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ABSTRACT 

Airway mucus is difficult to clear and to improve lung function clearance of mucus is necessary. The deep 
coughing, chest physiotherapy, high frequency chest wall oscillation etc. are some of the best methods to 
clear excessive mucus from lung airways. In this article we analysed the behavior of fluid flow between 
parallel walls , where both walls are porous and the flow is induced by the oscillation of these walls and 
pressure gradient; which is applicable for clearance of mucus from lung airways. Generalized couette flow is 
applicable to model the oscillation of parallel walls, however the laminar flow of viscous fluid is taken under 
consideration. The generalized Navier-Stokes equations are applied to make various hypotheses and finite 
difference scheme is used to solve the problem numerically. Effect of wall oscillation, wall porosity, pressure 
due to porous media on mucus clearance and particle aspect ratio on the deposition of nonspherical 
nanoparticles are analysed graphycally after simulating the problem on MATLAB R2013a by user defind 
code. Simulation show an excellent agreement of unsteady flow of viscous fluid at large values of time and 
significant correlation between pressure gradient and porosity of walls, frequency of wall oscillation and their 
imapct on mucus clearance are obtained. In addion it is observed that fluid and particle velocity are increased 
with the enhancement of media porosity, breathing frequency and aspect ratio. The aim of this paper is to 
study the influence of wall movement, wall porosity, pressure on wall, wall oscillating frequency on the 
clearance of mucus from lung airways. 

Keywords: Cilia movement; Couette flow; Mathematical modeling; Mucus clearance; Porosity; Particle 
shape. 

NOMENCLATURE 

d diameter of spherical particle of unite density 
Da Darcy number 
di inner diameter of alveolus 
do outer diameter of alveolus 
Fs Forchheimer number 
gx axial component of gravity 
gy radial component of gravity 
kf stokes drag force 
Pl particle load 

t time 
ux air velocity radial direction 
uy air velocity axial direction 
vx particle velocity radial direction 
vy particle velocity axial direction 
ρa density of air 
ρp density of particles 
ν kinematic viscosity  

1. INTRODUCTION

There are two main natural mucus draining 
methods in the bronchial tree, first, mucociliary 
clearance and second is cough. The mucus 
layer coats the interior parts of human 
respiratory ducts (Fulford and Blake (1986)) 
and protects the airways against extrinsic 
attacks. It moves upward toward the 
oropharyngeal bifurcation after capturing the 
aerocontaminers, with the motion of the cilia 
(Lai et al. (2009), King (2006)). Cilia are 

hairlike object in the inner surface of airways, 
which vibrate to defend the walls against 
contaminated particles in the inhaling air. 
When we sleep, clearance efficiency is 
diminished and it enhanced during exercise. 
Consequently, ventilation rate plays an 
important role on mucus evacuation. So, there 
are two main selected phenomena to 
understand the structure of mucus distribution 
in the lungs (i) how it moves forward 
efficiently toward the trachea, and (ii) what is 
the effect of movement of this layer over air 
flow inside lung. 
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Mucus is a viscous fluid and due to propulsion 
caused by coughing both walls are oscillate in 
their own plane and cilia move in downward and 
up-ward directions; as a result, mucus and 
trapped particles move toward the trachea. This 
phenomena can be understood by unsteady 
couette flow. The couette flow is an ideal flow 
usually used to model shear-driven flows 
experienced in small motors, small channels and 
different small fluid systems. We assume cilia as 
a porous matrix and flow of mucus over it as a 
moving wall. The flow is induced by the 
movement of both walls and the pressure 
gradient. Generally, for very slow flow which is 
dominated by viscous effect, the Darcy model 
has been the basic approach employed. 
However, fluid transfer through high pressure, 
which can arise in various capillary networks is 
dominated by inertial drag effects. An elegant 
and robust methodology for this is the extension 
of the Darcy low Reynolds number drag force 
model to the Darcy-Forchheimer nonlinear 
model which includes a supplementary quadratic 
drag force term. 

