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ABSTRACT 

A simple method which is suitable for determining with reasonable precision the parameters of gas flow 
system has been proposed. An inverse boundary-value problem is considered. The model of gas flow with 
the Danckwert’s boundary conditions in a real measurement system has been analyzed and solved. The 
tracer technique was applied to determine axial dispersion coefficient of gas phase and Pèclet number. 
These parameters are commonly used to characterize the flow behavior of fluids. Axial dispersion 
coefficients were estimated by comparing model solution with recorded TCD signal (an inverse problem as 
a method for model parameter estimation) employing the Laplace transform technique. The Gaver-Stehfest 
algorithm for the solution of the mathematical model has been applied. The proposed model of gas show a 
good agreement with the experimental data. The obtained results show that under operation conditions in 
the studied system the flow behaviour is neither plug flow nor perfect mixing. The described method is very 
fast in both experimental and computational part. Simple and errorless derivation of sophisticated model 
formulas has been possible by application of the Computer Algebra System-type program. The program 
also simplifies computations. Mathematical manipulations and computations were performed using 
program Maple®. 

Keywords: Laplace transform; Numerical inversion of Laplace transform; Non-ideal flow; Maple®. 

NOMENCLATURE 

0c inlet concentration of tracer N number of terms used in numerical 
approximation 

),( sLc n

solution of model for zone in 
Laplace domain, n=1..3   

P pressure 

1 2 3( , ) c L L L t outlet concentration of tracer nPe
Pèclet number, n=1…3 

nLD ,
axial dispersion coefficient, 
n=1..3 gR gas constant 

nwd , diameter of the zone, n=1..3 s laplace transform parameter

vF volumetric flow rate T  temperature 

)(sGn

transfer function or zone, 
n=1…3 impV volume of impulse of gas 

nL length of the zone, n=1..3 

1. INTRODUCTION

The Laplace transform is applicable in many 
disciplines like mathematics, physics, mechanics, 
process control, chemical engineering and 

biosciences as it allows understanding the behavior 
of substances in many cases, e.g. in the heat 
transport in geothermal reservoirs, tracer transport 
in oil, groundwater aquifers and in porous media 
(Van Everdingen and Hurst 1949; Čermáková et al. 



M. Wójcik et al. / JAFM, Vol. 11, No. 4, pp. 965-970, 2018.  
 

966 

2006). This technique simplifies obtaining the 
solution of models described by the one- or more 
dimensional mass or heat equation. Chrysikopoulos 
et al. (1990) developed an analytical solution for 
solute transport through porous media for a flux-
type inlet boundary condition in a semi-infinite 
medium. Rezaei et al. (2013) presented an 
analytical solution to the two-dimensional solute 
transport for an aquifer-aquitard system. Yadav et 
al. (2010) obtained analytical solutions for 
temporally dependent solute dispersion along a 
uniform flow in a semi-infinite medium. Van 
Genuchten and Alves (1982) presented a 
comprehensive set of analytical solutions for one-
dimensional convective-dispersive solute transport 
equation. The Laplace transform is a powerful tool 
in solving of many engineering problems. For more 
complex cases an analytical inversion of problem to 
the time domain can be difficult or even impossible 
to obtain, so numerical methods have to be used. 
There are several methods for numerical inversion 
of the Laplace transform in literature. There are four 
main groups: (i) the Fourier series method, which is 
based on the Poisson summation formula, (ii) the 
Gaver-Stehfest algorithm, which is based on 
combinations of Gaver functional, (iii) the Weeks 
method, which is based on bilinear transformations 
and Laguerre expansions, (iv) the Talbot method, 
which is based on deforming  the contour in the 
Bromwich inversion integral (Abate and Valkǒ 
2004). According to literature reports, e.g. 
(Hassanzadeh and Pooladi-Darvish 2007) and 
authors own experience, different algorithms can be 
recommended for solution of a specific type of 
problem, e.g. the Stehfest method - see application: 
(Kocabas 2011; Wang and Zhan 2015); the Dubner 
and Abate - see application: (Kocabas 2011); the 
Crump method - see application: (Chen et al. 1996); 
the Zakian method and the Schapery method - see 
application: (Hassanzadeh and Pooladi-Darvish 
2007); the de Hoog method and the Honig-Hirdes 
method and the Talbot method and Weeks method - 
see application: (Wang and Zhan 2015); the method 
of Juraj and Lumboir - see application: (Ali and 
Awais 2014); the den Iseger method - see 
application: (Escobar et al. 2014). Thus, application 
of proper algorithm should be preceded by thorough 
studies. Wang and Zhan (Wang and Zhan 2015) 
showed that the de Hoog method, the Talbot 
method and the Simon method is recommended for 
radial dispersion problems, whereas the Stehfest 
method, the Honig-Hirdes method, and the Zakian 
method is advised for axial dispersion problems.  
A comprehensive review on methods for numerical 
inversion of the Laplace transform based on  
a comparison of fourteen algorithms in terms of 
numerical accuracy, computational efficiency and 
simplicity of implementation (more precisely: 
simplicity to create a reasonably efficient 
implementation) is presented by Davies and Martin 
(1979). 

