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ABSTRACT 

The effect of vertical throughflow on the onset of bio-thermal convection in a water-based nanofluid 
containing gyrotactic microorganisms is investigated using more realistic boundary conditions. The Galerkin 
weighted residual method is used to obtain numerical solutions of the mathematical model. The effects of 
bioconvection Rayleigh number, gyrotaxis number, bioconvection Péclet number, Lewis number, Péclet 
number, particle density increment number, modified diffusitivity ratio,  and nanoparticle Rayleigh number 
on thermal Rayleigh number are examined.The combined effect of Brownian motion and thermophoresis of 
nanoparticles, vertical throughflow, and gyrotactic microorganisms on the thermal Rayleigh number is found 
to be destabilizing and its value is decreased by first to third orders of magnitude as compared to regular 
fluids. Critical wave number is dependent on bioconvection parameters, nanofluid parameters as well as 
throughflow parameter. The results obtained using passive boundary conditions are compared with those of 
active boundary conditions. The present study may find applications in seawater convection at the ocean 
crust. 

Keywords: Nanofluid; Vertical throughflow; Thermophoresis; Brownian motion; Bio-Thermal convection; 
Gyrotactic microorganism. 

Nomenclature 

a wave number t time 

ca critical wave number 0W vertical upward velocity 

BD
 Brownian diffusion coefficient cW microorganisms velocity 

mD diffusivity of microorganism ( , , )x y z space co-ordinates 

TD thermophoresis diffusion coefficient Greek symbol 
g gravity vector 0  measure of the cell eccentricity 

H dimensional layer depth m thermal diffusivity of the nanofluid 

j  flux of microorganisms T
volumetric thermal expansion 
coefficient 

k̂ vertically upward unit vector cell f     difference between cell density and 
a fluid density 

mk thermal conductivity of nanofluid   viscosity 

bL bioconvection Lewis number  average volume of microorganism

eL
 Lewis number   nanoparticles volume fraction 

n  microorganism concentration p density of nanoparticles 

n
average dimensionless concentration of 
microorganisms 

( ) pc
 

volumetric heat capacity for the 
nanoparticles 

AN modified diffusivity ratio ( ) fc
 

volumetric heat capacity for the 
nanofluid 
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BN
 particle density increment number f

 density of the nanofluid 

p̂  
average direction of microorganisms’ 
swimming 

2
H  horizontal Laplacian operator 

p  pressure Subscript  

vQ
 Péclet number b basic state 

bQ
 Bioconvection Péclet number f fluid 

aR
 Thermal Rayleigh number h upper boundary 

bR  Bioconvection Rayleigh number p nanoparticles 

mR
 Basic density Rayleigh number 0 lower boundary 

nR
 Nanoparticle  Rayleigh number Superscript  

T temperature * dimensional variable 

hT  reference temperature ‘ perturbed state 

 

1. INTRODUCTION 

Bioconvection is a phenomenon that occurs when 
convective instability is induced by self-propelled up 
swimming microorganisms that are denser than cell 
fluid. Platt (1961) introduced the term bioconvection 
and studied the moving polygonal patterns in dense 
cultures of Tetrahymena. Plesset and Winet (1974) 
addressed the bioconvection in terms of Rayleigh-
Taylor instability. Childress et al. (1975) studied the 
linear stability and pattern formation in stratified 
layers of negatively geotactic micro-organisms. 
Pedley et al. (1988) introduced the theoretical bio-
convective model for the gyrotactic microorganisms. 
Later, Hill et al. (1989) studied the growth of bio-
thermal convection patterns of microorganisms 
(Bacillus subtitles) in finite depth layer. 
Bioconvection models for different types of 
microorganisms were studied by Hillesden and 
Pedley (1996), Hill and Häder (1997), Bees and Hill 
(1997), Ghorai and Hill (1999). The effect of critical 
permeability on the bio-thermal convection was 
investigated by Kuznetsov and Avramenko (2002, 
2003) and they found that for small permeability 
suspension of microorganisms is unstable, while for 
the larger permeability, suspension of microorganism 
is stable. 

Due to vast range of applications, nanofluids have 
attracted the attention of many researchers in recent 
past. They are widely used in cooling, micro heat 
pipes, microchannel heat sinks, microreactors, cancer 
therapy, sterilization of medical suspensions, process 
industries, polymer coatings, aerospace tribology, 
microfluid delivery devices etc. (Ebrahimi et.al 2010; 
Fang et.al 2009).  Choi (1995) defined a new class of 
fluid which consists of nano-sized particles and the 
base fluid, known as a nanofluid. Buongiorno (2006) 
developed a mathematical model for nanofluid and 
explored the various transport mechanisms in 
nanofluids. The research articles dedicated to the 
thermal instability problem in nanofluid using the 
Buongiorno model are well documented by Tzou 
(2008), Nield and Kuznetsov (2009, 2010). 

