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ABSTRACT 

The nonlinear stability of stationary and oscillatory double-diffusive convection in an Oldroyd-B fluid layer is 

investigated using a perturbation method. The cubic Landau equations are derived and based on which the 

stability of stationary and oscillatory bifurcating solutions in the neighborhood of their critical values is 

discussed. The boundary between stationary and oscillatory convection demarcated by identifying a 

codimension-two points in the viscoelastic parameters plane. The bifurcating solution is found to be subcritical 

depending on the choices of physical parameters. Heat and mass transport are estimated in terms of Nusselt 

numbers. The effect of Prandtl number is observed only in the case of oscillatory motions and increase in its 

value is to decrease the heat and mass transfer. Besides, increasing relaxation and retardation parameters is to 

decrease and increase the amount of heat and mass transfer, respectively in the stationary case, while these 

parameters found to exhibit an opposing kind of behavior in the case of oscillatory motions. 

Key words: Double-diffusive convection; Oldroyd-B fluid; Perturbation method; Stability; Bifurcation; Heat 

and mass transfer. 

NOMENCLATURE 

b basic state  

d depth of the viscoelastic fluid layer 

g gravitational acceleration 

k̂ unit vector in the vertical direction 

T thermal diffusivity 

p pressure 

Pr Prandtl  number 

TR thermal Rayleigh number 

SR the solute Rayleigh number 

S solute concentration  

T temperature 

t time 

 kinematic viscosity

 perturbation parameter

, ,x y z space coordinates 

 horizontal wave number

2 retardation parameter 

T thermal expansion co-efficient 

S solute analog of  T

 dynamic viscosity

 fluid density

 growth term

0 reference density 

 growth rate

 stream function

 ratio of diffusivity

q velocity vector 

S solute diffusivity 

1 relaxation time 

2 retardation time  

1 relaxation parameter 

' perturbed variable 

1. INTRODUCTION

The study of thermal convection in viscoelastic 

fluids has been a subject of considerable interest and 

attracted the attention of researchers for several 

decades. These fluids possess some elasticity and 
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occur in many industrial and natural flows such as 

those in the food, cosmetics, pharmaceutical and 

petroleum industries, bioengineering, geothermal 

energy utilization, carbon dioxide geologic 

sequestration, construction of oil wells and mud 

flows. In polymer processing the melt flows at high 

temperature before the extrusion process and in such 

situations understanding of convection processes in 

viscoelastic fluids and in particular control of 

instabilities becomes important in order to avoid the 

appearance of non-homogeneities in the final 

product. Hence, it is very essential to know the 

convective behavior in viscoelastic fluids. 

The Rayleigh-Bénard instability for viscoelastic 

fluids has been studied extensively and copious 

literature is available (Green, 1968; Vest and Arpaci, 

1969; Sikolov and Tanner, 1972; Eltayeb, 1977; 

Rosenblat, 1986; Martinez-Mardones and Perez-

Garcia, 1990, 1992; Larson, 1992; Khayat, 1995; 

Martinez-Mardones et al., 1996; Kolodner, 1998; Li 

and Khayat, 2005; Swamy and Sidram, 2012). An 

unusual result observed, contrary to the stationary 

onset in Newtonian fluids, is that the onset of 

convection in viscoelastic fluids occur via oscillatory 

convection depending on the fluid elasticity. Using 

DNA suspensions, Kolodner, (1998) experimentally 

confirmed this behavior of instability and it was 

observed in dilute polymer solutions, consisting of a 

Newtonian solvent and a polymeric solute which is 

well represented by the Oldroyd-B constitutive 

model (Bird et al. 1987). Hirata et al. (2015) 

examined convective and absolute nature of 

instabilities in Rayleigh–Bénard–Poiseuille mixed 

convection for viscoelastic fluids. 

