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ABSTRACT 

This paper focuses on analytical and numerical investigation of double-diffusive bioconvection in a porous 

media saturated by nanofluid using the modified mass flux condition. Normal mode technique is employed to 

solve the governing equations of the Brinkman-Darcy model. The Galerkin weighted residual method (single-

term and six-term) is used to obtain numerical solution of the mathematical model. It is found that due to the 

presence of gyrotactic microorganisms, Rayleigh number is decreased substantially which shows that 

convection sets in earlier as compared to nanofluid without microorganisms and this destabilizing effect is 

more predominant for faster swimming microorganisms. modified Darcy number number, Soret parameter, 

and porosity postpone the onset of the bioconvection, whereas nanoparticle Rayleigh number, bioconvection 

Rayleigh number, nanoparticle Lewis number, Dufour parameter, Péclet number, and Lewis number pre-pone 

the onset of bioconvection under certain conditions. 

Keywords: Bioconvection; Brownian motion; Gyrotactic microorganisms; Nanofluid; Porous medium; 

Thermophoresis. 

1. INTRODUCTION

The bioconvection refers to a convection driven by 

the collective motion of a large number of self-

propelled microorganisms which are heavier than 

the base fluid. The term “bioconvection” was first 

coined by Platt (1961). First mathematical model 

for negatively gravitactic bioconvection was 

developed by Childress et al. (1975). Mathematical 

models for the different species of microorganisms 

can be seen in papers (Pedley and Kessler 1987; 

Pedley et al. 1988; Bees and Hill 1997; Ghorai and 

Hill 1999; Metcalfe and Pedley 2001).  

The term “nanofluid” was first coined by Chol 

(1995). Buongiorno (2006) developed a 

mathematical model for nanofluid and explored the 

various transport mechanisms of nanofluids. The 

growing volume of papers dedicated to the 

instability problems saturating nanofluid is well 

documented by (Tzou 2008; Nield and Kuznetsov 

2009, 2010). Later, Chand and Rana (2012a) 

include the effect of rotation on nanofluid and 

found that rotation has a stabilizing effect. The 

onset of convection in a porous media saturated by 

nanofluid was presented by Chand and Rana (2012 

b, 2012c). Nanofluids have many applications in 

microheat pipes, cooling, cancer therapy, micro-

channel heat sinks, microreactors, heat transfer 

systems, aerospace tribology, polymer coatings, 

process industries, etc. 

Nield and Kuznetsov (2014a, 2014b) suggested the 

more realistic flow on the boundaries. After that 

many research articles (Rana and Chand, 2015; 

Saini and Sharma 2017, 2018a, 2019) studied the 

onset of convection using the revised boundary 

conditions and found that revised boundary 

conditions(zero flux) have more destabilizing effect 

as compared to previous boundary conditions 

(constant nanoparticle fraction). Very recently, 

Yadav and Wang (2018) examined the convective 

heat transport in a non-Newtonian nanofluid. 

Kuznetsov (2010, 2011) was the first who 

discovered the thermal instability in a nanofluid 

with gyrotactic microorganisms and reported that 

gyrotactic microorganisms always destabilize the 

system. Mixed convection flow in a nanofluid 

containing gyrotactic microorganisms was 

examined by Tham (2013). Shaw et al. (2014) 

analyzed the soret and MHD effect on 

bioconvection. The MHD bioconvection in the 

presence of chemical reaction was analyzed by Das 

et al. (2015). Mahdy (2016) investigated the 

boundary layer bioconvection along a vertical cone. 

Recently, Saini and Sharma (2018b, 2018c) 

presented the instability analysis of nanofluid bio-

thermal convection with the effect of throughflow. 
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Pioneering work on double-diffusive convection in 

nanofluid has been examined by Nield and 

Kuznetsov (2011), and Yadav et al. (2012). Yadav 

et al. (2013) and Umavati et al. (2015) studied the 

effect of viscosity variation and thermal 

conductivity on double diffusive convection in 

rotating nanofluid and Maxwell nanofluid. Later, 

Yadav et al. (2016) revised their previous work 

(Yadav et al., 2013) by using more realistic 

boundary conditions. The readers are also referred 

to Akbar et al. (2017), Garaud (2018), and Reddy et 

al. (2018) for recent studies of double-diffusive 

convection. 