Kuznetsov (2010, 2011) extended the work of Nield 
and Kuznetsov (2009) for the suspension containing 
both gyrotactic microorganisms and nanofluid. They 
observed that adding the microorganisms to a 
nanofluid increase the stability of a suspension. On 

the other hand, Tham, Nazar, and Pop (2013) studied 
the convection flow over a solid field and found that 
gyrotactic has a strong influence on the velocity of 
microorganisms transport rate. 

Homsy and Sherwood (1976), Jones and Persichetti 
(1986) studied the effect of throughflow in layers of 
porous media and packed beds. Avramenko and 
Kuznetsov (2006) studied the bioconvection 
containing gyrotactic microorganisms in the porous 
layer with vertical throughflow and found that vertical 
throughflow stabilize the bio-thermal convection. The 
effect of vertical throughflow in a nanofluid was 
investigated by Nield and Kuznetsov (2011). 

Baehr and Stephan (2006) were perhaps the first who 
gave the concept of physically realistic boundary 
conditions (zero nanoparticle flux on the boundaries). 
After the work of Baehr and Stephan (2006), Nield 
and Kuznetsov (2014, 2015) revised their work by 
using more realistic boundary conditions. Very 
recently, Saini and Sharma (2017) studied the effect 
of vertical throughflow in Rivlin-Ericksen nanofluid 
with the new set of boundary conditions. 

The above review of the literature reveals that no work 
has been reported so far on throughflow with 
gyrotactic microorganisms in a nanofluid. The present 
study focuses on analytical and numerical 
investigations of the effect of vertical throughflow on 
the onset of bio-thermal convection by using more 
realistic boundary conditions. The effects of various 
non-dimensionless parameters are investigated and the 
results are illustrated in graphs and tables. The present 
study may find applications in seawater convection at 
the ocean crust. 

2. MATHEMATICAL FORMULATION  

A horizontal nanofluid layer with gyrotactic 
microorganisms confined between the two rigid 
permeable planes is presented in Fig. 1. We take 

temperatures * *
0 at 0T z and * *at hT z H * *

0( ) hT T . 

Nanoparticles cause no effect on the velocity and 
direction of gyrotactic microorganisms. Suspension of 
nanoparticles is assumed to be dilute, stable and do not 
to agglomerate. The base fluid is water so that 
microorganisms can stay alive in it. The conservation 
equations for a water-based fluid containing gyrotactic 
microorganisms and nanoparticles are written below 
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(see articles Pedley et al. 1988; Nield and Kuznetsov 
2009, 2015). 

 
Fig. 1. Physical model and coordinate system 
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Where *V is the velocity, *t is time, p is density of 

nanoparticles,   is the viscosity, f is the density of 

the nanofluid, T is the volumetric thermal 

expansion coefficient, * is the nanoparticles volume 

fraction, *n is the microorganism concentration,  is 
the average volume of microorganism, g is gravity 
vector,   cell f    is the difference between cell 

density and a fluid density, ( ) fc is the heat capacity 

for the nanofluid, mk is the thermal conductivity of 

nanofluid, TD is the thermophoresis diffusion 

coefficient, ( ) pc is the heat capacity for the 

nanoparticles, BD is the Brownian diffusion 

coefficient. Temperature is assumed to be constant, 
and throughflow velocity has a constant value on the 
boundaries. The boundary conditions are 

*
* * *
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* *
* * *

0 0* * *
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*
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h
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B

c
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D T
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  
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 
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 

j.k

 (6b) 

Where, * * * *ˆ( )c mn n W D n   *j V p . 

Dimensionless variables in the equations are as 
follows 

* * * *
m
2

m
* ** * * * 2

0
*

m 0
* *

*h m
m* *

f0 h

t (u , v , w )H
t , (u, v, w) , (x, y, z)

H

(x , y , z ) p H
, p , T

H

T T k
,n n Where, .

( c)T T




 


 

 


 


  


  



V
V

 (7) 

Non-dimensional form of Eqs. (1)-(5) are as follows 

. 0 V  (8) 

21 ˆ ˆ ˆ.
Pr

ˆ

 
         



m a n

b

b

p R R T R
t

R
n

L v

V V V k k k

k
 (9) 

2. . .

.

          

  

B
B

e

A B

e

N
T T N T T

t L

N N
T T

L

 V V

 (10) 

2 21
.