Additionally, inhaled aerosol mechanics is 
influenced by lower range Reynolds number, 
deformations of septal walls, and time dependent 
airflow patterns leading to irreversible 
kinematics within alveolar cavities during cyclic 
breathing (Haber et al. (2003)). Particles with 
diameter from 10 nm to 200 nm are ideal size to 
deposit in deep lung airways (Shah (2009)), 
while particle shape allows long skinny particles 
to orient with the tiniest diameter within the 
direction of air flow (align along their long axis) 
permitting them to deposit deep within the lung 
(Timbrell (1982)). For example carbon 
nanotubes (He et al. (2013)), nanofibers, 
nanowire, nanorod are needle-shaped particles 
which are presently used in various cosmetic 
products, may enter through skin in respiratory 
system (Ikegami et al. (2002)). 

There are a few studies (Chang et al. (1988), 
van Vliet et al. (2005), Mazumder and Das 
(1992), Jiang and Grotberg (1993)), which 
reported that tube wall oscillation may enhance 
displacement of mucus during coughing. Some 
other studies (Johnson et al. (1991), Halpern 
and Grotberg (1993), Otis et al. (1993)) are 
applied couette flow inside lung because lung 
comprised a network of bifurcating airway 
tubes which are coated with a thin viscous film. 
Moreover, an analytical expression of couette 
flow and heat transfer through a composite 
system was presented in Kuznetsov (1998). 
Jones et al. (1995) studied isotope mucociliary 
clearance rates in Cystic Fibrosis subjects and 
found that the effective clearance occurred by 
increasing frequency of 10-15 Hz because at 
this frequency oscillated flow is highest. 
Additionally, Schlichting and Gersten (2003) 
presented a result of Navier-Stokes equations 
for the flow between two parallel plates 
without suction. A case for changeable 
pressure in the direction of flow of the system 

created eventually by Rouleau and Osterle 
(1995) and a study of the three dimensional 
flow and heat transfer along a flat plate by 
applying periodic suction done by Ger-sten and 
Gross (1974). 

However, there were not many studies 
considering flow oscillation and particle 
transportation together through porous media. So 
the aim of this study is to fill this gap by using 
media porosity, wall oscillation, and aspect ratio 
of inhaled nanoparticles to understand the 
mechanism of airway clearance, where the inner 
walls of the lung tube from the mouth to the 
alveoli are coated with thin mucus layer. Flow of 
viscous fluid is forced by the oscillation of walls 
and sinusoidal pressure gradient through 
variable porous media. Generalized couette flow 
is applied to understand the mechanism of 
mucus flow and Navier Stokes equations are 
used to model the flow field. In addition, 
Newton’s second law is used for particle 
trajectory. Finite difference numerical scheme is 
used to solve the problem and all the results are 
shown graphically after perform-ing 
computation work on MATLAB. 

2.  MATHEMATICAL MODEL 

We suppose that the airways are subjected to 
oscillation due to periodic breathing or due to 
coughing and a sinusoidal pressure is applied on 
both the boundaries due to surrounding forces 
and porous media, which is applicable for 
propulsion of mucus over the cilia. In addition, 
cilia are assumed as porous matrix which is 
covered by thin layer of mucus. The graphical 
model can be visualized in Fig. 1. Fluid flow is 
determined by modeling this process as 
generalized unsteady couette flow. Initially there 
is no pressure gradient so we assumed that the 
velocities and stresses are zero at t=0. 

 

Fig. 1. Schematic Diagram for Oscillatory 
Walls 

2.1 Governing Equations 

Equation of continuity for air, 

   ρρρ
0

a ya xa
uu

t x y


  

  
                      (1) 

Equation of continuity for particle, 

   ρ ρρ
0

p x p yp v v

t x y

 
  

  
                      (2) 
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Equation of momentum in parallel (axial) 
direction, 

2 2

2 2

2

1

ρ

ρ
( )

ρ

ρ ρ

ρ

yx x x x

x x x

a

p
x f x x x

a

p a
x

p

uu u u u

t x y

p u u u
v

x x xx y

v b
u k v u u

K K

g

 



