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ABSTRACT 

This article investigates the controlling effects of electromagnetic field generated by Riga plate on the boundary 

layer flow of non-Newtonian fluid. Two classical viscosity models of non-Newtonian fluids namely; Powell-

Eyring and Reiner-Phillipoff fluid models have been considered to study the different behaviors of non-

Newtonian fluid flow. Numerical solution of the problem in the presence of strong suction is obtained using 

the nonlinear shooting method. The results are studied in terms of modified Hartmann number, non-Newtonian 

fluid parameters and the Bingham number. Linear regression is performed on the numerical results to present 
the correlation expression for the skin friction. 

Keywords: Riga plate; Non-Newtonain fluid; Flow control; Powell-Eyring; Reiner-Phillipoff; Correlation 
expression. 

NOMENCLATURE 

a width of magnets and electrodes. 

mB Bingham number. 

oj applied current density in the electrodes. 

oM magnetization of the permanent magnets. 

S dimensionless deformation . 

( , )U V velocity components in ( , )X Y  directions 

respectively 

( , )u v non-dimensional ( , )x y velocity 

components. 

wU velocity of the surface. 

wV suction velocity at the surface. 

wv dimensionless suction velocity parameter. 

Z modified Hartmann number. 

f fluid density.

yx shear stress.

s reference shear stress.

 dimensionless shear stress.

 viscosity of the fluid.

o zero-shear viscosity.


upper Newtonian limiting viscosity.

 dimensionless viscosity.

1. INTRODUCTION

The phenomenon of drag reduction (Singh 2004), 

which prevents the loss of mechanical energy, has 

been a topic of intensive research. Various methods 

have been proposed to reduce the drag in physical 

systems which include adding polymers in base fluid 

(Gyr et al. 1995), magnetic fields (Shatrov and 

Gerbeth 2007) and flexible walls (Zhao et al. 2004). 

Electromagnetic field is a useful agent for drag 

reduction and flow control in both electrically 

conducting fluids with weak conductivity like sea 

water and ionized gases as well as with strong 

conductivity like liquid metals.  A fully contactless 

control is possible solely by application of a 

magnetic field in the fluid with high electrical 

conductivity like liquid metal or semiconductor melt. 

Contrary to this, in the case of liquids with low 

conductivity, currents produced by externally 

applied magnetic fields are generally very low, even 

for magnetic fields of several Tesla (Gailitis and 

Lielausis 1961; Pantokartoras and Magyari 2009). 

External electric field must also be applied in order 

to achieve and maintain flow control. The capability 

of electro-magnetic field to affect fluid flow has been 

used since long with diverse degree of success 

(Gailitis and Lielausis 1961; Albrecht et al. 2006). 

Therefore, in order to compensate for the weak 
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electric field, it is necessary to apply an external 

electric field to attain an adequate flow control. To 

achieve the required generation of electric field along 

with magnetic field, a wall-parallel Lorentz force is 

generated by external electric and magnetic field. 

That force is able to alter the structure of a moving 

surface-driven boundary layer and stabilize its 

motion by slowing down its growth. Gailitis and 

Lielausis (1961) designed Riga plate to produce 

crossed magnetic and electric fields, which can 

generate a wall parallel Lorentz force in order to 

control the fluid flow. Riga plate comprises a 

distance wise lined up array of alternating electrodes 

and permanent magnets attached on a flat surface. 

Pantokratoras and Magyari (2009) examined the 

boundary layer flow over a horizontal Riga plate for 

the fluids with low electrical conductivity. In 

(Magyari and Pantokratoras 2011), they investigated 

the aiding and opposing effects of Lorentz force on 

the same problem. Pantokratoras (2011) studied 

Sakiadis and Blasius flow for Riga plate. Ahmad et 

al. (2016) examined the controlling behavior of 

Lorentz force in the presence of temperature fluxes 

and nanoparticles concentration. In another study 

Ahmad et al. (2017) studied the flow and heat 

transfer of Copper-water nanofluid with temperature 

dependent viscosity past a Riga plate. 