 
       

A

e e

N
T

t L L
 V  (11) 
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b b

Qn
n n n

t L L

 
       

V + p  (12) 

With the non-dimensional boundary conditions as 

, 0, 1, ( ) ,

0 0

    

 
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 

v b v b

A e

dw dn
w Q T Q Q L n

dz dz
T

N QL at z
z z

 
 (13a) 

, 0, 0, ( )

0, 1

    

 
   

 

v b v b

A e

dw dn
w Q T Q Q L n

dz dz
T

N QL at z
z z




 (13b) 

The non-dimensional parameters in Eqs. (8)-(12) 
namely, Lewis number eL , Prandtl number Pr , 

bioconvection Lewis number bL ,thermal Rayleigh 

number aR ,bioconvection Péclet number bQ , Péclet 

number vQ ,basic density Rayleigh number mR ,particle 

density increment BN , bioconvection Rayleigh 

number bR ,nanoparticle Rayleigh number nR , and 
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modified diffusitivity ratio AN  are defined as 

 
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0 00
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   
  

   

 
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


   

 
  


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
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 (14) 

3. BASIC SOLUTIONS 

The basic state is described by 

(0,0, ), ( ), ( ),

( ), ( )
v b b

b b

Q p p z T T z

z n n z 
  

 
bV = V

 (15) 

The Eqs. (8)-(12) are simplified as 

0


    b b
m a b n b b

b

dp R
R R T R n

dz L v
  (16) 

22

2

0

 
   

 
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e e

b b
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



 (17) 

2 2

2 2
0  b b b

A v e
d d T d

N Q L
dzdz dz

 
 (18) 

( ) 0  v b b
dn

n Q L Q
dz

 (19) 

Equation (19) is integrated, then the solution of bn is 

obtained 

( ) exp(( ) )b v b bn z v Q L Q z 
 (20) 

Here   is the integration constant given by 

( )

exp( ) 1
v b b

v b b

n Q L Q
v

Q L Q




   

Where      
1

0

( )bn n z dz   

On solving the Eqs. (17)–(18) with the help of 
boundary conditions (13a)-(13b), the solutions are  
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4. PERTURBED SOLUTIONS 

For small perturbations on the basic solution, we 
assume that  

' ' ' '

' '

, , , ,
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b
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Substituting Eq. (22) in Eqs. (8)- (12), we get 
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Applying the procedure outlined in Pedley and Hill 
(1988), Eq. (27) is written as  
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The pressure and horizontal component of velocity are 
eliminated from Eqs. (23)- (24), resulting to the 
following equation. 
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In absence of oscillatory convection, perturbation 
quantity are taken in the following form 
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w T n W z z z N z e  (30) 

For spherical microorganisms, 0 is set to be zero 

(value of 0  lies between the values 0 to 0.5 Pedley 

et. al, 1988). Substituting Eq. (30) in Eqs. (25), 
(26)(28)-(29), we get 
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2 2 2 2 2 2( ) 0      b
a n
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With boundary conditions  
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Where 2 2 x ya k k is the dimensionless horizontal 

wave number and .
d

D
dz

 

5. METHOD OF SOLUTION  

The above system of Eqs (31)-(34) subjected to 
boundary conditions given by Eq. (35) are solved 
by using single-term Galerkin’s weighted 
residual method. Accordingly , ,  W and N are 
taken as 
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To obtain an analytical formula for thermal 
Rayleigh number, we take vQ <<1 so that first-

order Galerkin approximations lead to a useful 
result. The above trial solutions Eq. (36) are 
substituted in Eqs. (31)-(34) to obtain residues and 
making these residues orthogonal (in inner product 
sense) to these trial functions, we get a system of 
linear simultaneous homogeneous equations which 
admits the non-trivial solution if its determinant 
vanishes (Finalayson, 1971) this results in the 
following Eigenvalue equation 
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In the absence of throughflow, gyrotactic 
microorganisms and nanofluid ( 0, 0, 0),n b vR R Q  

the thermal Rayleigh number attains its minimum 
value of 1751.851 at a = 3.12. This value of aR is two 

and half percent greater than the value obtained in 
Rayleigh-Bernard Problem Chandrasekhar (1961). 
Also, for the case when 0, 0, 0,n a vR R Q    and 

0bQ   then 720,b bQ R  which is same as given by 

Sparrow et al. (1964).  