The review of the literature reveals that the double-

diffusive bioconvection in a nanofluid with 

modified boundary conditions has not been studied 

so far. In this article, the effect of double diffusion 

on bioconvection using the modified boundary 

conditions is investigated analytically and 

numerically. The effects of various controlling 

parameters of our interest on Rayleigh number are 

analyzed. 

2. ANALYSIS  

We consider an infinite horizontal layer of binary 

nanofluid with gyrotactic microorganisms in a 

porous medium confined between the boundaries z* 

= 0 and z* = H. The pore size is large compared to 

microorganisms and porous matrix does not absorb 

microorganisms. We use the Brinkman-Darcy 

model. Local thermal equilibrium and homogeneity 

in the porous medium are also assumed. We take 

temperatures *
hT  and *

cT  * *( )h cT T , solute 

concentrations * * * *and ( )h c c hC C C C respectively. The 

dimensionless governing equations are written 

below (Pedley and Hill 1987; Nield and Kuznetsov 

2009; Kuznetsov 2010; Yadav et al. 2012). 

. 0 V                                                                  (1) 

In Eq. (1), V is the dimensionless velocity. 
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In Eq. (2), p is the pressure, t is the time,  is the 

nanoparticles volume fraction, n is the 

microorganism concentration,   is the porosity, 
2/aD K H  is the Darcy number,

 
Pr / f m    is 

the Prandtl number, 2D /a K H  is the  modified 

Darcy number,  *
0( ) /n P mR gKH       is the 

nanoparticle Rayleigh number,
 

* *( ) /a T h c mR KHg T T    is the Rayleigh number, 

* *
0 0( (1 )) /m P f mR gKH         is the basic density 

Rayleigh number,
 

/b m mL D  is the bioconvection 

Lewis number,
 

* *( ) /S C h c SR C C gKH D    is 

solutal Rayleigh number,
 

/b mR gvKH D    is the 

bioconvection Rayleigh number, /n m SL D  is 

Lewis number. Other parameters in Eq. (2) are as:

 is effective viscosity,   is the viscosity,
 p is  

nanoparticles density,
 0  is reference volume 

fraction, K  is the permeability, g is the gravity 

vector,
 f is the nanofluid density, cell f      is 

the difference between cell density and a fluid 

density, c is the solutal coefficient, m  is the 

thermal diffusivity  of the porous media,
mD is the 

microorganism diffusivity, SD is the solutal 

diffusivity.  

2

2

. . .B A B

e e

TC

N N N
T T T T T

t L L

N C


 
         

 

 

V
      (3) 

In Eq. (3), /e m BL D is the nanofluid Lewis 

number,
 

*
0 ( ) / ( )B p fN c c    is the particle density 

increment, * * * *
0( ) / ( )TC TC h m h cN D C C T T    is the 

Dufour parameter,
  

* * * *
0( ) /A h c T c BN T T D T D   is the 

modified diffusivity ratio. Other parameters in Eq. 

(3) are as follows: TCD is the Dufour diffusivity, BD

is the Brownian diffusion coefficient,  
p

c is the 

heat capacity of the nanoparticles, TD is the 

thermophoresis diffusivity,  
f

c is the heat 

capacity of the fluid. 
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In Eq. (4), * * * *) (/ ( )CT h c CT m h cN T T D C C    is the 

Soret Parameter, CTD is the soret diffusivity,   is 

the thermal capacity ratio. 
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In Eq. (6), /c mQ W H D  is the  Péclet number and

ˆ
cW p  is average swimming velocity. 

In component form, Eq. (2) can be written as: 
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Applying the operator / x   to the both sides of Eq. 