 

  
 

  

    
         
       

 
 
 
 

      (3) 

Equation of momentum in perpendicular (radial) 
direction, 

2 2

2 2

2

1

ρ

ρ
( )

ρ

ρ ρ

ρ

y y y yx

y y y

a

p
y f y y y

a

p a
y

p

u u u uu

t x y

u u up
v

y x xx y

v b
u k v u u

K K

g

 



 

  
 

  

         
    

       
 
 
 
 

      (4) 

Where, K is the permeability, which depends on 
the porosity (ε) (Khanafer et al. (2012)). We 
used porosity in keeping with Ergun (1952) 
empirical formula together with the variable 
porousness of respiratory organ as follows: 

3 2

2150(1 )

pd
K







                                             (5) 

 
2

2 2
0

ρ
1 p p

i

d

d d
  


                                             (6) 

The equation of motion for particle trajectory: In 
axial direction, 

y y x d
y x

v v v F
v v

t y x m

  
  

  
                          (7) 

In radial direction, 

1dx x x
y x

Fv v v
v v

t y x m

  
  

  
                          (8) 

Different shape particles will make different 
drag forces with different particle terminal 
settling velocities; which might successively 
have an effect on the aerodynamic behavior of 
particles (Crowder et al. (2002)). A term 
known as particle shape factor (Sf ) (Fuchs 
(1965)) is employed to figure out the transport 
and deposition of nonspherical particles (i.e. 
elongated shape particles). This term describes 
the ratio of the drag force on the non-spherical 

nanoparticles ( dF  and 
1dF ) to the 

corresponding drag force on the related 
spherical particles ( df  and 

1df ) with an 

equivalent volume by Hinds (1999). 
Mathematically, this relationship is expressed 
as below: 

1 1
,d f d d f dF S f F S f                 (9) 

Stokes drag forces on spherical particles are 
defined as follows: 

 
 

1

Where, 3
,

d f y y
f f p

d f x x

f k u v
k C d

f k u v


   
  

 (10) 

Where, Cf is the correction factor for thin 
particles and is taken as 1.25. dp is the diameter 
of nonspherical nanoparticles which depends 
upon the particle shape factor. Additionally, the 
individual particle shape factor (Sf ) is gained 
from the subsequent formula as follows: 

1 2 1

3fS
S S

 
   

 
                                        (11) 

Computation of the particle shape factor does 
not solely depends on particle shape but is also 
influenced by the coordination of a particle 
relative to the direction of air flow. Hence, 
nonspherical nanoparticle might adopt most 
popular coordinations within the airflow 
(Hinds (1999)). A straight-forward empirical 
idea for the dependency of Sf on particle 
coordination was popularized by Su and Cheng 
(2006). The authors described S  for those 

particles that are adjusted with their long axes 
(up-right to the air stream), however S for 

those whose long axes are aligned parallel to 
the air stream. From a mathematical point of 
view, S and S is also determined by the 

subsequent equations: 
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 
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  
   
      
    

   
  



 (12) 

where, β denotes the aspect ratio, which is the 
quantitative ratio of particle length to particle 
width, being β >> 1 for long nonspherical 
particles, β << 1 for extremely thin disks but for 
β = 0 there will be no existence of particle, since 
for this condition length and shape factor 
become 0. In this study we take 10 ≤ β ≤ 1000 
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for elongated nanoparticles. As per various 
theoretical and experimental studies, 
transportation of nonspherical particles in-side 
lung considerably disagree from that per-formed 
by spherical particles with classic aspect in same 
volume. To describe this specific condition the 
aerodynamic diameter is taken into account 
(Fuchs (1965)). The mathematical formulation 
of the aerodynamic diameter simplifies as 
follows: 

0

ρ

ρ
p

p
f

d d
S

 
 
 
 

                                          (13) 

Where, 0ρ  is the unit density. Due to the 

deformation of alveolus wall and right heart 
pressure there is a time dependent sinusoidal 
pressure gradient within the alveolus, which can 
be outlined as follows, 

0 sin , 2
p

a t f
y

  
  


                    (14) 

Where, f is the breathing frequency. 

