2 
length of the enclosure, m 
average Nusselt number 
dimensionless pressure 
Prandtl number 
Rayleigh number 
Temperature, K 
dimensionless horizontal velocity  
dimensionless vertical velocity        
dimensionless transversal velocity 
dimensionless Cartesian coordinates 
thermal diffusivity, m2. s-1 

β 
θ 
ρ 
τ 
υ 
Δ  

thermal expansion coefficient, K-1 

dimensionless temperature 
density of the fluid, kg. m-3  
dimensionless time 
kinematic viscosity, m2.s-1 

difference in parameter 
Subscripts 
c 
cr 

  h 
  m 
max 

Cold 
critical value 
hot 
melting 
maximum value 

1. INTRODUCTION

The electronics industry requires a strong demand 
for semiconductor materials and severe requirement 
of their quality. These crystals are produced from 
molten baths using various crystal growth 
techniques (Bridgman, float zone, Czochralski ...). 
A sufficiently high gradient of temperature in the 
melt characterizing the crystal growth by horizontal 
Bridgman technique (HB). These thermal gradients 
are the source of the gravitational forces which 
generate substantial convective motion within the 

fluid.  

These convective motion constituents an important 
energy transfer mode that can speed up the process 
and affect significantly the quality of the crystal 
formed (Semma et al. 2004). It is recognized that 
the convection in the liquid is laminar and stable 
with respect to small numbers of Rayleigh. 
However, natural convection can become 
oscillatory and periodic in time from some value, 
called critical value, for which the behavior of the 
flow suddenly becomes qualitatively different from 
past behavior. This critical value is very important 
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where it helps the experimenters and industrial of 
crystallography for the manufacture of 
semiconductors in good conditions.  

Several experiments were make for a pure molten 
Gallium in enclosure exposed to the horizontal 
temperature gradient shows the flow oscillation 
(Hurel et al. 1974). Also, for the cavity exposed to 
the differentially heated vertical walls. For a low 
gradient temperature, the flow manifests unicellular, 
but for a sufficient temperature gradient the flow 
becomes oscillatory when the critical temperature 
difference (ΔTcr) achieved. So, the unicellular flow 
bifurcated. Also, Hart (1983) published a report of 
measurements on the oscillatory regime, critical 
Grashof number, frequency and wavelength for a 
wide aspect ratio of cell filled with mercury. He 
obtain a good agreement with an analytical model 
derived for infinitely extended layers, and confirms 
the instability flow in the same axis of temperature 
gradient. 

Some valuables information’s were obtained by 
numerical simulation of oscillatory regimes in low-
Pr fluids. Such as the existence of the oscillatory 
regimes in 2D rectangular cavities was showed by 
Crochet et al. (1983, 1987), Roux et al. (1985) and 
Ben Hadid and Roux (1987). In two dimensional 
models with 4×1 box the threshold value of Gr for 
the onset of oscillation and their corresponding 
frequency (Roux, 1990) agreed to the value 
obtained by Winters (1888), and compared with the 
results of Hurle et al. (1974), and Hung and 
Andereck (1990). Although they are ignored these 
simulations are sufficient to explain the oscillatory 
regime in 3D models close to reality. 

Gadoin et al. (2001) presented a general 
methodology for study the flow instability of 
natural convection in complex cavities. The 
principle of their methodology has been exposed 
with the preliminary results. Their methodology can 
be applied to understanding the transition to 
unstable and chaotic regimes for internal flows. A 
comparison between numerical and experimental 
results for the onset of 3D oscillatory flow of 
molten Gallium in rectangular cavity heated 
laterally was reported by Hof et al. (2004). They 
found that the transition threshold takes place where 
there is a supercritical Hopf bifurcation. 

The dependence of critical Grashof number and 
oscillation frequency with aspect ratio of the 
rectangular cavity (1 ≤ Ar ≤ 10), and for different 
cases of the Prandtl numbers was studied by Gelfgat 
and Tanzawa (1994). Diagrams of stability which 
show that this dependence is more complicated and 
very sensitive to a small change in the control 
parameter and the convective transfer is not 
negligible even for low numbers Prandtl. Zhou and 
Zebib (1992) used a two-dimensional model of the 
solidification of pure metals in a horizontal 
rectangular cavity. They examined the influence of 
oscillatory transition of natural convection and 
predict the parameters associated with this 
phenomenon. In particular, the influence of the 
solidification temperature on the critical Grashof 
number. They showed that this influence is directly 

linked with the aspect ratio in the liquid part. The 
increase in the solidification temperature causes 
oscillatory convection for high critical Grashof 
numbers. Bouabdallah et al. (2011) used the finite 
volume method to study flow field in a 3D cavity 
filled with molten Gallium under action of the 
magnetic field. They found a steady state flow when 
the value of critical Grashof number equal to Gr = 
3×105, and unsteady oscillatory flow when the Gr 
reaches 3.375×105. They found also that this critical 
value increase in presence of magnetic field.  