The analysis of engineering problems involving 

transport phenomena of non-Newtonian fluid is far 

more complex as compared to one entailing the 

Newtonian fluids. Due to wide and frequent 

occurrence of non-Newtonian fluids in various 

applications in nature and technology, there has been 

considerable interest in the study of non-Newtonian 

fluids flow. Molten plastic, natural liquids like 

bloods, polymer solutions, varnishes, dyes, and 

suspensions are some non-Newtonian fluids to 

mention. Non-Newtonian fluid under apposite 

circumstances, displays dilatant, pseudoplastic, 

visco-elastic, visco-plastic and time-dependent 

behaviors. Power-law (Bird et al. 1987), Powell-

Eyring (Yoon 1987), Reiner-Phillipoff (Na 1994), 

Carreau-Yasuda (Bird et al. 1987) and Ellis (Bird et 

al. 1987) fluids are some models of non-Newtonian 

fluid to mention. Among these empirical models 

Powell-Eyring and Reiner-Phillipoff fluids are of 

considerable importance. A few studies in literature 

have studied the flow of these fluids especially, 

Reiner-Phillipoff fluid (Ahmad 2016). 

Bearing in mind the wide occurrence of non-

Newtonian fluid in industry and limited 

consideration of above mentioned models for non-

Newtonian fluid and application of Lorentz force due 

to Riga plate in flow control and drag reduction of 

weakly conducting fluid, this article is dedicated to 

study of flow control of non-Newtonian Reiner-

Phillipoff and Powell-Eyring fluids using the 

electromagnetic field generated by a Riga plate.  

2. PROBLEM DESCRIPTION 

We consider the electro-magnetohydrodynamic 

(EMHD) boundary layer flow of a non-Newtonian 

fluid with weakly conduction over a moving 

horizontal Riga plate with suction velocity oV . The 

Riga plate consists of an alternating array of 

electrodes and permanent magnets mounted on a 

plane surface (see Fig. 1).  The mathematical model 

governing the flow including the continuity and 

momentum equations is as follow: 

0,
U V

X Y

 
 

 
                                                      (1) 

exp ,
8

xy o o

f f

j MU U
U V y

X Y Y a

  

 

   
    

    

)2( 

subject to the boundary conditions 

, at 0,

0, as .

w wU U V V Y

U Y

  

 
                                     (3) 

 

 
Fig. 1. Systematic diagram of Riga plate 

consisting the electrodes and magnets for the 

creation of an EMHD Lorentz force F in the flow 

along a flat plate. 
 

In Eqs. (1)-(3), ( , )U V  are the velocity components 

in ( , )X Y  directions respectively, 
f  is the fluid 

density and   is the viscosity. 
oj  is the applied 

current density in the electrodes, 
oM  is the 

magnetization of the permanent magnets and a  is 

the width of magnets and electrodes. Further, yx  is 

the shear stress, which is related to rate of strain non-

linearly in different manner for different non-

Newtonian fluids. For generality, we relate the shear 

stress and rate of strain by an arbitrary function as: 

, 0yx

U
F

Y


 
 

 
.                                                  (4) 

We introduce the non-dimensional parameters 

2

, , , ,

, , ,

w o

yx w
o

s

X Y U V
x y u v

l L U V

U La
L l V

a

 


  

   

   

    

in equations (1)-(4) and obtain the dimensionless 

equations of the form  

0,
u v

x y

 
 

 
                                                         (5) 
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,y

m

u u
u v B Ze

x y y

   
  

  
                              (6) 

, 0
u

F
y


 

 
 

                                                     (7) 

1, at 0

( , ) 0 as .

wu v v y

u x y y

  

 
                                          (8) 

where Z is the modified Hartmann number and 
mB  

is the Bingham number given by the following 

expressions: 

2
1

, .
8

o o s
m

w f w

a j M a
Z B

U U



    

   

With the supposition of strong suction 

(Pantokratoras 2008), continuity equation and 

condition 
wv v  at 0y   implies 

wv v . Thus 

the governing equations may be written as: 

,y

w m

u
v B Ze

y y

  
 

 
                                        (9) 

, 0
u

F
y


 

 
 

                                                   (10) 

with associated boundary conditions 

1, at 0,

0 as .

u y

u y

 

 
                                             (11) 

Eq. (4) will have different forms for different models 

of non-Newtonain fluids. In this article, we will 

consider two empirical models namely; Reiner-

Phillipoff and Powell-Eyring models for relating the 

shearing stress and deformation of the fluid.  

2.1. Reiner-Phillipoff Fluid 

For Reiner-Phillipoff fluid Eq. (4) i.e. stress 

deformation relationship gets the form: 

2

1

yx

o

yx

s

u

y



 















 
  
 

                                      (12) 

which is one of the classical descriptions of stress-

deformation behavior (Na 1994; Ahmad 2016). In Eq. 