(7a) and  / y   to the both sides of Eq. (7b), then 

adding and by using the Eq. (1), we get 

(7b) 

(7c) 
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Now, applying the operator 
2 2

2 2x y
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 
 to the both 

sides of Eq. 7(c) and applying the operator 
z




 to 

the both sides of Eq. (8) then subtracting  Eq. (8) 

from Eq. (7c) we get 
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where 2
H  is the horizontal Laplacian operator in 

the 2-D plane. 

In boundaries, we have taken the temperature and 

solute concentration to be constant, and in addition 

nanoparticle flux and microorganism’s 

concentration flux are supposed to be zero on the 

boundaries. The boundary conditions are 

Rigid-rigid : 0, 0, 1, 1,

0, , at 0

0, 0, 0, 0,

0, , at 1

A

A

w
w T C

z

T n
N Qn z

z z z

w
w T C

z

T n
N Qn z

z z z





 
    


      

  


    



  
   

   

               (10a) 

2

2

Rigid-free : 0, 0, 1, 1,

0, at 0

0, 0, 0, 0,

0, , at 1

A

A

w
w T C

z

T n
N Qn z

z z z

w
w T C

z

T n
N Qn z

z z z





 
    


      

   


    



      
   

  

The steady-state solutions of the Eqs. (3)-(6) are as 
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Here / 1QnQ e   is the integration constant.  

3. PERTURBED SOLUTIONS 

For small perturbations on the basic solutions, we 

assume that 
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Substituting Eq. (12) in Eqs. (3)-(6) and (9) and 

utilizing Eq. (11), we get 
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Applying the procedure outlined in Pedley et al. 

(1988) and Kuznetsov (2010) for average 

swimming direction vector, Eq. (17) can be 

expressed as  
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where G  and 0  are Gyrotactic number and 

measure of cell eccentricity respectively. 
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Due to an absence of two opposite agencies which 

affect instability, oscillatory convection cannot 

occur. Assuming the normal modes as 
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4. RIGID-RIGID BOUNDARIES 

The differential Eqs. (21)-(25) are solved by using 

the Galerkin weighted residual method.  

Accordingly, , , , N  and W are taken as 
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For Rigid-rigid boundaries, the base functions are 

chosen as 
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where , , ,i i i iT S R Q  and iP    are constants. 

4.1   Single-Term Galerkin Method  

For single-term, we take N = 1. Substitute the Eqs. 

(27)-(28) in Eqs. (21)-(25),
 
employing the standard  

method(Finalayson, 1972) gives the following 

eigen-value equation 
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For the case when 0bR  , Eq. (29) reduces to 
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Same expression (Eq. (30)) for aR was obtained by 

Yadav et al. (2012). 

For the case when 0CTN  and 0TCN  , Eqs. (29)- 

(30) reduce to 
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For the case when 0SR  and 0nR  , Eqs. (31)-(32) 

reduce to 
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Same expression (Eq. (34)) for Rayleigh number 

was found by Kuznetsov and Nield (2010). 

When 0aD  , Eq. (29) becomes 
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(35) 

In absence of microorganisms, aR takes the minimum 

value at a = 3.31 and in this case when  the value of 

aD  is very large, it takes the minimum value at a = 

3.117. These values exactly match with earlier 

reported work of Nield and Kuznetsov (2010). 
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To study the behavior of Péclet number Q and 

bioconvection Rayleigh number
bR  we examine the 
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
and a
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 analytically, we have 
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 (36) 

It is clear from the above expression that the 

behavior of Péclet number cannot be studied 

directly. To simplify the above expression
0 is 

assumed to be zero, which corresponds to spherical 

microorganisms (Pedley and Kessler, 1987; Pedley 

et al., 1988) and we fixed the value of Gyrotactic 

number(G =0.03) and wave number(a= 3.12). 

Under these assumptions Eq. (36) becomes as 

follows: 

For Q = 0.1(corresponds to slow swimmers) 
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For Q =1 (corresponds to intermediate swimmers) 

6.63 ( 1 )a n CT TC b

n TC

R L N N R

Q L N





  


 
                           (37b) 

For Q = 10 (corresponds to fast swimmers) 

42.78 10 ( 1 )a n CT TC b

n TC

R L N N R

Q L N





   


 
                   (37c) 

From Eqs. (37a)-(37c), it is observed that  Péclet 

number has a destabilizing effect if  1 n TC CTL N N

and n TCL N  . This effect is more predominant for 

faster swimmers. Using the above-stated 

assumptions, the expression for /a bR R  form Eq. 