Ho et al. (2001) investigate the natural-convection-
dominated melting of ice inside a rectangular 
enclosure. They show in the water region during 
melting process the appearance of the temporal 
oscillatory convection flow and temperature. Afrid 
and Zebib (1990) simulated a 3D convection flow 
with a hypothesis of symmetry according to the 3rd 
dimension which does not confuse with the 
experimental reality (see Pratte and Hart (1990)).  
Recently, Atia et al. (2016) studied the onset of 
oscillatory mixed convection of the Silicon melt (Pr 
= 0.011) in Czochralski configuration. They 
obtained the transition to oscillatory flow for Recr = 
3010, and this value increase with increasing the 
magnetic field intensity.  

The purpose of the present work is to answers on 
some questions and comments received from the 
reviewers of our published works (Bouabdallah et 
al. 2011; Atia et al. 2016). So, the transition point 
from the steady to oscillatory state flow convection 
in low-Pr fluid is the highest subject of this study. 
Also, to see what happening character of the 
oscillatory natural convection in the time and flow 
structure. So, the two cases: steady state natural 
convection and the oscillatory natural convection 
flow of low-Pr fluids, time-dependent flow and it 
development on hydrodynamics and thermal field 
were presented. 

2. PROBLEM DESCRIPTION AND 

MATHEMATICAL FORMULATION  

The problem under consideration, shown in Fig. 1, 
is a cubical enclosure similar to that used in 
horizontal Bridgman technique (HB) for crystal 
growth. This enclosure filled by low-Pr fluid. The 
vertical walls (right and left) are exposed to the 
temperature gradient, such as Tc < Tm < Th, 
respectively for the cold temperature, melting 
temperature and hot temperature. The other walls 
are adiabatic. We take the all thermal, physical and 
electrical proprieties of low-Pr fluid from the 
Metals Handbook (1990).  

By neglecting the viscous dissipation, Joule heating, 
and using the parameters L, Lυ , υL2 , 

2
0 )Lυ(ρ and (Th-Tc) (Zhao et al. 2016) as typical 

scales for lengths, velocities, time, pressure and 
temperature, respectively. The dimensionless 
governing equations for an incompressible flow, in 
which we assume a Newtonian fluid and use the 
Boussinesq approximation, are:  

Continuity equation 
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Where U, V and W are dimensionless velocity 
components in the X, Y, and Z directions. 

chc TTTTθ  , αυPr  , υαTLgβRa 3 , 

represents the dimensionless temperature, Prandtl 
number and Rayleigh number,  respectively. 
g , β , υ , α  are the gravitational acceleration, 

thermal expansion coefficient, kinematic viscosity 
of the fluid, and  thermal diffusivity, respectively. 
The above equations have been associated to the 
following conditions: 

At τ = 0: U = V = W = 0, θ = 0 (6a)  

For τ > 0: 

At X = 0, 0 ≤ Y ≤ 1 and 0 ≤ Z ≤ 1: U = V = W = 0, 
θ = 1 (Hot right wall) (6b) 

At X = 1, 0 ≤ Y ≤ 1 and 0 ≤ Z ≤ 1: U = V = W = 0, 

θ = 0 (Cold left wall) (6c) 

At Y = 0, 0 ≤ X ≤ 1 and 0 ≤ Z ≤ 1: U = V = W = 0, 

Y

θ




 = 0 (Adiabatic bottom wall) (6d) 

At Y = 1, 0 ≤ X ≤ 1 and 0 ≤ Z ≤ 1: U = V = W = 0, 

Y

θ




 = 0 (Adiabatic top wall) (6e) 

At Z = 0, 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1: U = V = W = 0, 

Z

θ




 = 0 (Adiabatic back wall) (6f) 