For the case 0,vQ  Eq. (37) becomes: 

2 2 4

2 2

2 2 2 2
1

(140(10 )(504 24 )

105(12 ) 98(10 )

50400(28 3 ) (10 ) ) / (135 )

a

A n e n

b b

R a a a

a N R a L R

Q A a a R a

   

   

    

From Eq. (38), when 0vQ  thermal Rayleigh number 

is independent to BN . To simplify the expression, we 

have fixed the values of 0.03, 4bG L   (for alga 

Chlamydomonas nivails Hill et. al, 1989), and 0.1vQ   

(vertical through flow is small as compared to unity). 
Using these assumptions Eq. (37) is simplified as 
follows 
 

4 2

1

/22 2

2 2 2
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0.1
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A B
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12 +Q ) + 0.8 (54 + 5Q ) + 

0.16 (72 + 7 Q )) Sinh(Q /2)) - 1.29(Q (0.48 (60 + Q ) 
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+ 9.7344 (120 - 10 (0.1 + 4 Q )
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b vQ   
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To simplify the above expression, we use three values 
of 0.1, 1 and10bQ  , which corresponds to slowly, 

intermediate, and faster swimming bacterial species. 
Then Eq. (39) becomes 

 ((88.68 19.73L  - 0.1 / L )-1.73(1 + 0.1N )N

0.72(19.73 0.1 ) ) / (1 0.1 )
ca e A B e B A n

e A B n b B

R N N R

L N N R k R N



     

Where, 

30.982(for 0.1), 3.58(for 1), 5.52 10 ( 10).b b bk Q Q Q    

According to Buongiorno (2006), the value of Lewis 
number is of the order of 2 3(10 10 ) , AN is of order 1-

10, and 47.5 10BN   . For above stated ranges of these 

parameters, Eq. (40) shows that nR  has destabilizing 

effect on the system. The value of 
caR  decreases as 

bioconvection Rayleigh number increases. Thus for 
fixed values of , ,A BN N and eL , bR also has 

destabilizing effect. 

(40) 

(38) 

(39) 
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6. RESULTS AND DISCUSSION 

To investigate the various effects of non-
dimensional parameters on bio-thermal convection, 
we have used the MATHEMATICA 9.0 (software 
package) to obtain important numerical results. The 
present numerical scheme is also validated for 
regular fluid ( 0, 0, 0)v n bQ R R    by comparing 

the present results with the result of Chandrasekhar 
(1961) (Fig. 2). It is clear that the present results 
are sufficiently in agreement to the results reported 
in it. 

For alumina/water nanofluid with alga 
Chlamydomonas nivails (microorganisms), the 
ranges of bioconvection Péclet number ,modified 
diffusitivity ratio,bioconvection Lewis number, 
nanoparticle Rayleigh number, are the order of 

0 110 10 , Péclet number and gyrotaxis number are 

in the order 2 110 10  , BN  is of the order
4 310 10  , bioconvection Rayleigh number is of 

the order 0 210 10 , and the values of  Lewis 

number in the range between 0 310 10 . The range 
of considered variables has been predicated from 
the data given by (Kessler 1986; Pedley 1988; 
Buongiorno 2006; Kuznetsov 2010). We have 
fixed the following values of dimensionless 
parameters:   

500, 4, 3.0,

0.05, 3, 0.1,

0.03, 0.01, 5.

e b b

v b n

b A

L L Q

Q R R

G N N

  

  

  
 

 
Fig. 2. Validation of the present code with the 

results of Chandrasekhar (1961) 

 

 

 

 

 

Fig. 3. Variation of thermal Rayleigh number with 
wave number for different values of (a) N ,b (b) 

,NA (c) ,Le (d) ,Rn and (e) .Qb  

Figures 3(a)-3(e) show the influence of different 
physical parameters on thermal Rayleigh number with 
respect to (a) modified particle density increment, (b) 
modified diffusivity ratio, (c) nanoparticle Lewis 
number, (d) nanoparticle Rayleigh number, (e) 
bioconvection Péclet number. The thermal Rayleigh 
number attains its minimum value at a = 3.069 in all 
cases expect the higher value of bQ . The thermal 

Rayleigh number is insensitive to the variation of 
modified particle density increment as shown in Fig. 3 
(a). Modified diffusivity ratio destabilized the 
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suspension due to thermophoresis which pushes the 
lighter nanoparticles upwards and enhances the 
nanoparticles motion, as shown in Fig. 3 (b). Figure 
3(c) shows that aR decreases with increasing value of

eL . This may be physically interpreted as, the mass 

diffusivity of the nanofluid, increases the nanoparticle 
volume fraction and subsequently increase the 
amount of heat transfer. An increase in a volumetric 
fraction increases the Brownian motion of 
nanoparticles which produce a destabilizing effect, as 
shown in Fig. 3(d). From Fig. 3(e) it is found that a 
bioconvection Péclet number accelerates the onset of 
bio-thermal convection. 

