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ABSTRACT 

Two-dimensional numerical investigations have been carried out to study the temporal wake characteristics of 
laminar flow past two identical inline square cylinders performing transverse oscillations. Both the cylinders 
are forced to perform harmonic oscillations of same frequency and amplitude but with a phase difference. 
Computations are carried out using commercial software ANSYS Fluent 16.1 on a dynamically sliding mesh 
for fixed Reynolds number equal to 100. The oscillation frequency is varied from 0.4 to 1.6 times the 
frequency of vortex shedding behind a single stationary square cylinder. The amplitude of transverse 
oscillation is kept fixed equal to 0.4D (D = side of the cylinder). In addition, the effect of variation of inter-
cylinder spacing has been investigated on wake interference which influences the modes of vortex shedding 
and resulting dynamic effects on the cylinders. Temporal signals as well as mean characteristics of lift and 
drag coefficients have been presented for different values of inter-cylinder spacing, phase difference between 
the two cylinders and frequency of oscillation. 

Keywords: Transversely oscillating square cylinders; Phase difference; Wake characteristics; Wake 
interference; Modes of vortex shedding 

1. INTRODUCTION

Study of flow past square cylinders is of much 
importance in engineering applications, such as 
flow past automobiles to improve drag and lift 
characteristics, design of sky scraper buildings to 
handle wind loads, etc. The square cross-section 
differs from circular cross-section in many ways. It 
has fixed separation points, possess wider wake and 
is relatively bluffer than circular. Moreover, the 
Karman vortex formation region is significantly 
longer and broader for square cylinder than for 
circular. Flow past rectangular cylinder has been 
investigated by many researchers, such as Parkinson 
and Brooks (1961), Scruton (1963), Vickery (1966), 
Nakaguchi et al. (1968), Bearman and Trueman 
(1972), Otsuki (1974), Nakamura and Mizota 
(1975) and Rockwell (1977), to name a few. 
Okajima (1982), Davis et al. (1984) and Suzuki et 
al. (1993) studied the effect of wall confinement on 
flow past square cylinder.  

A wide range of experimental as well as numerical 
investigations on flow past a single cylinder 
(square/rectangular/circular) have been carried out 
by many researchers. Nowadays, flow past systems 

of two or more cylinders in various arrangements 
has capture the attention of researchers due to the 
complex nature of wake patterns and physical 
importance in engineering applications. Study of 
fluid flow behavior on a pair of cylinders become 
more complex when inter-cylinder spacing changes.  

Oscillation of the cylinder makes the flow more 
complex with onset of nonlinearities in the wake 
zone. The study of interaction between the wake 
and the body becomes extremely important from 
structural point of view and is commonly referred to 
as ‘vortex induced vibration (VIV)’. A simple 
approach that is used extensively to study VIV in 
literature is to force the body to perform harmonic 
oscillations and study response of the wake. Many 
studies in literature confirm that the wake 
characteristics obtained from forced oscillation of 
cylinder show good agreement with the results for 
spring mounted cylinder. Leontini et al. (2004) 
conducted numerical investigations to study flow 
past elastically-mounted and pure tone driven 
circular cylinder at Reynolds number (Re) of 200. 
Carberry et al. (2005) considered forced transverse 
oscillations of a circular cylinder. They compared 
the behavior of near wake and variation of lift 
forces against the results of Govardhan and 
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Williamson (2000) for elastically mounted cylinder 
and found some striking similarities between them. 
In both the cases, the transition of near wake and lift 
from low-frequency to high-frequency state occurs 

at frequency ratio close to unity ( 1e
r

o

f
f

f
  , where 

ef  is excitation frequency and of  is vortex 

shedding frequency for single stationary square 
cylinder). Most of the forced oscillation studies 
focused on the fluid forces and wake modes. This is 
because of the fact that near the lock-in region (

1e

o

f

f
 ) the cylinder motion and fluid forces can be 

well represented by sinusoidal functions as reported 
by Govardhan and Williamson (2000) as well as 
Khalak and Williamson (1999). Hence, the motion 
of the body can be expressed in the form given 
below. 