At Z = 1, 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1: U = V = W = 0, 

Z

θ




 = 0 (Adiabatic front wall) (6g) 

3. NUMERICAL METHOD 

Governing equations (Eqs. 1-5) with the associated 
initial and boundary conditions (Eqs. 6a- g) were 
solved using a finite-volume method. The velocity 
components (U, V, and W) are stored at the 
staggered locations, and the scalars quantities (P 
and θ) are stored at the center of these volumes. The 
numerical procedure called SIMPLER is used to 
handle the pressure-velocity coupling. The second-
order accurate central difference scheme is used to 
discretize the convection and diffusion terms. 
Temporal discretization is first order accurate and 
fully implicit. Finally, the discretized algebraic 
equations are solved by the line-by-line tridiagonal 
matrix algorithm (TDMA). Convergence at a given 
time step is declared when the maximum relative 
change between two consecutive iteration levels fell 
below than 10- 4, for U, V, W and θ. At this stage, 
the steady state solution is obtained. A parallel test 
was made to guarantee that the energy balance 
between the hot and cold walls is less than a 
prescribed accuracy value, i.e., 0.2%.  

3. 1. Effect of Mesh Size 

Various mesh sizes are selected to ensure the mesh 
independency study, 323 (32768 nodes), 423 (74088 
nodes), 523 (140608 nodes), 623 (238328 nodes), 
723 (373248 nodes), and 823 (551368 nodes). 
Results are achieved for molten Gallium with  
Ra = 5 × 104.  In Figs. 2a-c, we have presented the 
profiles of the maximum dimensionless velocity 
components (Umax, Vmax), and the average Nusselt 
number (Nuavr) for various mesh sizes. It is found 
that the variation of the velocity components and 
Nusselt number remains almost constant from the 
mesh size 623. According to Figs. 2a-c, and to 
arrange the choice between calculation time and 
accuracy of calculations, the 623 grid is found 
suitable. Calculations were carried out on a Work 
Station (CPU Core 2 Quad Q9625, 3.00 GHZ-12 
Mo. L2); the average computing time for a typical 
case was approximately 7 hours. 

3. 2. Validation/Comparison of the Results 

Two cases are examined to validate the numerical 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. Effect of the mesh sizes on the profiles of 

velocity components (a, b), and the average 
Nusselt number (c), for Ra = 5 × 104. 

simulation by using the computer code. Achieved 
results are compared with the existing experimental 
and numerical results in literature. Firstly, the 
comparison is made with experimental work of 
Krane and Jessee (1983). In Figs. 3a-b, we have 
presented the comparison of the vertical velocity 
component (V) and dimensionless temperature 
distribution (θ) in the middle of the enclosure for Ra 
= 1.89×105 and Pr = 0.71. Secondly the comparison 
is made with numerical work of Fusegi et al. 
(1991). The iso-surfaces of the temperature in 3D 
enclosure for two Rayleigh numbers Ra = 104 and 
106 are presented in Fig. 3c, where the work of 
Fusegi et al. (1991) at the left. From these figures, a 
good agreement is observed with the numerical and 
experimental results. 

 
(a) 

 

 
(b) 

 
 

 
For Ra = 104 

 

 

 
 

For Ra = 106 

(c) 
 

Fig. 3. Comparison of our results with 
experimental data of Krane and Jessee (1983) 
(a-b), and numerical simulation of Fusegi et al. 
(1991); iso-surfaces of the temperature in 3D 
enclosure, for two values of Rayleigh number 

(104 and 106). 
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4. RESULTS AND DISCUSSION 

We present the results of the transition from steady 
to oscillatory flow natural convection of low-Pr 
fluids which is contained in a cubical enclosure. 
The natural convection can be controlled by the 
Rayleigh number. So, for a low value, the steady-
state is displayed and when the Rayleigh number is 
increased, the oscillatory flow starting with a 
critical value.  

Some measurement probes (points) in 
computational domain (S1, S2, S3, S4 and S5) were 
shown schematically in Fig. 1. These points are 
located in the main areas of the enclosure: the heart, 
near vertical walls and near horizontal walls to store 
the temporal evolution of the velocity and 
temperature in order to detect the physical 
instabilities. The coordinates of these points are 
presented in Table 1. All results presented herein 
are given in dimensionless form. 
 