2.11   Assumptions for Couette Flow  

Assuming distance between both walls is 2r. 

(i) For fully developed flow, 

0;
u

x





                                                           (15) 

(ii) For unsteady generalized couette flow, 

0x

x

t
u

v

p

x

 
 







 

                                                        (16) 

0
y

y

u

v




                                                           (17) 

2.12 Initial and Boundary Conditions 

(i) Initial conditions at t=0, 

0

x

x

y

y

u

v

u

v



 




                                                           (18) 

(ii) Boundary conditions at t>0, 

(a) Oscillation of top wall, when y=r: 

  0 1 cos 2xu u ft                                   (19) 

(b) Oscillation of bottom wall, when y=-r: 

  0 1 cos 2xu u ft                                   (20) 

3. METHODOLOGY 

3.1 Transformation of the Governing 
Equations 

Introducing the subsequent nondimensional 
quantities. 

2
* * * * *

2 2

2
*

2

Pr
, , , , ,

ρ

ρ
, , , , .

ν ρ

a

p
s l a k

a

x y tv ur
x y p t u

r r vv r

vr b K kr
v F P D S

r vr

    

    

 (21) 

We applied above nondimensional quantities in 
Eqs. (1)-(14) and got the following equations 
after dropping the asterisks (∗): 

0xu

x





                                                        (22) 

0xv

x





                                                           (23) 

Momentum in axial direction, 

 

2

2

2

x x

s
k l x x x

u P u

t x y

F
S P v u u

Da Da



 

  
  

  

                     (24) 

Momentum in radial direction, 

3

2

ρ ρ1

ρ
p a

y
p

P r
g

y v

   
   

                              (25) 

Particle trajectory in parallel (axial) direction, 

 x xx
f k

u vv
S S

t m





                                    (26) 

Particle trajectory in perpendicular (radial) 
direction, 

x xu v                                                           (27) 

3.2 Numerical Method 

Finite difference scheme is a basic and less te-
dious technique for a regular geometry. 
Therefore, the finite difference scheme is 
employed to solve the governing equations with 
central difference ap-proximation for all the 
spatial derivatives and for-ward difference 
approximation for time derivatives (Smith 
(1985)). To calculate the velocity of air ((uy), 
(ux)) and nonspherical nanoparticles ((vy), (vx)) a 
code is developed on MATLAB R2013a by 
setting the grid space as follows: 

. ; 0,1,2,3..... , 1.0

. ; 0,1,2,3..... ,

( 1). ; 1,2,3....

i N

j

k

x i x i M r

y j y j N

t k t k O

   

  

   

        (28) 

The discretization of axial velocity u(x,y,t) is 
written as ux(xi,yj,tk) or ((ux)i,j)k and also uy,vx,vy 
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can be written similarly. The mesh dependency 
of the solution was additionally inspected for 
various grid sizes, i.e. 10x10, 15x15, 20x20, 
30x30, and 40x40, in the axial and radial 
directions to figure out the flow field, but we 
found that the results remain consistent when the 
grid size is set 20x20 and above. So, the time 
step and grid space chose ∆t = 0.001, ∆x = 0.05 
and ∆y = 0.05 respectively. In addition, for 
computation following stability criteria is used. 

2
max 0.5

t

x

 
  

                                           (29) 

Results are appeared to converge with the 
accuracy of order of 10−3. 

4. RESULTS AND DISCUSSION 

In this article we modeled a horizontal channel 
whose both boundary walls are porous and 
subjected to oscillate along their own axis. The 
walls are 2r distance apart from each other with 
an incompressible unsteady laminar fluid flow 
be-tween them. Generalized couette flow, 
illustratively shown in Fig. 1, is a simplest close 
guess for periodic shear-driven flow met in the 
upper airways due to mucus overlay. The 
influence of the con-trolling limits on the flow 
velocity (for air, u and for particle, v) and 
pressure gradient (p) with respect to time (t) for 
different values of aspect ra-tio 10 ≤ β ≤ 1000, 
porosity 0.6 ≤ ε ≤ 1, frequency limit 0.2 ≤ f ≤ 1.2 
and time (t) is analysed in Figs. 2-6 (from Eqs. 
(22)-(27)), to observe the impact of 
dimensionless units. We use the follow-ing 
numerical values (Saini et al. (2017), Weibel 
(1964)) to solve the problem computationally. 