Double-diffusive convection in a Newtonian fluid 

layer has been studied extensively, both 

experimentally and theoretically, because of its wide 

range of applications in many fields of science and 

engineering (for details see Chen and Johnson, 

1984). Excellent reviews on the development of this 

subject are reported (Turner, 1973, 1974, 1985; 

Huppert and Turner, 1981; Platten and Legros, 

2011). But the consideration of binary fluid aspects 

in the study of convective instability in viscoelastic 

fluids seems to be pertinent as these fluids involve 

solvent and solute. Kolodner (1998) also attributed 

that the discrepancy between his experimental 

prediction and theoretical results could be due to the 

neglect of binary fluid aspects with viscoelastic 

properties in the theoretical analysis. Nonetheless, 

the study has received only limited attention in the 

literature. Martinez-Mardones et al. (2000) 

performed a weakly nonlinear stability analysis for 

stationary convection in a binary Oldroyd fluid 

considering Soret effect. Malashetty and Swamy 

(2010) discussed linear and a weakly nonlinear 

double-diffusive convection in a viscoelastic fluid 

layer. Ashraf et al. (2016) investigated mixed 

convection flow of an Oldroyd-B fluid over a 

stretching surface with convective boundary 

conditions. Double diffusive convection in a 

viscoelastic fluid-saturated porous layer is also 

discussed (Malashetty et al. 2009; Awad et al. 2010; 

Wang and Tan, 2008, 2011; Kumar and Bhadauria, 

2011; Malashetty and Biradar, 2011; Altawallbeh et 

al. 2017). 

The intent of the present paper is to investigate 

nonlinear stationary and oscillatory stability of 

double-diffusive Oldroyd-B fluid layer. The 

perturbation method is used to perform the nonlinear 

stability analysis and the stability of bifurcating 

stationary and oscillatory solutions is analyzed by 

deriving cubic Landau equations. Such a study is of 

interest to know if subcritical instabilities will occur 

and under what conditions in terms of the parameters 

of the problem. The results of linear stability theory 

are also given as the nonlinear stability analysis is 

based on these results. Besides, convective rates of 

heat and mass transfer are estimated in terms of 

Nusselt numbers. 

2. PROBLEM FORMULATION 

We consider an incompressible double diffusive 

Oldroyd-B fluid layer of thickness d  in the finite 

vertical z - direction and extending to infinity in the 
x  and y  directions in the presence of gravity. The 

lower boundary at 0z  and upper boundary at 

z d  are maintained at constant but different 

temperatures 0T and 0T T ( 0)T  , and solute 

concentrations 0S  and 0S S ( 0)S  , 

respectively. The density  is assumed to vary 

linearly with temperature T and solute 

concentration S in the form 

    0 0 01 T ST T S S       
 
             

 
(1) 

where T is the coefficient of thermal expansion, 

S  is the coefficient of solute expansion and 0 is 

the reference density. The nonlinear constitutive 

equation for an Oldroyd-B fluid is (Rosenblat, 1986; 

Bird et al. 1987) 

     

     

1

2

T

T

q q q
t

A
A q A q A A q

t


    

 

 
        

 

  
        

  

   

                                                                               (2) 

where  is the stress tensor,  , ,q u v w is the 

velocity,  
T

A q q   is the rate-of-strain 

tensor,  is the  fluid viscosity, 1  is the relaxation 

time, 2  is the retardation time and it is noted that

2 1  . It is well-known that the constitutive  

equation considered includes Stokes’s law adopted 

in the theory of Newtonian viscous fluid flows as a 

particular case for 1 2  and to the Maxwell fluid 

when 2 0  . Under the Boussinesq approximation, 

the governing equations for the problem under 

consideration are 

0q                                                         (3) 
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 0

q
q q p g

t
  

 
       

 
                (4) 

  2
T

T
q T T

t



   


                                (5) 

  2
S

S
q S S

t



   


                 (6) 

where p is the pressure,  0,0,g g is the 

acceleration due to gravity, T  is the effective 

thermal diffusivity and S  
is the solute analog of 

T . The basic state is found to be 

0 0

2 2
0 0

0, , ,

2 2

b b b

b T S

T S
q T T z S S z

d d

T S
p p g z z z

d d
  

 
    

  
    

 

     (7) 

where 0p  is the pressure at 0z  . The finite 

amplitude perturbations on the basic state are 

superposed in the form: 

, ,

, ,

b b b

b b b

q q q p p p

T T T S S S

  