Table 1 Dimensionless coordinates of the 
monitoring points S1, S2, S3, S4 and S5. 

Monitoring 
points 

S1 S2 S3 S4 S5 

X 0.2 0.8 0.5 0.2 0.8 

Y 0.2 0.2 0.5 0.8 0.8 

Z 0.5 0.5 0.5 0.5 0.5 

 

4.1. Steady State of Natural Convection 
Flow 

In this section, we study the flow field of 3D natural 
convection in steady state of the molten Gallium (Pr 
= 0.025). For this, we have plotted the iso-surfaces 
of the temperature, and the path lines of some fluid 
particles for various values of the Rayleigh number 
Ra ≤ 2 × 105 (low values, steady state flow 
convection). Figure 4, presents the temporal 
evolution of the flow parameters (U, V, W and θ) at 
different points. We can see that the steady state 
flow extends to Ra = 2 × 105. These curves are 
composed of two parts: oscillatory part due to initial 
conditions that are taken at the beginning of the 
calculation, and a portion which tends to an 
asymptotic limit and stabilizes with time. In this 
case, we can conclude that the flow in the enclosure 
is steady. Note that the travel time and the selected 
initial conditions have an influence on the time to 
alleviation of asymptotic limit. 

Figure 5 presents the iso-surfaces of the temperature 
and path lines of some fluid particles in the 3D 
enclosure for various values of the Rayleigh number 
(steady state flow). For Ra = 103 (Fig. 5a), we can 
see that the iso-surfaces of the temperature are 
parallel to the vertical walls (hot and cold). This 
indicates that, for low values of Rayleigh number, 
the heat transfer is done by conduction. 

For Ra = 104 (Fig 5b), we see the inclination of iso-
surfaces, indicating that the convection heat transfer 
begins to develop. 

From Ra = 105 (Figs. 5d-e), this iso-surfaces have a 

 
(a) 

 
(b) 

Fig. 4. Temporal evolution of the dimensionless 
temperature at S1-S5 (a) and dimensionless 

velocity components at S3 (b), for Ra = 2×105 
(steady state flow) 

high curvature in the middle of the enclosure, and 
become almost vertical near of hot and cold walls. 
These curves reflect the natural convection in the 
middle of the enclosure and the conduction heat 
transfer near the vertical walls and especially in 
thermal boundary layers that develop near its (hot 
and cold walls). In addition, with the increase of the 
Rayleigh number, the intensity of the natural 
convection is increased. For the path lines of some 
fluid particles in the enclosure, we see that the flow 
is regular for low Rayleigh number, but when 
increasing the Rayleigh number this flow becomes 
irregular due to dominance of natural convection 
which accelerates the velocity of fluid particles in 
the enclosure. 

Figures 6a-c, show the dimensionless velocity 
components for various values of the Rayleigh 
number. It’s clearly seen that the increase of the 
Rayleigh number causes an increase in the velocity, 
where the important variation is found for Ra = 2 × 
105. Also, we notice a negligible change in the 
transversal velocity compared to the contribution of 
other velocity components; this reflects that the 
two-dimensional approximation is sufficient for this 
problem in steady state. The variation of the 
average Nusselt number on the hot wall is shown in 
Fig. 6d. The obtained results show a strong 
dependence between the Rayleigh number and heat 
transfer rate, where the convective flow is intense 
with increasing of the Rayleigh number. 
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a) Ra = 103 

    
b) Ra = 104 

    

c) Ra = 5×104 

    

d) Ra = 105 

    
e) Ra = 2×105 

Fig. 5. Iso-surfaces of the temperature (left) and 
path lines of some fluid particles (right) in 3D 
enclosure, for various values of the Rayleigh 

number (steady state flow). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Profiles of dimensionless velocity 
components (a, b, c), and average Nusselt 

number (d) for various values of the Rayleigh 
number (steady state flow) 