(12), 
s  is the reference shear stress. Actual liquids have 

Newtonian flow properties at relatively low and at very 

high shear rate. Correspondingly, 
o  is the zero-shear 

viscosity and 
is the upper Newtonian limiting 

viscosity. Reiner-Phillipoff model is one of a few non-

Newtonian models which exhibit all the pseudoplastic, 

dilatant and Newtonian behaviors. In Eq. (12), the right 

hand side is known as flow function. The flow function 

in dimensionless form is given as: 

2

( )
1

1
1

f













                                               (13) 

where /yx s   and /o   . For 1   we 

get Newtonian flow function. For 1   Reiner-

Philippoff fluid behaves as dilatant fluid and 

pseudoplastic for 1.   The stability condition 

/ 0df d   determines that   must not exceed 

the critical value 9. In the case of Reiner-Philippoff 

fluid  Eq. (10)  i.e. is relation between ω and 
u

y




 

may be written as: 

2

2

1

1m

u

B y

 




 


 
                                                (14) 

2.2. Powell-Eyring Fluid:  

Despite of its mathematical complexity, Powell-

Eyring fluid model is attended extensively by the 

researchers. This model stands superior as compared 

to other empirical models due to two reasons. Firstly, 

this model can be deduced from the kinetic theory of 

liquids rather than the empirical relation as in the 

case of other models like power law model. 

Secondly, it appropriately presents the Newtonian 

behavior for high and low shear rates where the 

power-law model shows an infinite effective 

viscosity for low shear rate which restrict its range of 

applicability. 

The Powell Eyring model is based on Eyring reaction 

rate theory which gives it a strong thermodynamics 

foundation (Barth at al. 2008). This theory treats 

viscous diffusion as a ‘rate process’ described by a 

sum of exponential decay terms at the molecular 

level which leads to an expansion of the viscosity in 

terms of inverse hyperbolic sine function. Relating 

the first two terms in such an expansion leads to the 

3-parameter Powell Eyring model: 

1sinh

( ) ,o

U

Y

U

Y



   





 

 
 

   




                    (15) 

where 
o is the limiting viscosity at the zero strain 

rate, 
 is the limiting viscosity as U

Y






 and λ 

is the characteristic time.  In dimensionless form, Eq. 

(15) can be written as: 

1sinh ( )
1 ,

o o

S

S

 


 



 
 

   
 

                            (16) 

where 
U

S
Y







 and 

o





  are dimensionless 

deformation and viscosity respectively.  

Fig. 2 contains   verses S curves for different values 

of fraction of limiting viscosities at zero and infinity 

strain. It is observed that in each case the viscosity is 

decreasing function of strain which depicts that 

Powell-Eyring model represents group of shear 

thinning fluids. 
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Using the Powell Eyring viscosity model (15), we 
get the following stress-strain relationship: 

1sinh .o
yx

U U

Y Y

 
  






  
   

  
                  (17) 

Taking the second order approximation of the 

function:  

3

1 1
sinh ,

6

1

U U U

Y Y Y

U

Y

  



      
    
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



               (18) 

Eq. (17) may be written as: 

3
1

,
6

1

o
yx

U U U

Y Y Y

U

Y

 
   








    
         





(19) 

In non-dimensional form the stress deformation 

relation may be written as: 

3

1 1 1
1 ,

6m

u u

B y y




 

    
            

              (20) 

where 
/

1 /

o

o

 


 







 and 
2

wU

L
 

 
  
 

. 

 

 
Fig. 2. Dimensionless viscosity verses 

dimensionless strain rate for Powell Eyring 

model. 
 

3. Results and Discussion 

One of the physical quantities of practical interest is 

skin friction coefficient which is defined as: 

2
,w

f

w

C
U




                                                              (21) 

where 
w  is the shear stress at the surface. For 

Reiner-Philippoff fluid
w  may be expressed as: 

2
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yw

s

u

y

 
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
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

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                               (22) 

 and for Powell-Eyring fluid we have 

3
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)23( 

Using expressions (22) and (23) in (21), the skin 

friction coefficient for Reiner-Philippoff fluid may 

be written as:   

2

2

0

Re ,
1

f

y

u
C

y

 



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  
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and for Powell Eyring fluid it has the expression 

3

0

1 1
Re 1 .