 

 

Fig. 4. Variation of thermal Rayleigh number with 
bioconvection Rayleigh number for different 

values of (a) Q ,v (b) G. 

The value of aR  decreases with increase in the 

bioconvection Rayleigh number ( )bR  as shown in Fig. 

(4). Therefore bioconvection Rayleigh number 
destabilizes the system. This result is expected from 
physical point of view also, because an increase in bR  

enhances the concentration of gyrotactic microorganisms 
at the top layer and develops top-heavy density 
stratification. Vertical upward throughflow increases the 
upward speed of microorganism which helps to construct 
the bio-thermal convection pattern. Therefore, Péclet 
number accelerates the onset of bio-thermal convection 
for the small amount of throughflow, as shown in Fig. 
4(a). From Fig. 4(b) it is noticed that as G increases, aR  

decreases, it thus facilitates the development of bio-
thermal convection. 

To see the differences between the active (constant 
nanoparticle) and passive control (zero flux) of 
nanoflux on the onset of bio-thermal convection, the 
 

Table 1 Numerical values of ac cR ,a for different 

values of e b A B n b bL ,L , N , N , R , R ,G,Q and vQ for the 

active and passive nanoflux 

AN
 BN

 
(Active 

Nanoflux) 
(Passive 

Nanoflux) 

  ,a cR
 c  ,a cR

 c  
3  1749.82 3.12 1674.52 3.07 
5  1749.62 3.12 1674.17 3.07 
7  1749.42 3.12 1673.81 3.07 
 0.01 1749.62 3.12 1674.17 3.07 
 0.05 1748.05 3.12 1669.25 3.07 
 0.1 1748.05 3.12 1665.10 3.07 

eL
 G      

500  1749.62 3.12 1674.17 3.07 
700  1729.20 3.12 1643.51 3.05 
1000  1699.62 3.12 1598.73 3.02 

 0.01 1749.49 3.12 1673.83 3.07 
 0.02 1749.52 3.12 1673.21 3.07 
 0.03 1749.62 3.12 1674.17 3.07 

vQ  BQ      

0.01  1750.70 3.12 1675.92 3.07 
0.05  1749.62 3.12 1674.17 3.07 
0.07  1749.02 3.12 1673.57 3.07 
0.1  1748.05 3.12 1671.57 3.07 

 1 1840.47 3.11 1665.94 3.06 
 3 1749.62 3.12 1619.17 3.07 
 4 1561.34 3.12 1486.07 3.07 

nR
 bR

     

0.1  1749.62 3.12 1674.17 3.07 
0.2  1647.56 3.12 1596.25 3.07 
0.3  1597.06 3.12 1520.09 3.07 

 1 1670.10 3.11 1684.71 3.06 
 20 1455.64 3.12 1380.80 3.09 
 30 1161.61 3.12 1087.38 3.10 
 40 867.41 3.13 793.78 3.11 

values of ,cRa  ca for different values of non-

dimensional parameters for both active and passive 
boundary conditions are compared in Table 1. It is 
observed that passive control of nanoflux has a more 
destabilizing effect than the active control. Higher 
concentration of microorganisms (higher bR ) implies 

increasing value of ,ca thus it reduces the size of cells.  

7. CONCLUSIONS 

The main conclusions can be drawn as follows: 

1. The combined behaviour of Brownian motion, 
thermophoresis of nanoparticles, vertical 
throughflow, and gyrotactic microorganisms is 
shown to have a strong destabilizing effect. 

2. The highly promoted disturbance due to the 
presence of gyrotactic microorganisms enhances 
heat transfer in a nanofluid. 

3. Faster swimmers produce stronger disturbance, it 
thus facilitates the development of bio-thermal 
convection resulting in a lower thermal Rayleigh 
number at a larger value of bioconvection Péclet 
number. 

4. For larger values of ,bR the effect of vertical 

throughflow and gyrotaxis number are substantial 

Qv
 = 0.01

Qv � 0.05

Qv
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Qv
= 0.1
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as compared to smaller values of bR . 

5. In the absence of throughflow, thermal Rayleigh 
number is insensitive to the variation of 
modified particle density increment.  

6. As the swimming speed of gyrotactic 
microorganisms increases, the size of convection 
cells becomes narrower and concentrated at the 
upper boundary layer. 

7. Active control of nanoflux has a less 
destabilizing effect than the passive control, for 
all considered range of non-dimensional 
numbers. 
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