5 2

4

10 2 2
2

1.71 10 / , 1.54, 0.6, 0.5 ,

2 10 / , 50 , 1.2 , 1,

ρ 1.145,ρ 2.504 10 , 0.25 / .

f

p s

a p

v m s S r m

m Kg l d nm f hz F

a Kg m s

 



    

    

   

 

4.1 Effect of Porosity on the Clearance 
of Mucus 

Figures 2a and 2b depict the behavior of transient 
velocity of air (u) and particle (v) for different level 
of porosity (0.6 ≤ ε ≤ 1) at β=10, Fs=1 and f=1.2 
with respect to t. It can be seen from Fig. 2a 
velocity of air is low at ε=0.6 and it increases when 
we increase ε from 0.6 to 1.0 and attains maximum 
velocity at ε=1. Further, along with wall due to 
oscillation velocity of air increases with the 
increment in ε (for thin mucus layer) via t, and 
when we go far from wall , velocity values 
reaches their steady state values after t=0.1. 
Additionally, velocity of particle is also 
increased (as shown in Fig. 2b) with the 
increment in ε from 0.6 to 1 via t and attains 
maximum velocity at ε=1. From these figures, it 
is clear that both velocities (for air, u and for 
particle, v) are affected by the increment in ε and 
it is interesting to observe that up to a particular 
time velocity of air increases and then time 

required to attains a steady state is unbiased with 
respect to the value of porosity. 

 

(a) 

 

(b) 
Fig. 2. Variation in (a) air velocity (u) (b) 

particle velocity (v), with respect to porosity 
(0.6 ≤ ε ≤ 1) 

It can be correlated physically, as the void size or 
porosity increases breathing capacity increases 
which causes increment in air velocity. In either 
case, free flow of fluid is allowed a rise within the 
velocity of the fluid, which give propulsion and 
useful to clear thin layer of mucus. 

4.2  Effect of Aspect Ratio on Particle 
Deposition 

Figures 3a and 3b show the dimensional 
distribution of velocity at different level of 
aspect ratio (10 ≤ β ≤ 1000) at ε=0.60, Fs=1 and 
f=1.2 with respect to t. It is evident in Fig. 3a 
that velocity of air is low at β=10 and it 
increases when we increase particle β from 10 to 
1000 and attains maximum velocity at β=1000. 
Velocity of air increases with the increment in β 
via t, and eventually reaches its steady state 
values after t=0.2. Here, it is interesting to note 
that the steady state of the air velocity delayed 
via t as value of β increased. While in Fig. 3b, 
velocity of particle increases with the increment 
in β from 10 to 1000 via t monotonically and 
attains maximum velocity at β=1000. It comes 
physical because the increment in air and 
particle velocity are caused by an enhancement 
in the aspect ratio of the particles. This 
physiological phenomenon is explained by the 
fact that particles are oriented along the air 
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movement and flow along the stream in 
downward direction as time in-creases, which 
means particles with low aspect ratio are 
deposited in former airways while particles with 
high aspect ratio have tendency to go deep in-
side the lung airways with air stream. 