( ) sin(2 )y t A ft  (1) 

( ) sin(2 )y yF t F ft  (2)  

where, A  is the amplitude and f  is the frequency 

of oscillation. Here yF  is the amplitude of the 

harmonic transverse lift force. 

There have been observations related to situations 
where an unsteady flow becomes steady in the 
presence of another body and vice versa. The 
fluctuating forces generated due to the alternate 
vortex shedding are capable of forcing the body to 
oscillate. The oscillation of the body is another 
cause that makes the flow even more complex for 
which analysis invites more challenges. Oscillation 
of pair of cylinders induces nonlinearities due to 
oscillation and interference effect of both cylinders 
that increases the flow complexity by many folds. 
There are not many of the previous studies available 
dealing with oscillation of multiple cylinders. The 
oscillation of one cylinder may affect the wake or 
lock-in characteristic of the other. Li et al. (1992) 
did numerical simulation to study the response of an 
oscillating cylinder in the wake of an upstream 
cylinder. They found that the response of the 
downstream cylinder is strongly depended on the 
spacing between the cylinders. They observed a 
large lock-in zone in the vortex suppression regime. 
Frequency of vortex shedding from the two circular 
cylinders of different diameters with large upstream 
and small downstream one, were measured for 
different diameter ratio, staggered angle and spacing 
by Sayers and Saban (1994). They found that the 
base pressure increases with increase in diameter 
ratio until lock-in and within lock-in range it 
remains constant. Price et al. (2007) studied 
experimentally the flow past staggered circular 
cylinders with upstream cylinder vibrating 
harmonically in transverse direction. Their study 
shows that the oscillation of the upstream cylinder 
causes considerable modification to the flow 
patterns around the cylinders. In addition to the 
usual fundamental lock-in,   sub and super harmonic 
resonances are also obtained. A similar study was 
carried out using immersed boundary method at Re 

= 100 for tandem cylinders of equal diameter by 
Yang and Zheng (2010). Tandem circular cylinders 
with both the cylinders vibrating transversely were 
studied by Mahir and Rockwell (1996) and 
Papaioannou et al. (2006). Mahir and Rockwell 
(1996) conducted experiments on flow past two 
vibrating circular cylinders in tandem arrangement. 
They observed that for tandem cylinders with small 
spacing between them, substantially wider lock-in 
range exists than that for single cylinder. They also 
reported that for small spacing the modulated 
patterns of wake formation can be brought to locked 
patterns by varying the phase of oscillation of the 
cylinders. Papaioannou et al. (2006) conducted 
numerical study on flow past transversely vibrating 
circular cylinders and found the existence of quasi-
periodicity within the periodic regime which they 
have referred to as 'hole in the Arnold tongue'.  

A detailed study on two cylinders oscillating in-
phase has been reported in Mithun and Tiwari 
(2014). Present study considers effect of phase 
difference which is more general physical condition 
for cylinder oscillation. In order to mimic this 
situation, study in present research is focused on the 
effect of phase difference between the two 
oscillating tandem cylinders. The phase difference 
between the cylinders is varied from 0° to 180°. The 
amplitude and frequency of oscillation of both the 
cylinders are assumed to be same. 

2. PROBLEM DEFINITION 

Schematic of computational domain used for 
present study is shown in Fig. 1. The domain has a 
length (L) of 26D (D = side of the cylinder) and 
width (H) of 16D. Air at standard atmospheric 
conditions has been used as working fluid that 
enters at uniform velocity (characteristic velocity) 
corresponding to Re = 100. The phase difference (
 ) between oscillating cylinders has been varied 
from 0° to 180°. Both cylinders are oriented such 
that the upstream cylinder is placed at 6D 
downstream from the inlet to avoid any influence of 
inlet boundary condition. The position of the 
downstream cylinder is varied from 2D to 5D (in 
steps of 1D), keeping the upstream cylinder fixed. 
Both cylinders are of equal dimensions. The 
cylinders are forced to oscillate transversely to the 
incoming flow according to ( ) sin( )y t A t   , 

where A  is the amplitude,   is angular frequency 
2 ef   and   is the phase difference between 

the displacements of the cylinders. The amplitude of 
the cylinders is kept fixed at a non-dimensional ratio 
of / 0.4A D  with the frequency ratio of oscillation 
varying from 0.4 to 1.6.  