  

       

      
                  (8) 

where primes indicate perturbations over their 

equilibrium counterparts. Equation (8) is substituted 

back into the governing equations and the 

perturbation equations are written in the 

dimensionless form by introducing the scaling d , 

2 / Td  , /T d , 2/T d , T  and S as 

reference quantities for length, time, perturbation 

velocity, stress components, temperature and solute 

concentration, respectively. The pressure is then 

eliminated by operating curl once and the stream 

function  , ,x z t  is introduced in the form 

/u z    , /w x    .                                   (9) 

to obtain the stability equations in the form (after 

neglecting the primes) 

   2

,

1
0T S x

R T R S N
Pr

    L                 (10) 

2
, 0xT T  L

                                             
(11)

                                                                                       

2
, 0xS S   L                                           (12) 

     

     

1

2

T

T

q q q
t

A
A q A q A A q

t


   

 
         

 

 
        

 

   

 

(13) 

 

where TPr    is the Prandtl number, 

3
T T TR g d T     is the thermal Rayleigh 

number, 
3

S T TR g d S   is the solute 

Rayleigh number, 1S T    is the diffusivity 

ratio, 2
1 1 T d   is the relaxation parameter,

2
2 2 T d    is the retardation parameter, 

/ ( , )t J    L =  is the nonlinear differential 

operator,  

, , ,( )x x z z x z x z z z x z x xN       
                 

and

2 2 2 2 2x z       . 

The boundaries are rigid stress-free and perfect 

conductors of heat and solute concentration. The 

corresponding boundary conditions are: 

, 0z z T S     at  0,1z  .                        (14) 

In components, Eq. (13) can be expressed as 

 

  

2
1 1

2
1 2 1 ,

1 1

2 2

2

xz x z

x z

U V   

   

 
       

 

     

L

L         

(15) 

  

  

2
1 ,

2
, 2 , 1

2 2

4 4 2

x z x z

x z x z

U U V  

   

     

    

L

L
              (16) 

  

   

1 , 1

2 2
2 , 1

2 2

2 4

x z x z

x z

V V U  

 

     

 
    

 

L

              

(17)   

where 

x x z zU    ,  x x z zV     and 

1 , ,z z x x     . 

3. NONLINEAR STABILITY 

ANALYSIS 

The nonlinear stability analysis is carried out using 

the perturbation method (Rosenblat, 1986; Venezian. 

1969). Accordingly, a small bifurcation parameter

  that indicates deviation from the critical state is 

introduced and the dependent variables 

( , , , , , )x zT S U V    and as well as TR are 

expanded in powers of    in the form 

2 3
1 2 3

2
2T Tc TR R R

  



       

     
              (18) 

where TcR is the critical Rayleigh number chosen 

depending on the type of bifurcation. Also, a small 

time scale is introduced in the form
2s t  and the 

operator t  is replaced depending on the nature of 

bifurcating solutions. 

3.1.   Bifurcation of Steady Solutions 

The stationary convective solution that bifurcates 

from the basic state at S S
T TcR R , where S

TcR  is the 

critical Rayleigh number for the stationary onset.. 
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Substituting Eq. (18) and 
2/ /t s      into Eqs. 

(10)-(13) and equating the coefficients of 

( 1,2,3,...)i i   lead to the following sequence of 

equations 

  1,Tc i S i i ix
R T R S G                                 (19) 

2
, 2i x i iT G                   (20) 

2
, 1 3i x i iS G                   (21) 

with 

 
, 1

i
i i x z x zU      ( 1,2,3,i    )              (22) 

where 1 3i iG G are the nonlinear terms which are 

determined using previous order solutions. The 

equations for the stress components have the forms 

 
1

i
x z i iX    

,4i i x z iU Y                  (23) 

i iV Z   

where i iX Z  are the nonlinear terms which are 

determined using previous order solutions. 

The boundary conditions are 

 
, , 0

i
i i i i zz x z i zT S U        at 0,1z  . 