 

(a) 

 

(b) 
Fig. 3. Variation in (a) air velocity (u) (b) 
particle velocity (v) with respect to aspect 

ratio (10 ≤ β ≤ 1000) 

4.3 Effect of Frequency on Wall 
Oscillation and Fluid Velocity 

In Figs. 4a and 4b, we can see the impact of 
frequency (0.2 ≤ f ≤ 1.2) on fluid velocity (on 
air, u and on particle, v) at ε=0.60, Fs=1 and 
β=10 with respect to t. These figures show that 
the changes in fluid velocity occur due to the 
sinusoidal oscillation of wall caused by different 
frequency of breathing. It is observed that the 
magnitude of fluid velocity within the channel 
relies on the frequency of oscillation (0.2 ≤ f ≤ 
1.2). In Fig. 4a, it can be seen that due to the 
increment in f from velocity (v) with respect to 
frequency (0.2 ≤ f ≤ 1.2). 0.2 to 1.2 increased 
velocity of air before t=0.1 and after that it 
becomes steady. Also, from Fig. 4b, it is 
observed that the velocity of particle increases 
gradually as f increases from 0.2 to 1.2 and 
attains maximum velocity at f=1.2. We can see 
the numerical values obtained after computation 
in Table 1, which depicts the transient velocity 
for air and particle via time for different value of 
wall frequencies. It is observed that air velocity 

increases initially, and become steady for large 
values of time for particular frequency, on the 
other hand the velocity of particle increases 
gradually with time. 

 

(a) 

 

(b) 
Fig. 4. Variation in (a) air velocity (u) (b) 

particle velocity (v) with respect to frequency 
(0.2≤f ≤1.2). 

4.4  Effect of Porosity (ε) on Air 
Pressure (p) 

The effect of wall porosity (ε) on air pressure (p) 
is shown in Fig. 5 via t at β =10, Fs=1, and 
f=1.2. We are presenting velocity profiles for 
generalized couette flow due to oscillation of 
both walls at 0.6 ≤ ε ≤ 1. For all the cases, 

 

Fig. 5. Effect of porosity (0.6 ≤ ε ≤ 1) on air 
pressure (p) 
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the air pressure increases by decreasing ε=1.0 to 0.6 
monotonically, since for low porosity pressure 
gradient is very high, which is responsible to 
remove thin mucus layer from air-ways and may 
improve lung function. We can see the numerical 
values obtained after numerical computation in 
Table 2. In this table pressure (p) for different 
values of porosity (ε) is shown with respect to time. 
It is noticed that pressure is increased as time and 
porosity decreased. This pressure is helpful to push 
the mucus forward. We plotted Fig. 5 for fluid 
velocity with different values of 0.6 ≤ ε ≤ 1 and 
found consequent results. Increase level of pressure 
can often be visible on the whole length of the wall. 

4.5 Comparison between Air Velocity 
Obtained Through Oscillatory 
Walls and Nonoscillatory Walls 

Since lung is one of the main organ in 
respiration and its wall oscillates periodically 
during breath. Thus, we used a time 
dependent function to show oscillation of 
walls. Each wall oscillates to and fro along its 
axis. The effect ofwall oscillation on air 
velocity is depicted in Fig. 6 with respect to 
time (t) at β=10, Fs=1, f=1.2 and ε=0.60. The 
velocity of air (see Fig. 6) is largely affected 
when walls are os-cillating as compare to 
when walls are not oscillating along their axis. 
In addition, we found that the steady state of 
the air velocity is attained much earlier with 
nonoscillatory walls than oscillatory walls. 

5. CONCLUSIONS 

A problem of two dimensional unsteady couette 
flow of viscous fluid through oscillatory porous 
walls with sinusoidal pressure gradient (i.e. 
generalized couette flow) is investigated. 

Porous walls are partially filled with a fluid. The 
flow of viscous fluid in the porous medium is 
modeled by the Naiver Stokes equation and 

solutions for the velocity profiles and the 
particle trajectory by newton second low with a 
set of initial and boundary conditions. Numerical 
pressure gradient in the axial direction are 
obtained graphically. The dependency of the 
parameters involved in the flow is discussed. 
The key findings of the present analysis are 
listed below. 

(1) It is observed that for highly porous (ε =1) 
wall air and particle velocity increased, which is 
helpful to clear thin layer of mucus. 

(2) For small aspect ratio (β=10) particles de-
posited in former airways while for high aspect 
ratio (β=1000) particles have tendency to go 
deep inside lung with air stream. 