3. GOVERNING EQUATIONS AND 
BOUNDARY CONDITION 

3.1 Governing Equations 

Fluid flow is governed by set of conservation 
equation for mass and momentum. The conservation 
equations for two-dimensional, unsteady flow with 
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laminar and incompressible assumptions can be 
represented in non-dimensional form as 

0





i

i

u

x
 (3) 

2( ) 1

Re

  
           

i ji i

j i j j

u uu up

t x x x x
 (4) 

where iu  is Cartesian velocity component along ix  

direction with u and v as velocity component along 
x  and y  direction respectively. For a two-

dimensional coordinate system Eq. (4) represents x  
and y  component of momentum equation for i 
equal to 1 and 2 respectively. Velocities are non-
dimensionalized based on uniform inlet velocity 

( )U , while side of square cylinder (D) is used as 

characteristic length for non-dimensionalization of 
coordinate direction. Non- dimensionalized 
parameters are defined as: 

Reynolds number: 

Re
U D


  (5) 

Static pressure:  

2 


P

p
U

 (6) 

where P  is dimensional form of static pressure at 
any location and   and   are density and 

kinematic viscosity of the fluid. 
 

 
Fig. 1. Schematic of computational domain 

 
3.2 Boundary Conditions 
Boundary conditions on cylinder surfaces and 
channel walls are summarized below in Table 1. 

Table 1 Boundary conditions 
Boundary Imposed boundary conditions 

Inlet Uniform velocity u U  

Outlet Pressure outlet ( p p ) 

Top and 
bottom walls 

No-slip boundaries, 0u   and 
0v   

Cylinder 
surfaces 

No-slip boundaries, 
0; cos ( )su v v A t       

4. NUMERICAL TECHNIQUE, GRID 
AND TIME INDEPENDENCE STUDY 

4.1 Numerical Methodology 

A finite volume based commercial software 
ANSYS Fluent 16.1 has been used to solve the 
governing equations for the considered two- 
dimensional flow. A hybrid mesh with structured 
quadrilateral elements near the cylinders and 
unstructured triangular elements elsewhere in the 
domain are generated using ANSYS Gambit 2.4. 
The structured quadrilateral elements offer better 

numerical accuracy near the cylinder where 
aerodynamic forces are calculated. The 
unstructured triangular mesh around it offers 
better adaptability to accommodate the grid 
motion during cylinder oscillation. The transverse 
oscillation of the cylinders with phase difference 
is achieved with the help of a User Defined 
Function (UDF) implemented separately and 
integrated with the solver. For the incompressible 
flow, a pressure based solver with SIMPLE (Semi 
Implicit Method for Pressure Linked Equations) 
algorithm for linking pressure and velocity is 
employed for the computations. Unsteady term in 
momentum equation is discretized using first 
order implicit scheme while convective terms 
are discretized using second order upwind 
scheme. 

4.2 Grid Independence Study 

In order to arrive at a numerical solution that is 
independent of the mesh size, a thorough grid 
independence study has been carried out for a 
configuration with two cylinders placed 5D apart. 
The results from this study are presented in Table 2. 
It can be clearly seen that 160 grid points on the 
cylinder surface give fairly accurate results and 
hence the same is used for further computations. 
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Table 2 Comparison of mean drag and RMS lift 
coefficient for different grids 

No. of 
grid 

points on 
cylinders 

Cl,rms 

Cyl-1 
Cl,rms 
Cyl-2 

Cd,mean 
Cyl-1 

Cd,mean 
Cyl-2 

80 0.2980 1.372 1.625 1.388 
120 0.2857 1.338 1.603 1.365 
144 0.2814 1.318 1.596 1.353 
160 0.2815 1.2948 1.596 1.352 
184 0.2815 1.295 1.595 1.352 
200 0.2814 1.2953 1.5939 1.352 