                                                                             (24)  

The first order solution corresponding to S
Tc TcR R  

is 

1 1 1 1 1 1 1

(1)
1 1 1

( , , , ) ( , , ,0)cos cos

( , ) ( , )sin sinx z

T S U V A C D x z

B E x z

 

   




     

  
 (25) 

The undetermined amplitudes are related by 

1 1 1 1 1 12 2

6

1 1 2

, , 4 ,

, S S
T

A B C B D B

R
E cB R

 


 





    


   


  

        (26) 

where 2 2c     and the amplitude 1B  remains 

undetermined at this stage. 

We note that S
TR attains minimum value at 

/ 2c   and the critical value is 

427

4

S S
Tc

R
R


 


                               (27) 

which is independent of viscoelastic effects and 

coincides for the Newtonian fluid (Veronis, 1968). 

Following the standard nonlinear stability analysis 

procedure, a cubic Landau equation is derived from 

the third order equation in the form 

2 3
1 2 1 1TB R B k B                   (28) 

where 

 
2 2

1 2 4

2 2 2Tc SR R Pr
 

  
 

   


            (29) 

4 4
2

2 2 38 8
Tc Sk R R M

 


 
  


              (30) 

  1 1 2

1

16
M m n                   (31) 

with 

   
2

4 4 2 2 4 4 4 49 4 36m            

4 2 2 2 4 49 8 144n c c      , 

2 2 2c    . 

The steady state amplitude exists in the following 

form: 

2
2 2
1 2

8 TR
B







                                                    (32) 

where 

4

3 4

8S
Tc

R
R M




   


.                              (33) 

Although the stationary onset is independent of 

viscoelastic parameters, from Eq. (33) it is seen that 

these parameters influence the stability of stationary 

bifurcation. The stationary bifurcation is 

supercritical (stable) if 0   and subcritical 

(unstable) if 0 . From Eq. (33) it is evident that, 

if 0SR   (single component system) the stationary 

solution always bifurcates supercritically. For other 

choices of physical parameters, subcritical 

bifurcation is possible. 

For this case, the heat and mass transfer are 

determined in terms of thermal and solute Nusselt 

numbers, respectively. The thermal Nusselt number 

TNu  and the solute Nusselt number SNu  are 

defined as 

 
4

3 4

1 2
8

T Tc
T

S
Tc

R R
Nu

R
R






 

 
   
 

                       

(34) 

 
2 4

3 4

2
1

8

T Tc
S

S
Tc

R R
Nu

R
R






 

  
   
 

                    (35)      

In the absence of convection, the heat and mass 

transfer is purely by conduction and in that case 

1T SNu Nu  . 

3.2.   Bifurcation of Periodic Solutions 

The bifurcation of the basic state at the value of
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o
T TcR R , where o

TcR  is the critical Rayleigh 

number for the oscillatory onset, can be determined 

by modifying slightly the method applied in the 

previous section. The time derivative is not zero in 

the present case and t  is replaced by

2t s     . Noting this fact and substituting 

Eq. (18) into Eqs. (10)-(12) and equating the 

coefficients of ( 1,2,3,...)i i   lead to a sequence 

of equations 

 1 2
, 1

,

o
i t Tc i S i i i

x
Pr R T R S H               (36) 

2
, , 2i t i x i iT T H                  (37) 

2
, , 3i t i x i iS S H                                  (38) 

where i is given by Eq. (22) and 1 3i iH H  are 

nonlinear terms to be determined consecutively. 

The boundary conditions are given by Eq. (24). 

The equations for the stress components have the 

forms 

 
1 2 11 1

i
x z i iX

t t
 

    
         

    
              (39) 

1 2 ,1 4 1i i x z iU Y
t t


    

        
    

              (40) 

11 i iV Z
t

 
   

 
.                               (41) 

The quantities i iX Z are to be determined 

consecutively. At first order, the equations are linear 

and homogeneous whose solution corresponding to 
o

Tc TcR R  is 

 

 

 

 

 

1 1 1

1 1 1

1 1 1

(1)
1 1

1 1 1

1

cos cos

sin sin

cos cos

sin sin

cos cos

0

i t i t

i t i t

i t i t

i t i t
x z

i t i t

T A e A e x z

B e B e x z

S C e C e x z

E e E e x z

U D e D e x z

V

 

 

 

 

 

 

  

 

  

 











 

 

 

 

 



              (42) 

where the overbar above a quantity denotes the 

complex conjugate. The amplitudes 1 1A E and 

1 1A E  are functions of slow time scale s , while 

,  are the critical values associated with 

o
Tc TcR R . The undetermined amplitudes are related 

by 

 2

1 1

i
B A

 


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 
 

2

1 12
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i i
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,                        (43) 
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. 