(29) obtain as  

( 1 )a n CT TC
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R k L N N

R L N
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

  

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                                     (38) 

where, k = 0.2(slow swimmers), 2.55(intermediate 

swimmers), 41.04 10 (fast swimmers). For all three 

values of Q, bR has a destabilizing effect, if 

 1 n TC CTL N N
 
and n TCL N  . 

 

4.2   Six-term Galerkin Method 

In order to calculate the more accurate solution, six-

term Galerkin method is utilized. For six-term 

Galerkin method, we take N = 6. Substitute the Eqs. 

(27)-(28) in Eqs. (21)-(25) and employing the 

standard Galerkin method,  we get 
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(43) 
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 In Eq. (43), the Rayleigh number is a function of

, , , , , , , , , , ,e n TC CT A B b n SL L Q N N a N N R R R and aD . 

 5. RIGID-FREE BOUNDARIES 

For rigid-free boundaries, the minimal polynomials 
are chosen as 
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In the case of no microorganisms, Eq. (41) reduces 
to 
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This expression is the same as obtained by Yadav et 

al. (2012). 

When 0CTN  and 0TCN   are insignificant then 

Eq. (41) and Eq. (42) reduce to 
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In the absence of nanoparticles and solute

( 0, 0, 0, 0),n CT TC SR N N R    Eq. (43) reduces to 
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In the absence of microorganisms, Eq. (45) 

becomes 
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The same expression for regular fluid was also 

obtained by Yadav et al.(2012).  

For the case when 0aD  , Eq. (42) becomes 
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   (47) 

In absence of microorganisms, it takes the 

minimum at a = 3.27 and minimum value is 48.01 

which are same as obtained by Kuznetsov and Nield 

(2010).  

6. RESULTS AND DISCUSSION  

The values of dimensionless parameters are taken 

from (Pedley and Kessler 1988; Nield and 

Kuznetsov 2009; Kuznetsov 2010; Yadav et al., 

2012) as: 

0

5

5, 0.0075, 4, 5000, 0.31, 4,

3.7 10 , 0.03, 3.0,Pr 5, 0.03,

2, 2 0.1, 500, 0.7, 0.8.

A B b e

b TC

CT n n s a

N N L L Q

v G R N

N L R R D







     

     

     

(46) 

The effect of sR   on Rayleigh number is discussed 

in Fig. 1. It is observed that as the value of sR  

increases, the Rayleigh number also increases. This 

shows that sR  has a stabilizing effect. 

From Fig. 2, it is observed that the nanoparticle 

(47) 

(48) 
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Rayleigh number accelerates the bioconvection. 

This result is expected from a physical point of 

view also because an increase in a volumetric 

fraction increases the Brownian motion of 

nanoparticles which produce a destabilizing effect. 

 

 
Fig. 1. Plots of 

aR  with a for various values of

sR . 
 

 
Fig. 2. Plots of 

aR   with a for various values of

nR . 
 

 
Fig. 3. Plots of aR  with a for various values of

bR . 
 

Figure 3 includes the curves against the variation of

bR  . It is noticed that an increase in the value of 

bR enhances the concentration of gyrotactic 

microorganisms at the top and develops top-heavy 

density stratification, resulting from that the 

instability sets in an earlier stage. 

 

Fig. 4.Plots of 
aR  with a for various values of

TCN . 

 
Figures 4 and 5 summarize the variation of 

aR for 

Soret and Dufour parameters. From Fig. 4, it is 

noted that 
a

R  decreases with increasing value of

TCN .  From Fig. 5, it is seen that as the value of  

 

 
Fig. 5. Plots of 

aR  with a for various values of

CTN . 
 

CTN increases the Rayleigh number  increases. Thus 

it can be concluded that Soret parameter has a 

stabilizing effect whereas Dufour parameter has a 

destabilizing effect. 