4.3 Temporal Independence  

Temporal independence study has been carried out 
for single stationary cylinder for time-step size 
varying from 10 ms to 0.1 ms and corresponding 
RMS (root mean square) value of lift coefficient and 
mean drag coefficient are reported in Table 3. It is 
observed that with a change in time-step size from 1 
ms to 0.1 ms, Cl,rms shows a maximum of 4% 
change, while Cd,mean shows a maximum of 3% 
change. However, the computational time increases 
almost 4-5 times with 0.1 ms as compared to 1 ms. 
Force coefficients obtained are in good agreement 
with values reported in literature at both time-steps. 
Considering accuracy and computational cost, a 
time-step size of 1 ms has been chosen for all the 
computations in present study. 

5. VALIDATION OF COMPUTATIONS 

Comprehensive validation of the computational 
approach has been presented in  
 
 

Table 3 Mean drag and RMS lift coefficient for 
different time step size 

Time step size (ms) Cl,rms Cd,mean 
10 0.1286 1.5463 
6 0.1367 1.561 
1 0.171 1.59 

0.1 0.178 1.635 

 
Mithun and Tiwari (2014). However, for 
completeness of the present study, a part of 
validation is being reproduced here. Table 4 shows 
the comparison of RMS (root mean square) value of 
lift coefficient, mean value of drag coefficient and 
wake Strouhal number from present computations 
against those reported in literature. Figure 2 presents 
variation of normalized vortex shedding frequency (

e
ns

s

f
f

f
 , where sf  is vortex shedding frequency 

of oscillating cylinder) for single oscillating 

cylinder with change in frequency ratio ( 1e
r

o

f
f

f
 

, where ef  is excitation frequency and of  is the 

vortex shedding frequency in the wake of  single 
stationary square cylinder). Results are compared 
with those of Tanida et al. (1973) and Singh et al. 
(2009). The results show good agreement in 
capturing qualitative behavior of lock-in band even 
though computed values deviate little more at 
certain values of frequency ratio (say, 1.2 and 3.0). 
This difference can certainly be reduced by 
considering smaller time step and more fined grid 
which will be at the cost of much increased 
computational time.  

 
Table 4 Validation of lift and drag coefficients and Strouhal number for single stationary square 

cylinder at Re = 100 (Mithun and Tiwari, 2014) 
Author Blockage ratio Cl,rms Cd,mean Strouhal Number 
Present 0.0625 0.171 1.59 0.150 

Robichaux et al. (1999) 0.056 -- 1.530 0.154 
Sharma and Eswaran (2004) 0.050 0.192 1.494 0.1488 

Singh et al. (2009) 0.050 0.160 1.510 0.1470 
Sahu et al. (2009) 0.050 0.188 1.488 0.1486 
Sen et al. (2011) 0.050 0.1928 1.5287 0.1452 

 

 
Fig. 2. Comparison of lock-in band of frequency for single cylinder oscillation (Mithun and 

Tiwari, 2014) 
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6. RESULTS AND DISCUSSIONS 

Computations have been carried out for the flow 
past two out-of-phase vibrating square cylinders in 
tandem arrangement. The two cylinders are forced 
to oscillate at different frequency ratios ranging 
from 0.4 to 1.6 while their amplitude of oscillation 
is fixed at 0.4D. The cylinders are placed in a 
rectangular confined channel of width 16D where a 
laminar uniform flow corresponding to Reynolds 
number Re = 100 impinges at the inlet. 

6.1 Lift and Drag Characteristics 

The variations in the time history of lift and drag 
coefficients with change in phase between the two 
oscillating cylinders for sub-synchronous 
oscillations are shown in Figs. 3 and 4 for selected 
values of spacing. For S = 2D, the change in phase 
difference between the cylinders when they oscillate 
at sub-synchronous frequency changes the nature of 
variation of the lift and drag when the cylinders are 
at close proximity as shown in Fig. 3. The 
amplitude of oscillation of the drag signal of the 
downstream cylinder increases with increase in 
phase difference for S = 2D as shown in Fig. 3(b). 