6
f

y

u u
C

y y



 


    
            

 

In this section we discuss the effects of Riga plate on 

the flow of non-Newtonian fluid with different stress 

strain relationships. The numerical solutions of the 

boundary value problem (9)-(11) with stress 

deformation relationships (14) and (20) for  Reiner-

Phillipoff fluid and Powell-Eyring fluid respectively 

are obtained, using nonlinear shooting method. Anon 

linear regression is executed on the numerical results 

to write the correlation expressions for skin friction.  

Firstly, we discuss the Reiner-Phillipoff fluid model. 

In Table 1, some correlation of skin friction for 

different values of Bingham number Bm and suction 

parameter s  are presented with corresponding 

maximum percentage error. It is observed from these 

expressions that the rate of change of skin friction 

with respect to λ is very small. Resultantly, we only 

discuss the effect of Bingham number and modified 

Hartmann number on the skin friction graphically.  

In Fig. 3, the behavior of skin friction for Reiner-

Phillipoff fluid over a Riga plate is plotted. It is 

mentioned that Lorentz force can play an 

important role in controlling the skin friction. In 

(Magyari and Pantokratoras 2011), it is mentioned 

that the Lorentz force due to the Riga plate play 

flow aiding role for Z > 0 and opposing role for Z 

< 0 and it is observed that as Z increases, the 

assisting role of Lorentz force increases causing an 

increase in flow velocity. Ultimately, an increase 

in modified Hartmann number also increases the 

skin friction. The same behavior can be observed 

from the correlation expression for the skin 

friction i.e. the rate of change of skin friction with 

respect to modified Hartmann number (CZ) is 

positive. Another important observation from 

Table 1 and Fig. 3 is that the rate of change of skin 

friction with respect to modified Hartmann 

number is much higher for small Bingham number 
as compared to large Bingham number. 
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Table 1 Correlation of skin friction coefficient 

(ReCf=C + Cλλ + CZZ) of Reiner-Phillipoff fluid 

with maximum percentage error for different 

values of Bingham number and suction 

parameter where the values of Z is considered in 

the interval (-2, 3) and λ in the interval (0, 5) 

Bm S C  C
 

ZC  Max. % error 

0.1 2.0 -19.998 -0.005 9.990 Less than 1 % 

1.0 2.0 -1.995 -0.003 0.998 Less than 1 % 

2.0 2.0 -0.997 0.002 0.499 Less than 1 % 

 

 
Fig. 3. Behavior of skin friction for Reiner-

Phillipoff fluid over a Riga plate for λ=3.0 and 

s=2.0. 
 

In Figs. 4 and 5, the effect of varying Bingham 

number on the flow velocity of pseudoplastic and 

dilatant fluids is presented respectively. It is 

observed that the velocity of the pseudoplatic fluid 

increases with an increase in Bingham number since 

a higher Bingham number represents a fluid that start 

flowing under higher shear stress ultimately 

possesses higher velocity. An opposite effect of 

Bingham number on the velocity of dilatant fluid is 

noticed. Since the dilatant fluids become thicker 

when agitated so the lower shear stress is more 

favorable for dilatant fluid to flow. So a dilatant fluid 

with lower Bingham number i.e. lower minimum 

stress required to flow would have a higher velocity. 

In Fig. 6 the velocity profile of Powell-Eyring fluid 

as compare to viscous fluid in the presence of 

assisting and opposing Lorentz force and in the 

absence of Lorentz force is plotted. It is observed that 

the velocity of the fluid decreases as the fluid 

parameter 1/α i.e. the effect of non-Newtonality 

increases. Besides the fact, the velocity of the fluid 

decreases as Z decreases due to assisting/ opposing 

role of the Lorentz force, it is further observed that 

the decrease in velocity due to presence of opposing 

effect of Lorentz force (Z<0) is more in non-

Newtonian fluid as compare to Newtonian fluid and 

increase in velocity due to assisting role of Lorentz 

force in non-Newtonian fluid is less than the 

Newtonian fluid. Further the magnitude of rate of 

change of velocity with respect to y increase as 1/α 

increases and Z decreases. 

In Fig. 7 the velocity profile of Powell-Eyring fluid 

for varying β in the presence and absence of 

assisting/opposing Lorentz force is plotted. It is 

observed that the velocity of the fluid decreases as 

the fluid parameter β increases. It is also observed 

that the magnitude of decrease in velocity due to 

varying β increases as we replace assisting Lorentz 

force with opposing Lorentz force. 