From Eq. (43) we find that oscillatory convection 

sets in at o
T TR R , where 

  
 
 

 

2
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                                                                             (44) 
 

with 2  satisfying the equation 

   
2

2 2
1 2 3 0c c c   

                                     
(45) 

where 

2 2 2
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Since 2 0   for the occurrence of oscillatory 

convection, a careful glance at Eq. (45) provides the 

necessary conditions as 

1  , 

1

1 2 2

(1 )Pr




   .                              (46) 

For any chosen parametric values, the critical value 

of o
TR with respect to the wave number, denoted by 

o
TcR is calculated using the procedure explained in 

Raghunatha et al. (2018). 

As in the stationary case, a cubic Landau equation 

is derived from the third order equations in the 

form 

2 2
1 2 1 1 1TA R A A A                     (47) 
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where 
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                                                                             (49) 

From Eq. (47) one can obtain 

2
2 41

2 1 12 2T r r

d A
R p A l A

ds
                               (50) 

  1 2
2 1T i i

d ph A
R p l A

ds
                                  (51) 

where  
1

2
r ip i p 


   ,  

1

r il i l 


    and 

 ph  represents the phase shift. The magnitude 

and direction of the periodic convective solution 

and also the frequency shift are determined by Eq. 

(47). We are concerned here about the direction of 

the bifurcation which depends on the sign of the 

quantity 

2
2

r T
T

r

p R
Q R

l 
 

                                              

(52) 

                                                                             (52)
 

where /r rl p  . If 0  the bifurcation is 

supercritical and stable and it is subcritical and 

unstable if 0 . Thus   is the analog for periodic 

bifurcations of the quantity  , defined by Eq. (33), 

for steady bifurcations. 

For this case, the time and area-averaged thermal 

Nusselt number  TNu  and Solute Nusselt number

 SNu are determined and they are given by
 

 2

1
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o
T Tc

T

R R
Nu






                               (53) 

 
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 2 4 2

4 2 2
1 .

2

o
T Tc

S

R R
Nu

  
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 
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 
            

 (54) 

4. RESULTS AND DISCUSSION 

Double-diffusive nonlinear stationary and oscillatory 

convection in an Oldroyd-B fluid layer has been 

investigated using a perturbation method. The 

stability of bifurcating stationary and oscillatory 

solutions is discussed by deriving the cubic Landau 

equations. The criterion for the onset of stationary 

and oscillatory convection is given as the nonlinear 

stability analysis for these cases is based on the 

results of linear instability theory. Both stationary 

and oscillatory onset critical thermal Rayleigh 

numbers coincide at well-defined parametric 

conditions and consequently, a codimension-two 

bifurcation occurs. The results so obtained are 

illustrated on a 2 1 1( , )   - plane in Fig. 1 for 

different values of Pr  when 0.3   and 90SR  . 

The region above each curve corresponds to the 

system unstable under oscillatory convection and 

below which the system is unstable under stationary 

convection. For a fixed value of 2 , the value of 1  

at which codimension-two bifurcation occurs 

decreases with increasing Pr . 
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Fig. 1. Loci of codimension-two bifurcation 

points in the viscoelastic parameters plane for

0.3  , 90SR  . 