(3) Viscous fluid velocity is proportional to the 
breathing frequency. 

(4) For all the cases, the air pressure increases by 
decreasing media porosity ε from 1 to 0.6 
monotonically, which is responsible to remove 
mucus from airways and may improve lung function. 

 

Fig. 6. A comparison of air velocity (u) 
between oscillatory walls to nonoscillatory 

walls at ε =0.6 and β =10 

 
 

Table 1. Variation in velocities (u,v) via time (t) for different values of wall frequency (f) 
 f=0.2 f=0.5 f=0.9 f=1.2 

time (t) u(10−5) v (10−9) u(10−5) v (10−9) u(10−4) v (10−9) u(10−4) v (10−9) 

0.1 3.97423 0.626448 9.93324 0.156576 1.78686 0.281661 2.38078 0.375287 

0.2 3.97930 0.137860 9.94590 0.344570 1.78913 0.619838 2.38382 0.825869 

0.3 3.97931 0.213091 9.94593 0.532602 1.78914 0.958082 2.38383 0.127654 

0.4 3.97932 0.288322 9.94595 0.720634 1.78914 0.129633 2.38383 0.172721 

0.5 3.97933 0.363552 9.94597 0.908666 1.78915 0.163457 2.38384 0.217789 

0.6 3.97933 4.38783 9.94598 1.09670 1.78915 1.97282 2.38384 2.62856 

0.7 3.97934 5.14013 9.94600 1.28473 1.78915 2.31106 2.38384 3.07923 

0.8 3.97935 5.89244 9.94602 1.47276 1.78915 2.64930 2.38385 3.52990 

0.9 3.97935 6.64474 9.94603 1.66079 1.78916 2.98755 2.38385 3.98058 

0.998 3.97936 7.38200 9.94605 1.84507 1.78916 3.31903 2.38386 4.42223 
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(5) We can say, other results and comparison of 
oscillatory wall to nonoscillatory wall validate 
our assumption that during cough and high 
frequency breath airways are oscillating and 
applicable for clearance of mucus. 

Results obtained in this article regarding mu-cus 
clearance through circular tube whose walls are 
porous and oscillating along their own axis, can 
be helpful to understand mucus evacuation, 
movement of mucus towards the trachea, 
conditions of chronic obstructive pul-monary 
disease (COPD), emphysema, asthma, chronic 
bronchitis etc.. Moreover, the concept of 
generalized couette flow can be applied on other 
body parts where oscillation occur i.e. flow of 
blood through vein inside heart, flow through 
anal etc. and all the natural and real life 
phenomena where both walls are moving or 
oscillating along their own plane. Although, the 

present study is limited with upper air-ways. It is 
worth extending the study to lower airways or 
whole lung generations which may lead to a 
more general solution. Additionally, we can take 
other cases such as the movement of only one 
wall, when there is no pressure gradient etc. That 
may constitute a further work. 
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Table 2. Variation in pressure (p) via time (t) for different values of wall porosity (ε) 
 ε=0.6 ε=0.7 ε=0.8 ε=0.9 ε=0.9 

t p p p p p 

0.1 -7.6346909 -6.5440208 -5.7260182 -5.0897939 -4.5808145 

0.2 15.269382 -13.088042 -11.452036 -10.179588 -9.1616291 

0.3 -22.904073 -19.632062 -17.178055 -15.269382 -13.742444 

0.4 -30.538764 -26.176083 -22.904073 -20.359176 -18.323258 

0.5 -38.173455 -32.720104 -28.630091 -25.44897 -22.904073 

0.6 -45.808145 -39.264125 -34.356109 -30.538764 -27.484887 

0.7 -53.442836 -45.808145 -40.082127 -35.628558 -32.065702 

0.8 -61.077527 -52.352166 -45.808145 -40.718352 -36.646516 

0.9 -68.712218 -58.896187 -51.534164 -45.808145 -41.227331 

0.998 -76.041522 -65.178447 -57.031141 -50.694348 -45.624913 
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