 
Fig. 4. Velocity profile of pseudoplastic Reiner-

Phillipoff fluid (λ>1) for varying Bingham 

number Bm for Z=1.0, vw=-2.0 and λ=2.0. 

 

 
Fig. 5. Velocity profile of dilatant Reiner-

Philippoff fluid (λ<1) for varying Bingham 

number Bm for Z=1.0, vw=-2.0 and λ=0.5. 

 

 
Fig. 6. Velocity profile of Powell-Erying fluid for 

varying Z and 1/α with β=0.2 and vm= -5.0. 

Dashed curves are for 1/α=0.0 and solid curves 

are for 1/α=1.0. 
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In Table 2 the correlation expression for the skin 

friction of Powell-Eyring fluid is given for different 

values of fluid material parameter 1/α and fixed 

value of suction parameter s. Each of the correlation 

expression is obtained by performing linear 

regression on 615 set of numerical values of skin 
friction for different β and Z.  

 

Table 2 Correlation of skin friction 

coefficient (ReCf= C + Cββ  + CZZ) of 

Powell-Eyring fluid with maximum 

percentage error for different values of 1/α 

where the values of Z is considered in the 

interval (-2, 2) and β in the interval (0.0, 0.7) 

and s = 5.0 

1/α C  C
 

ZC  Max. % error 

0.0 -5.0 0.0 1.0 0.001 % 

0.01 -4.947 -0.262 1.038 3.344% 

0.02 -4.884 -0.586 1.089 6.712 % 

5.0 -0.828 -0.135 0.192 6.334 % 

10.0 -0.457 -0.018 0.094 6.055% 

 

In Fig. 8 skin friction is plotted for different involved 

parameters to conduct a comparative study of 

Powell-Eyring fluid with Newtonian fluid in the 

absence and presence of Lorentz force due to Riga 

plate. It is observe that the magnitude of skin friction 

is higher for higher modified Hartmann number Z. 

This is because of the assisting and opposing effects 

of Lorentz force. We can observe the value of skin 

friction for Newtonian fluid at 1/α=0. The skin 

friction for Powell- Eyring fluid increases as the 

value of 1/α increase. 

 

 
Fig. 7. Velocity profile of Powell-Erying fluid for 

varying Z and β with 1/α =5.0 and vm= -5.0. 

Dashed curves are for β =0.6 and solid curves 

are for β =0.0. 
 

Further the rate of change in skin friction with 

respect to 1/α in the presence of Lorentz force is 

different as compare to in the absence of Lorentz 

force. It decrease in the presence of assisting Lorentz 

force and increases in the presence of opposing 

Lorentz force. Further the skin friction decreases 

with an increase in parameter β. This change in skin 

friction with respect to β becomes negligible for 

larger values of 1/α. The last two observations can 

also be seen from table 2. An important phenomena 

observed from Table 2 is that the magnitude of rate 

of change with respect to Z and β (magnitude of 
ZC  

and C
respectively) increases for 1/α<1 and 

decreases for 1/α>1. This fact can also be observed 
if we closely examine the Fig. 8. 

 

 
Fig. 8. Skin friction of Powell-Erying fluid for 

varying involved parameters. 
 

4. CONCLUSION 

In this article, we considered two empirical models 

of non-Newtonian fluids to examine the controlling 

effects of Lorentz force due to cross electric and 

magnetic fields generated by a Riga plate. The 

mathematical model incorporating the Grinberg-

term for the wall parallel Lorentz force due to Riga 

plate is solved numerically. The correlation 

expressions for skin friction are also developed by 

performing linear regression on the obtained 

numerical data to provide the readers with the 

analytical expression for further investigation. Some 

important observations are as follow: 

1. For Reiner-Phillipoff fluid model, the rate of 

change of skin friction with respect to modified 

Hartmann number is much higher for small 

Bingham number as compared to large Bingham 

number. The velocity of the pseudoplatic fluid 

increases with an increase in Bingham number 

and an opposite effect is noticed for dilatant 

fluid. 

2. For Powell-Eyring fluid model, the rate of 

change of skin friction with respect to 1/α 

decrease in the presence of assisting Lorentz 

force and increases in the presence of opposing 

Lorentz force. Further, the skin friction decreases 

with an increase in parameter β and becomes 

negligible for larger values of 1/α. 
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