The gas and liquid axial dispersion influence 
productivity of many processes usually making it 
worse. For this reason dispersion was investigated 
long time ago both theoretically and experimentally, 
mainly during flow heterogeneous porous media. 

One of the most important work reported dispersion 
models and different types of boundary conditions, 
Danckwerts (1953). Extensions of Danckwert’s 
ideas were presented by Kreft and Zuber (1978); 
Van Genuchten and Alves (1982); Van Gelder and 
Westerterp (1990). An axial dispersion coefficient 
is used mathematical description of dispersion. It is 
estimated from theoretical or semi-empirical 
correlations.  Several empirical correlations one can 
find in Gunn and Pryce (1969); Wen and Fan 
(1975). Experimentally, dispersion coefficients are 
evaluated mostly from tracer studies. Recently, 
most of the works were concerned axial mixing for 
flow through bed systems (Cho et al. 2000; Delgado 
2006, Gigola et al. 2010; Fallico et al. 2012).  

The novelty of our method consists in application of 
transfer function for model building, inverse 
Laplace transform for model solution and 
optimization algorithm for determining gas flow 
parameters. To our best knowledge the presented 
here method was no presented in literature. 

This paper has been planned as follows. In the 
Section Apparatus and experiment the description 
of the measuring system and experiments is 
presented. The mathematical model is shown in the 
Section Mathematical model. The solution of model 
and the procedure for parameters estimation is 
described in the Section Results. Finally,  
a discussion of the results and conclusions are given 
in the Section Conclusions. 

2. APPARATUS AND EXPERIMENT 

The studied system is presented in Fig. 1. 

 

Fig. 1. Simplified schematic representation of 
apparatus (Micromeritics’ AutoChem 2950HP). 

The system consists of the following elements: 

(1) – a unit called vessel, consisting of two steel 
pipes. The part of larger diameter is usually 
filled with porous pellets (not in experiment 
written below) 

(2) – the 8-way valve 

(3) – the sample loop 

(4) – pipes 

(5) – the thermal conductivity detector (TCD). 
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After the preliminary investigations, the unit 
between the valve (2) and the TCD detector was 
separated into three zones; they are distinguished on 
basis of geometry and/or its function. A volume of  
a fragment between the 8-way valve and vessel can 
be neglected. Geometry of the apparatus was 
determined on the basis of its technical data and 
previously made investigations. 

 Zone 1: vessel; 
the length of the zone: 1.7700·10-1m, the 
diameter of the zone: 7.6500·10-3m 

 Zone 2: the pipe connecting the vessel outlet 
and the 8-way valve; 
the length of the zone: 2.3500·10-1m, the 
diameter of the zone: 1.5875·10-3m 

 Zone 3: the pipe connecting the 8-way valve 
and the TCD detector; 
the length of the zone: 5.7000·10-1m, the 
diameter of the zone: 1.5875·10-3m. 

The system was flushed for 15-30 minutes with a 
constant flow of helium until a stable TCD signal 
was received. At the same time, the volume of 
sample loop (2.5000·10-7; 5.0000·10-7m3) was 
flushed also with a constant flow of  nitrogen. Next, 
the 8-way valve was opened to allow the flow of 
helium with the constant volumetric flow rate (of 
3.3333·10-7 or 5.0000·10-7 or 6.6667·10-7 m3·s-1) 
through the sample loop, the zones and the detector 
TCD (see Fig. 1). After all the TCD signal was 
recorded.  

The model solution is compared with the recorded 
TCD signal. If solution of inverse problem fits 
experimental results very closely, a model is 
regarded as valid and can be used to estimate the 
values of coefficients DL (and next the Pèclet 
number). Fulfilling the presented objectives is 
crucial for the model parameters estimation 
outcomes using the inverse boundary value 
problem. The correct recognition of the nature of 
flow and selection of methods of model solution 
build a necessary step for the planned further 
research leading to determination of the diffusion 
coefficient in a porous sorbent. 

3. MATHEMATICAL MODEL 

The model is based on the following assumptions: 

 the system is operated under isothermal 
conditions: in temperature 313.15 K and at 
constant pressure 1.0000·105 Pa,  

 gases satisfy the equation of state of an ideal 
gas. 

Mass balance of nitrogen in each zone can be 
described by the following system of partial 
differential equations and the initial and boundary 
conditions: 

Zone 1: 

2
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where: 

),( 321 tLLLc  corresponds to the concentration 

recorded by the TCD-detector. 

We assumed that 3,2, LL DD  due the same diameter 

of pipes. 