 

 
Fig. 6. Plots of aR  with a for various values of 

nL . 
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From Fig. 6, it is observed that Lewis number has a 

destabilising effect. By definition, Lewis number is 

inversely proportional to
sD  and is directly 

proportional to
m . Therefore, it can be concluded 

that an increase in solutal diffusitivity ( )sD delays 

the bioconvection. 

 

 Fig. 7. Plots of 
aR  with a for various values of 

eL . 

 
The effect of 

eL  on 
aR  is shown in Fig. 7. From 

Fig. 7, it is noticed that Rayleigh number decreases 

with increasing value of nanoparticle Lewis 

number. An increase in 
e

L  reduces the mass 

diffusivity of the nanofluid which increases the 

nanoparticle volume fraction and subsequently 

increases the amount of heat transfer. 

 

 
Fig. 8. Plots of 

aR  with a for various values of 

eL . 

 
Figure 8 displays the effect of the porosity. We 

notice that the Rayleigh number exhibits a 

significant increase when porosity ε increases. Thus 

porosity has a stabilizing effect. 

From Fig. 9 it is clear that Da  stabilizes the system, 

which we would physically expect because an 

increase in modified Darcy number results an 

increase in the effective viscosity, which slows 

down the forming of bioconvection pattern. 

Therefore modified Darcy number hinders the 

development of bioconvection. 

Figure 10 displays the plot of  Rayleigh number 
aR

for Q . It is found that Q  accelerates the convection. 

Faster swimmers produce stronger disturbances, 

which promote the development of bioconvection 

and resulting in lowering the Rayleigh number for 

the larger value of Q.  

 

 

 

Fig. 9. Plots of 
aR  with a for various values of 

aD . 
 

 
Fig. 10. Plots of 

aR with a for various values of 

Q. 

 
Table 1 Comparative results of 

aR for various 

values of aD  with Guo and Kaloni (1995) in a 

regular fluid for the (a) single-term (b) six-term 

aD  

Guo and 

Kaloni 

(1995) 

single-term six-term 

,a cR  ,a cR  Error 

(%) 
,a cR  Error 

(%) 

0.01 60.35 63.09 4.33 60.39 .045 

0.1 215.06 220.6 2.54 215.08 .009 

1 1752.20 1795.67 2.42 1752.87 .038 

  1707.70 1749.98 2.42 1707.76 .004 

 
Table 1 displays a comparison between the values 

of the critical Rayleigh number obtained by six-

term and single-term Galerkin method with earlier 

reported work of Guo and Kaloni (1995) for regular 

fluid.
 
It is observed that the higher order Galerkin 

method significantly improves the results and 
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reduces the error.  

7. CONCLUSIONS 

The double-diffusive bioconvection in a suspension 

of gyrotactic microorganisms is studied for Rigid-

free and Rigid-rigid boundaries. On using the six-

term Galerkin weighted residual method, 

reasonably accurate solutions are obtained and it is 

found that  Rayleigh number is dependent on 

modified particle density increment while in single-

term method Rayleigh  number is not affected by 

modified particle density increment. Rigid-free 

boundaries produce more unsteady bioconvection 

pattern as compared to Rigid-rigid boundaries. To 

study the behavior of Péclet number and 

bioconvection Rayleigh number, complex 

expressions are simplified by valid assumptions. 

Faster swimmers produce stronger disturbance as 

compared to slow swimmers, it thus facilitates the 

development of bioconvection resulting in a lower 

Rayleigh number at a larger value of Péclet number. 

The much lower Rayleigh number shows that the 

convection sets in earlier as compared to nanofluid 

without microorganisms. Modified Darcy number, 

Soret parameter, and porosity delay the 

bioconvection whereas bioconvection Rayleigh 

number, Lewis number, Dufour parameter, 

nanoparticle Lewis number, and nanoparticle 

Rayleigh number accelerate the bioconvection 

under the certain conditions. Solute delays the onset 

of bioconvection in the presence of Soret and 

Dufour parameter while in absence of Soret and 

Dufour parameter it accelerates the bioconvection.  
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