On the other hand, when the cylinders are farther 
apart, not much variation in the nature of the force 
signals is observed as shown in Figs. 4(a) and (b).  

Figure 5 shows the Fourier spectra of lift signal for 
selected inter-cylinder spacing and phase difference 
between the cylinders. For S = 2D, the spectra 
clearly show that with an increase in phase 
difference between the cylinders vibration, the 
strength of harmonics also increases. The spectra of 
the upstream cylinder in Fig. 5 (for S = 2D) show 
that for   > 0o the strength of the third harmonic of 
excitation is higher than that of vortex shedding 
frequency while for the downstream cylinder it 
almost equals the strength of the vortex shedding 
frequency. A similar observation can be made for S 
= 3D also. The increase in strength of the harmonics 
expected to be due to the interference between the 
cylinders. When the spacing between the cylinders 
is increased and brought to S = 5D, apart from the 
excitation and vortex shedding frequency being 
present in the spectra, there appears a small 
modulation frequency of the order of 0.02. The third 
harmonic present in the spectra for S = 2D and 3D 
now changes to a combination of excitation and 
modulation frequencies.  

 

 
Fig. 3. Time series of lift and drag with change in   for rf = 0.4 and S = 2D 

 

For the case of in-phase oscillation of the cylinders, 
lock-in is observed at rf = 0.8 for all values of inter 

cylinder spacing as shown in Fig. 6 for S = 2D and S 
= 5D. For S = 5D, when the phase difference 
between the cylinder oscillation increases and 
reaches a value greater than   = 45o, no lock-in is 
observed between the wake and cylinder oscillation 
as seen from Fig. 6(b). In Fig. 6(b), for the cylinders 
placed 5D apart, beats appear in the signals of both 
upstream and downstream cylinders with their 
period decreasing with increase in phase difference. 
The amplitude of oscillation of the lift signals 

increases with increase in phase difference between 
the cylinders. This is due to enhanced interaction of 
the low pressure shear layer from the upstream 
cylinder. Similarly, a reduction in amplitude of 
oscillation is observed in the lift signals of upstream 
cylinder. It can be observed from Figs. 6 and 7 that 
the lift signals of upstream and downstream 
cylinders are almost in-phase for S = 2D. On the 
other hand, for S = 5D, the lift of the downstream 
cylinder lags behind that of the upstream cylinder 
and at   = 90o they are out-of-phase to each other. 
As the frequency of vibration crosses a value greater 
than the vortex shedding frequency behind a 
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Fig. 4. Time series of lift and drag with the change in   for rf = 0.4 and S = 5D 

 

 
Fig. 5. Fourier spectra of lift signal for the upstream (upper row) and downstream cylinders (lower 

row) at rf = 0.4 with change in phase for S = 2D, 3D and 5D 
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Fig. 6. Time series of lift coefficient with the change in   for rf = 0.8, (a) S = 2D (b) S = 5D 

 

   
Fig. 7. Time series of lift coefficient with the change in   for rf = 1, (a) S = 2D (b) S = 5D 

 

   
Fig. 8. Time series of lift coefficient with change in   for rf = 1.2, (a) S = 2D (b) S = 5D 
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Fig. 9. Time series of lift coefficient with change in  for rf = 1.6, (a) S = 2D (b) S = 5D 

 
stationary cylinder, i.e. as rf > 1, the nature of 

variation of lift coefficient with increase in phase 
difference becomes different than that observed for

rf   1. Up to rf = 1, the amplitude of oscillation 

of lift signal grows with increase in phase 
difference, whereas at rf = 1.2 it decreases with 

increase in phase difference as shown in Fig. 8(a). 
Another important observation is that the time 
period of beats observed in the signals of Fig. 8(b) 
increases with increase in .   

At frequency ratio 1.6 which falls under the super-
synchronous regime the lift signal almost shows 
sinusoidal behavior at smaller values of spacing. 
This means that the lift force acting on the cylinder 
is influenced mainly by a single frequency which is 
the excitation frequency since there is no vortex 
shedding in the gap between the cylinders. An 
observation similar to that made for rf = 1.2 can 

also be made for rf = 1.6 that the amplitude of 

oscillation of the lift signal decreases with increase 
in phase difference between the signals as depicted 
in Fig. 9(a). 