 
4.2 Oscillatory State of Natural Convection Flow 

In the following, we study the transition to 
oscillatory flow convection for the molten Gallium 
(Pr = 0.025). The unsteady flow rests on the 
detection of the critical value of Rayleigh number 
Racr, in which the flow becomes oscillatory and 
periodic in the time. So, we select a suitable 
dimensionless step time Δτ = 10-5. An increase of 
Rayleigh from the steady solution achieves the 
beginning of oscillatory regime. Note that the 
steady state has been obtained until Ra = 2×105. 
Therefore, from this value the flow manifests 
oscillatory. For Racr = 2.4 × 105, the flow becomes 
oscillatory and periodic in time, and to ensure that 
the flow manifested by sinusoidal oscillations for 
Δτ is not numerical oscillations (machine borough 
or calculation errors), we recalculate the obtained 
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solution with the same flow parameters but for 
Δτ/2. This method eliminates much the numerical 
instabilities that may arise during the calculations. If 
the amplitudes and frequencies of oscillations are 
the same at all points after reduction of the time, we 
say that the instability is purely physic (Fig. 7a). 
Increasing the Rayleigh number after this value (Ra 
> Racr), the flow enters a beyond oscillatory regime 
where the oscillation will not periodic and leads to a 
disruption of the flow (Fig. 7b). 

 
(a) 

 
(b) 

Fig. 7. Variation of the dimensionless vertical 
velocity components between two time steps for 
oscillatory flow convection Ra = Racr = 2.4 × 105 

(Pr = 0.025) at S3 (a), and variation of the 
dimensionless velocity components for beyond 

oscillatory flow convection Ra > Racr (b). 
 
The oscillatory aspect of the temporal evolution of 
the flow parameters U, V, W and θ recorded at 
various points is shown in Figs. 8a-d for Racr = 
2.4×105. The temporal evolution manifests by a 
sinusoidal signal. So, to show that it presents the 
physical phenomena we made the dividing of the 
time steps until no differences observed in the 
period and amplitude of the signal. We can see that 
the amplitude of dimensionless temperatures is 
smallest compared to the velocity component U, V 
and W, but with identical frequency. The 
changement in the hydrodynamic and thermal 
parameters between them constructed the phase 
portraits. Where the periodic flow plot the closed 
circles (limit cycle, Stevens et al. 1999) and reflect 
the periodicity of the flow regime (Liu and Tao, 
1999). 

In Figs. 9a-b, we have plotted the phase portraits at 
chosen point in enclosure (S3). These curves for the 
temporal evolution of temperature/velocity. The 

curves show that the periodic regime is established. 
For (Ra > Racr) we see the onset of the beyond 
oscillatory regime (Figs. 9c-d) where the phase  
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8. Time-dependent of dimensionless velocity 
components (a, b, c) and dimensionless 

temperature (d) at different monitoring points, 
for Racr = 2.4×105 (oscillatory state flow) 



A. Atia et al. / JAFM, Vol. 11, No. 4, pp. 1021-1031, 2018.  
 

1028 

portrait has an irregular form (strange attractor), this 
changement can be explained by the increase of the 
velocity and temperature of the fluid particles in the 
enclosure which causes a disruption of the flow. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Phase portraits (W- θ) and (U-V) at S3.  
(a, b) oscillatory flow convection for Ra = Racr, 

(c, d) beyond oscillatory flow convection 
for Ra > Racr. 

For obtain the energy spectrum of oscillations, we 
have used the fast Fourier transform (FFT) of a 
number N of samples of the time variations of 
various dimensionless parameters. This transform, 
once multiplied by the half of its conjugate quantity, 
gives the power spectrum density (PSD) as a 
function of the oscillation frequencies (Fig. 10), 
defined by: F = k / (N×Δτ), where Δτ is the 
dimensionless time step and k = 1, 2,…, N / 2. 
Energy has been normalized by N2. The 
dimensionless predominant frequencies (The 
biggest pikes) are considered as those playing the 
main role in the flow oscillation and therefore the 
exchange of kinetic and thermal energy. There can 
exist several others frequencies which are multiples 
of the dominant one (Atia et al. 2016). The 
multiple-way of the power spectrum present the 
dominant frequency of the spectrum (Fig. 10a) 
confirms the periodicity of the flow (oscillatory 
state flow). On the other hand, if the appearance of 
these peaks by a non-multiple way to dominate 
frequency (Fig. 10b) shows that the flow exceeds 
the oscillatory regime. 
 

 
(a) 

 
(b) 

Fig. 10. Power spectrum of the dimensionless 
radial velocity component, (a) oscillatory flow 

convection for Ra = Racr, (b) beyond oscillatory 
flow convection for Ra > Racr 

 

To give a more detail on the oscillatory flow, it is 
preferable to present the evolution of the flow 
parameters over the period of time, for example the 
azimuthal velocity component W at point S3 (Fig. 
11) at Racr= 2.4×105, with path lines of some fluid 
particles in selected times: τa, τb, τc, τd and τe of one 
period. We note that there is a movement of fluid in 
clockwise direction from hot to cold wall. We note 
also that the flow takes a different structure in each 
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time. At τe the flow structure is perfectly similar to 
the time τa, which means that the flow is a 
periodically. 
 