 

Figures 2(a) and 2(b) show the variation of  as a 

function of SR for different values of 1 with

2 0.1  and 2 with , respectively which 

correspond to .These figures demonstrate the 

possibility of occurring subcritical stationary 

bifurcation for a range of parametric values 

indicating the occurrence of instability before the 

linear threshold is reached. This is probable, because 

the linear instability analysis provides only sufficient 

condition for instability. In Fig. 2(b), the curve for 

 corresponds to the case of Newtonian 

fluids and  for the Maxwell fluid. The figure 

also shows that for the Newtonian and Maxwell 

fluids the subcritical bifurcation occurs at lower and 

higher values of solute Rayleigh number , 

respectively. Besides, the viscoelastic parameters  

1 0.6 

0.1 

1 2  

2 0 

sR
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Fig. 2. Regions of supercritical and subcritical steady bifurcations for different values of(a) 1  (b) 2

for 0.1  . 
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Fig. 3. Regions of supercritical and subcritical oscillatory bifurcations for different values of (a) 2  (b) 

1  for Pr 10, 0.9   . 

 
exhibit opposing contributions on the range of 

beyond which the subcritical bifurcation is possible. 

The oscillatory supercritical/subcritical bifurcation 

can be determined from the sign of  and for this 

the critical values of   are determined for various 

values of physical parameters. The critical values c  

are accomplished by substituting c and c

obtained from the linear instability theory for 

prescribed parameters in the expression of  . The 

trend of   c versus  sR for different values of 2 ,

1 and Pr  are presented in Figs. 3(a), 3(b) and 4, 

respectively. From the figures it is observed that the 

bifurcation of non-trivial equilibrium oscillatory 

solution becomes subcritical at higher values of sR

with increasing 2 and Pr , while an opposite trend 

could be seen with increasing 1 . 
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Fig. 5. Area-averaged Nusselt numbers TNu   and SNu  for different values of  (a) 1  (b)

 2 when 

0.5  , 100SR  . 
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Fig. 6. Area-and time-averaged Nusselt numbers TNu  and SNu for different values of (a) Pr  (b)
 1  

(c)
 2 when 0.1  , 100SR  . 

 
 

The effects of elastic parameters on heat and mass 

transfer characteristics are summarized in Figs. 5(a, 

b) in terms of space averaged Nusselt numbers for 

stationary case. From these figures it is observed that 

the Nusselt numbers increase with increasing

T TcR R . The effect of increasing 1  (Fig. 5a) is to 

decrease the Nusselt number while increase in 2  

(Fig. 5b) exhibits an opposite kind of behavior. The 

curves of Nusselt numbers shown for equal values of
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1 and 2 correspond to the Newtonian case which 

lies well above their respective curves for 1 2   . 

Thus heat and mass transfer is more vigor in 

Newtonian fluids compared to viscoelastic fluids.  

Figures 6(a-c) illustrate that heat and mass transfer 

rates increase with an increase in the value of 

relaxation parameter and a decrease in the retardation 

parameter as well as the Prandtl number. In either of 

the cases it is observed that T SNu Nu . 

5. CONCLUSIONS 

A weakly nonlinear stability of double-diffusive 

stationary and oscillatory convection in a 

viscoelastic fluid layer considering the Oldroyd-B 

constitutive equation is investigated. The cubic 

Landau equations are derived and the stability of 

stationary and oscillatory bifurcations in the 

neighborhood of their critical values is analyzed. The 

main observations are pointed out below. 

 A codimension-two bifurcation occurs at well-

defined parametric conditions and the value of 

1
 at which it occurs decreases with increasing 

Prandtl number in the viscoelastic parameters 

plane. 

 The viscoelastic parameters influence the 

stability of stationary bifurcation despite their  

effect is not felt on the stationary onset. The 

stationary bifurcation depends on viscoelastic 

parameters and both subcritical and 

supercritical bifurcations occur over a certain 

range of parameters. If the additional solute 

concentration field is destabilizing, then the 

stationary bifurcation always bifurcates 

supercritically. 

 The oscillatory bifurcating solution becomes 

subcritical at higher values of solute Rayleigh 

number with increasing retardation parameter 

and Prandtl number, while an opposite trend 

could be seen with increasing relaxation 

parameter. 

 Heat and mass transfer increases with 

increasing retardation parameter and 

decreasing relaxation parameter in the 

stationary case, while an opposite kind of 

behavior is noticed in the oscillatory case. The 

effect of increasing Prandtl number is to 

decrease the Nusselt numbers. 
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