6.2 Flow Characteristics 

The change in phase of the two oscillating cylinders 
results in various modes of interaction between the 
wakes of the upstream and the downstream 
cylinders. Some selected cases have been 
considered where the change in phase results into 
change in the shedding mechanism. Figure 10 
shows interesting changes in the vortex shedding 
pattern for the selected cases. At sub-synchronous 
frequency, with increase in phase difference, an 
ordered ‘2S’ mode observed at   = 0o (Fig. 10(a)) 

changes to a different mode at   = 180o (Fig. 

10(b)). At   = 180o, a single vortex is shed 
simultaneously from the bottom and top edges of 
the downstream cylinder when the upstream 

cylinder reaches its extreme top position. Again, 
when the upstream cylinder reaches its bottom most 
position, the vortices are shed alternatively from the 
top and bottom edges of the downstream cylinder as 
shown in Fig. 10(b).  

At synchronous frequency, the change in mode from 
‘2S’ to ‘2P’ is observed for S = 3D when the phase 
difference is increased from   = 0o to 180o as 

shown in Figs. 11(a) and (b). For S = 4D at rf = 

0.8, the mode change is from ‘2P’ at   = 0o to ‘2S’ 

at   = 180o at the same frequency as shown in Figs. 
11(c) and (d). Same change is observed for S = 5D 
at rf = 0.8. For rf = 1 with inter-cylinder spacing 

of 2D, vortex shedding behind the downstream 
cylinder encounters a phase reversal between   = 
0o and 180o as shown in Figs. 11(e) and (f). 
Moreover, the incident vortex from upstream 
cylinder switches the side on which it interacts with 
the downstream cylinder. When the spacing 
between the cylinders is increased for fixed 
frequency ratio, say for rf  = 1, a reduction in 

longitudinal spacing between the consecutive 
vortices is observed when   is increased from 0o to 

180o. At rf = 1.2, for S = 5D, the shed vortices 

resemble polar vortices at   = 0o as shown in Fig. 
11(i). At super- synchronous frequency for smaller 
spacing between the cylinders, the vortex street 
formed behind the downstream cylinder coalesces 
and gives rise to an ‘Anti-symmetrical mode-AI’ 
mode of vortex shedding at rf = 1.6 (Ongoren and 

Rockwell, 1988) as shown in Fig. 12(d). 

6.3 Variation of Lift and Drag Coefficients 
with Phase Difference 

Variation of mean drag and RMS lift coefficient 
with change in phase between the cylinders for 
different values of inter-cylinder spacing for a 
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Fig. 10. Vorticity contours with change in   at sub – synchronous frequency 

 

 
Fig. 11. Vorticity contours showing variation in shedding pattern with change in   for selected spacing 

at synchronous frequencies 

 
Fig. 12. Vorticity contours showing variation in shedding pattern with change in   for selected spacing 

at super - synchronous frequency 
 
particular frequency ratio is presented in Figs. 13 to 
17. At sub-synchronous frequency (say rf = 0.4), 

the mean drag and RMS lift coefficients of the 
upstream cylinder remain almost unchanged with 
change in phase difference for all the values of 
inter-cylinder spacing except S = 2D as shown in 
Figs. 13(a) and (c). On the other hand, the 
downstream cylinder shows variation in drag and 
lift values for all the inter-cylinder spacing except at 

S = 5D. It increases from minimum value at   = 0o 
(in-phase) and reaches a maximum at some 
highervalue of phase shift as shown in Figs 13(b) 
and (d). The value of phase shift at which the 
maximum drag and lift occur on the downstream 
cylinder varies with change of the inter-cylinder 
spacing. As an effect of increasing inter-cylinder 
spacing, a drastic increase in the value of drag and 
lift takes place at a particular spacing with little 
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Fig. 13. Variation of lift and drag coefficients with phase difference for different S at rf = 0.4 

 

          

           
 