 
Fig. 11. Time-dependent flow convection with 

the evolution of path lines of some fluid particles 
in 3D enclosure at different instants (τa, τb, τc, τd, 
τe) constituting one period of time (oscillatory 

state flow) 
 

4.3. Effect of Prandtl Number 

In this part, we see the effect of Prandtl number on 
the transition from steady to oscillatory flow 
convection. For this, we added two other fluids 
Silicon (Pr = 0.011) and Aluminum (Pr = 0.015). 
Figure 12a shows the time evolution of horizontal 
velocity (U) for Ra = 2.4×105 (corresponds to 
critical value of the Gallium) and for different 
Prandtl numbers (Pr = 0.011, 0.015 and 0.025) at 
S3. We note that, the variation of Prandtl number 
has a significant effect on the oscillations. So, that 
the flow is steady for Pr = 0.011 and 0.015, but it’s 
oscillatory for Pr = 0.025, which means that the 
increasing of Prandtl number destabilizes the 
convective flow. 

The iso-surfaces of the temperature, iso-surfaces of 
the horizontal velocity (U = 0.183), and path lines 
of some fluid particles at dimentionless time τ = 3.0 
are presented in Figs 13a-c. For Pr = 0.011 and 
0.015 the iso-surfaces of the temperature are 
parallel to the vertical walls which mean that the 
heat transfer is purely conductive. For Pr = 0.025 
this iso-surfaces appears inclined in the enclosure 
indicating that the convection is dominated. The 
iso-surfaces of the horizontal velocity contain two 
small symmetric iso-surfaces for Pr = 0.011, a little 
big for Pr = 0.015, and a big nested for Pr = 0.025. 
The path lines of some fluid particles are well 
organized in the enclosure, but for Pr = 0.025 the 
flow destabilized when the heat transfer is purely 
convective. 

The variation of the critical Rayleigh number Racr 
and average Nusselt number Nuavr according to the  
Prandtl number is summarized in the stability 
diagram (Fig. 12b). It can see that the increase of 
the Prandtl number causes the decrease of the 
critical Rayleigh number, so that the increase in the 
values of Pr destabilizes the flow in the enclosure, 
by against, it stabilizes the heat transfer.  

 
(a) 

 
(b)  

Fig. 12. Time-dependent of dimensionless 
horizontal velocity component U for different 

Prandtl numbers (a), and the stability diagrams 
Racr-Pr and Nuavr-Pr (b). 

 

 
(a) Silicon, Pr = 0.011. 

 
(b) Aluminium, Pr = 0.015. 

 
(c) Gallium, Pr = 0.025. 

Fig. 13. Iso-surfaces of the temperature (left), 
Iso-surfaces of the horizontal velocity (middle), 
and path lines of some fluid particles (right) at 
τ = 3.0, for different Prandtl numbers and 

 Ra = 2.4 × 105 . 
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5. CONCLUSION 

The transition from steady state to oscillatory flow 
of three-dimensional natural convection in low-Pr 
fluids has been numerically presented. The obtained 
results have been compared with the available data 
from the literature and good agreement has been 
found. The obtained results are given from the 
following points: 

 The steady state flow appears at low Rayleigh 
number, and presents a great dependence 
between the Rayleigh number, the flow field, 
and thermal structure.  

 A gradually increase in the Rayleigh number 
permits to determine the critical value of the 
oscillatory flow convection. This regime 
appears by the sinusoidal evolution in the time 
and they developed in each period of time.  

 The Prandtl number affect the transition from 
steady to oscillatory flow convection, where the 
fast transition is obtained for Pr = 0.025. 

 The dependences of the critical Rayleigh 
number and Nusselt number for various Prandtl 
numbers were summarized in the stability 
diagram.  

The obtained results may allow researchers and 
industrialists to see the oscillatory flow of low-Pr 
fluids in 3D enclosure, in order to improve upon the 
quality of the semiconductors obtained during the 
crystal growth by Bridgman technique. 
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