In this work, we used a rectangular signal pulse (the 
inlet concentration) which is given by 
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4. RESULTS 

To obtain the outlet concentration of tracer 
),( 321 tLLLc  , a system of partial differential 

equations Eqs. (1-3) has been solved with 
appropriate initial and boundary conditions, by 
applying Laplace transform technique. We obtained 
the following solution of the model in Laplace 
domain: 
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The Gaver-Stehfest numerical algorithm of inverse 
Laplace transform has been employed to obtain the 
solution of the model in the real time domain. The 
algorithm is briefly described at the end of this 
Section. As was mentioned in the Introduction 
Section this algorithm is recommended for similar 
mass-transfer processes. Preliminary tests that 
confirmed the efficiency of this algorithm were 
presented in Wójcik et al. (2015). A proper value of 

parameter N (number of terms used in the 
numerical approximation) was determined by trial 
and error method as it was earlier shown in Wójcik 
et al. (2015). For current calculations N=30 was 
accepted. The value of model parameter DL was 
determined by combination of ‘trial and error’ 
procedure and inner optimization procedure (NLP 
Solve) of the program Maple®. 

The results showed that the Gaver-Stehfest 
algorithm can be applied to solve the considered 
problem with high accuracy (an average standard 
deviation is equal to 7.2·10-4) and quickly (an 
average time of calculations t=31.4 s). Typical 
results are presented in Figs. 2 and 3. In all cases, 
very good fit between numeric and experiment 
curves has been observed. It confirms that the 
presented model is correct and can be accepted for 
further studies. The inverse problem solution 
enables the determination of the proper value of the 
axial dispersion coefficient. 

 

Fig. 2. Numerical (black points) and 
experimental (solid grey line) gas concentration 
profiles for the volumetric flow rate 5.0000·10-

7m3/s and the volume of sample loop 2.5000·10-

7m3.  
Screenshot of program Maple®. 
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Fig. 3. Numerical (black points) and 
experimental (solid grey line) gas concentration 
profiles for the volumetric flow rate 5.0000·10-

7m3/s and the volume of sample loop 5.0000·10-

7m3.  
Screenshot of program Maple®. 

As the correct value of parameter DL was accepted 
the one with the lowest value of the standard 
deviation (between numerical and experimental 
results). The appropriate results are presented in 
Table 1. 

Table 1 Values of obtained axial dispersion 
coefficients and Pèclet numbers. 

Vimp Fv Number of zone DL,n Pen 

2.5000·10-7 

3.3333·10-7 

1 6.7000·10-5 19 

2 7.7700·10-4 51 

3 7.7700·10-4 124 

5.0000·10-7 

1 7.2000·10-5 27 

2 1.7826·10-3 33 

3 1.7826·10-3 81 

6.6667·10-7 

1 7.4000·10-5 35 

2 3.1284·10-3 25 

3 3.1284·10-3 61 

5.0000·10-7 

3.3333·10-7 

1 6.6000·10-5 20 

2 1.2322·10-3 22 

3 1.2322·10-3 78 

5.0000·10-7 

1 7.2000·10-5 27 

2 2.6800·10-3 22 

3 2.6800·10-3 54 

6.6667·10-7 

1 7.5000·10-5 34 

2 4.9390·10-3 16 

3 4.9390·10-3 39 

The results show that the Laplace transform is very 
effective technique for solution of the model of gas 
flow and axial dispersion coefficients can be easily 
determined in this way. The values of axial 
dispersion coefficients indicate that the flow is 
neither plug flow nor perfect mixing under 
operation conditions applied. The presented model 
of gas flow is correct and it cannot be simplified. 

4.1  Gaver-stehfest Method 

In this paper, the Gaver-Stehfest algorithm was 
selected to solve dispersion model. Presented  
method is based on combination of Gaver 
functionals.  This algorithm approximates the time 
domain solution as (Zhang 2007): 

1

ln 2 ln 2
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N

k

k

f(t) V F(k )  
t t

 (5) 

where Vk is described by the following equation 
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The parameter N is an even integer. It is the 
number of terms used in Eq. (1). In practice, N 
should be chosen by trial and error method. The 
precision of calculation depends on the parameter 
N because the inversion is based on a summation 
of N weighted values. Thus, a suitable choice of 
value N is important to achieve the most accurate 
solution. Theoretically, the large value of 
parameter N determines the more accurate solution 
but if N is too large the results may be worsened 
due to round-off errors. Many authors propose a 
different value of the parameter N to obtain the 
most accurate solution (Cheng and Sidauruk 
1994).  

5. CONCLUSIONS 

On the basis of the performed calculations the 
following conclusions can be drawn: 

I. The numerical solution of the presented model 
fits experimental results very well indicating 
the correctness of the model identification 

II. The axial dispersion coefficient can be easily 
determined.  

III. The Laplace transform is very effective 
technique for solution of the model of gas flow. 
Its advantages are particularly visible for the 
discussed inverse boundary value problem.  

IV. The Gaver-Stehfest algorithm for numerical 
inversion of Laplace transform, although it was 
developed in the late 1960s, is fast and precise 
for the considered problem. Additional 
advantage is its simplicity. 

V. Computer Algebra System Program was very 
helpful for solution of considered problem both 
at the stage of model building (fast and 
errorless conversion of differential equations 
into Laplace domains and further 
rearrangement) and on the stage of solution 
obtaining (built-in procedures simplify 
development of users’ own procedures and 
optimization). 
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