Fig. 14. Variation of lift and drag coefficients with phase difference for different S at rf = 0.8 

 

           

             
 

Fig. 15. Variation of lift and drag coefficients with phase difference for different S at rf = 1 
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Fig. 16. Variation of lift and drag coefficients with phase difference for different S at rf = 1.2 

 
dependence on changes in phase difference. This can 
be attributed to the onset of vortex shedding at that 
particular inter-cylinder spacing which has been 
explained before for in-phase vibration. The upstream 
cylinder has higher drag and lower lift values than for 
the downstream cylinder for all the values of inter-
cylinder spacing and phase difference. 

Considerable variation in values of lift and drag 
coefficients is observed with change in phase 
angle for both the upstream and downstream 
cylinders in the synchronous regime (Figs. 14, 15 
and 16). At fr = 0.8, minimum lift and drag on the 
downstream cylinder are observed for the in-
phase oscillation when S = 2D and 3D and for 
out-of-phase oscillation when S = 4D as shown in 
Figs. 14(b) and (d). A sudden increase in lift and 
drag on the downstream cylinder takes place 
between φ= 0o and 45o for cylinders at 3D 
separation. This is due to sudden change in the 
mode of vortex shedding from ‘2S’ at φ = 0o to 
‘2P’ at  φ = 45o at fr = 0.8. At  fr = 1, the upstream 
cylinder also shows large deviation in lift and 
drag values with the increase in phase difference 
as shown in Figs. 15(a) and (c). A drastic increase 
in lift of the downstream cylinder takes place 
between  φ = 90o and 120o associated with a 
change in vortex shedding mechanism for S = 4D 
and 5D at fr = 1 (Fig. 15(d)). At fr = 1.2, 
maximum drag on the downstream cylinder 
occurs at  φ = 120o for S = 4D and minimum at  φ 
= 180o for S = 2D as shown in Fig. 16(b).  

At super synchronous frequency (fr  = 1.6), the 
drag coefficient of the upstream cylinder remains 
nearly invariant with phase difference as shown 
in Fig. 17(a). For downstream cylinder low 
values of drag are observed for all the phase shift 
values for S = 2D and 3D with negative drag 
appearing till  φ = 120o for S = 2D (Fig. 17(b)). 
Similarly, for S = 3D, it shows minimum positive 
value till   = 120o and then becomes negative at 

  = 180o. 

In general, there is no particular pattern observed in 
the variation of lift and drag coefficients with change 
in phase difference. The values of lift and drag are 
strongly dependent on the timing and position of the 
downstream cylinder when the vortices or shear 
layers from the upstream cylinder interact with the 
downstream cylinder. This interaction depends 
mainly on the inter-cylinder spacing, excitation 
frequency and the phase difference between the 
oscillating cylinders.  

7. CONCLUSIONS 

Numerical investigations on unsteady flow past 
two identical inline square cylinders oscillating 
transversely with phase difference have been 
carried out using finite volume based commercial 
software ANSYS Fluent 16.1 with the help of an 
inhouse developed user defined function to 
incorporate oscillations of the cylinders with 
phase difference. All the computations in the 
present study are performed for a fixed value of 
Re equal to 100. A brief summary of observations 
and inferences from this study are presented 
below. 

 The width of frequency band corresponding 
to lock-in of oscillating tandem cylinders is 
more at close proximity and less when they 
are far apart, as compared to that for single 
oscillating cylinder.  

 Transformation from a lock–in state to a non-
lock-in state is observed when the phase 
difference between the cylinders is increased. 

 For oscillating tandem cylinders, the lift and 
drag forces on both the cylinders are less than 
that of single oscillating cylinder for all the 
values of spacing and frequency ratio.  
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Fig. 17. Variation of lift and drag coefficients with phase difference for different S at rf = 1.6 

 

 When the oscillating cylinders are at close 
proximity, high frequency excitation results in 
negative drag on the downstream cylinder. 

 With increase in inter-cylinder spacing or phase 
difference, change in mode of vortex shedding 
takes place followed by increase or decrease in 
lift and drag. 
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