
 

 
Journal of Applied Fluid Mechanics, Vol. 12, No. 2, pp. 319-326, 2019.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

DOI: 10.29252/jafm.12.02.29108 

 

Numerical Modelling of Transport Phenomena and 

Macrosegregation during Ternary Alloy Solidification: 

Solutal Undercooling Effects 
S. Ganguly† 

R &D, Tata Steel Ltd., Jamshedpur, Jharkhand, 831007, India 

†Corresponding Author Email: suva_112@yahoo.co.in 

(Received April 17, 2018; accepted September 2, 2018) 

ABSTRACT 

In this paper, a macroscopic mathematical model is developed for simulation of transport phenomena during 

ternary alloy solidification processes, taking into account non-equilibrium effects due to solutal undercooling. 

The model is based on a fixed-grid, enthalpy-based, control volume approach. Microscopic features 

pertaining to non-eFquilibrium effects on account of solutal undercooling are incorporated through a novel 

formulation of a modified partition coefficient. The effective partition coefficient is numerically modeled by 

means of macroscopic parameters related to the solidifying domain. Numerical simulations are performed for 

ternary steel alloy by employing the present model and the resulting convection and macrosegregation 

patterns are analyzed. It is observed that the consideration of non-equilibrium solidification in the present 

mathematical approach is able to capture the thermo-solutal convection and leads to prediction of accurate 

value of macrosegregation. The results from the present model matches well with the experimental 

observations published in the literature. 
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NOMENCLATURE 

Nomenclature should be in alphabetic order (A – Z) and Greek letters should follow after Latin letters in 

alphabetic order (α β ...). 

C species concentration 

c specific heat 

D diffusion coefficient 

f mass fraction 

g volume fraction  

h specific enthalpy 

ch  convective heat transfer coefficient 

H  latent enthalpy 

K permeability  

L latent heat 

T temperature 

u velocity component in x-dierction 

v velocity component in y-direction 

 

 dynamic viscosity 

ρ density 

 

  
 

1. INTRODUCTION 

Research efforts towards accurate mathematical 

modelling of alloy solidification process have been 

reported in the past (Prescott and Incropera 1996; 

Choudhary and Mazumdar 1994; Kang et al. 2005; 

Ganaoui et al. 2002; Ganguly et al. 2013). The role 

of macroscopic transport phenomena during 

solidification has been discussed in detail by many 

researchers (Brent et al. 1988; Ganesan and Poirier 

1990). The freezing of a solid involves many 

complex physical issues which determine the 

transport behavior governing the phase-transition 

process during solidification. The interactions of the 

solidifying melt with the two-phase mushy region in 

the presence of both temperature gradient and solute 

concentration gradient produces a resultant flow 

known as double-diffusive convection. This 

thermo-solutal convection drives the rejected solute 

elements away from the solid-liquid interface 

leading to a composition variation in the domain, 

thereby giving rise to macrosegregation (Flemings 

1974).    

Several studies have been undertaken to 

characterize the fluid flow and the development of 

macrosegregation during solidification. Initial 

studies started with moving-grid multiple-domain 

formulations (Gadgil and Gobin 1984), followed by 
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single-domain continuum formulation (Bennon and 

Incropera 1987; Voller et al. 1989). These studies 

have highlighted the important role of thermo-

solutal convection in the long-range transport of 

solute and final macrosegregation pattern. An 

important aspect in this context is proper accounting 

of microscopic issues in the macroscopic model that 

dictate the macrosegregation behavior of the cast 

product. Prediction of local solute redistribution is 

generally given by Scheils equation (Flemings 

1974) and is widely accepted. The model proposed 

by Brody and Flemings (1966) takes into 

consideration the diffusion in the solid phase and 

provides an improvement of the Scheils model. 

Clyne and Kurz (1981) presented a model for solute 

redistribution with rapid solid state diffusion. 

Kobayashi (1988) presented a modified 

microsegregation model under the conditions of 

constant diffusion coefficient of solute in the solid, 

constant equilibrium partition-ratio, and parabolic 

growth. It can be noted here that during 

solidification, due to finite diffusivity in the liquid 

phase, there may be accumulation of solute within a 

diffusion boundary layer adjacent to the interface. 

This gives rise to a concentration gradient at the 

interface, which in turn, causes a local change in the 

liquidus temperature. This is commonly known as 

solutal undercooling, and is primarily governed by 

liquid species diffusivity, dendrite growth rate, 

thickness of the solutal boundary layer and the 

interface geometry (Rappaz 1989; Chakraborty et 

al. 2002). In all the previous studies, solutal 

undercooling effect is essentially neglected while 

modelling solidification. However, for accurate 

prediction of the final macrosegregation pattern in 

the solidified product, it is imperative that 

macroscopic model for multicomponent systems 

should represent pertinent microscopic issues within 

the macroscopic framework in a metallurgically 

consistent manner. Although there are attempts to 

incorporate the effect of solutal undercooling 

through ‘micro-macro modelling’ (Rappaz 1989), 

similar considerations in the framework of 

macroscopic modelling of multicomponent 

solidification is very rare. Also, model for ternary 

alloy systems, which can characterize relevant 

microscopic issues in the macroscopic framework 

in the presence of convective flow field, is not yet 

available in the literature. Towards this, the present 

research endeavour is a novel attempt to capture the 

intricate characteristics of non-equilibrium 

solidification, flow and macrosegregation.  

In the present work, a macroscopic mathematical 

model for ternary alloy solidification is developed, 

with particular emphasis on non-equilibrium 

solidification considerations. The numerical 

approach is essentially based on fixed-grid 

enthalpy-based continuum formulation (Bennon and 

Incropera 1987; Voller et al. 1989). Microscopic 

features arising out of non-equilibrium effects due 

to solutal undercooling are incorporated through a 

novel formulation of modified partition-coefficient. 

The numerical implementation of the proposed 

algorithm correlates the microscopic features with 

the overall convection field, thereby presenting a 

method for accurate prediction of final 

macrosegregation behavior.  

2. MATHEMATICAL MODELLING 

The following section outlines the mathematical 

modelling procedure and the solution techniques.  

2.1 Governing Equations 

A two-dimensional rectangular mould containing 

liquid ternary metal alloy is considered, where the 

boundary walls are subjected to different heat 

transfer conditions as depicted in Fig. 1. 

Unidirectional solidification takes place from the 

left boundary with the initial and boundary 

conditions shown in Fig. 1.  

 

 
Fig. 1. Computational domain with boundary 

specifications. 

 

Following a fixed-grid continuum formulation with 

a single-domain approach (Bennon and Incropera 

1987), the governing equations for mass, 

momentum, energy and species transport can be 

written as follows 

  0



u

t




                                                  (1) 

bu

l

l SSpuuu
t

u















 








)(

)(

                                                                               (2) 

Equations (1) and (2) are continuity equation and 

momentum equation respectively. 

Here  , u


, , p , are the density, velocity, 

viscosity, and pressure respectively, and the 

subscript ‘ l ’ denotes the liquid phase. In Eq. (2), 

uS  denotes source term representing the flow 

resistance in the multiphase region and is a function 

of the morphology of the solid-liquid mushy region. 

These source terms are evaluated from Darcy’s 

model (Morvan et al. 1999) of viscous flow through 

a porous medium (assuming zero velocity of solid 

phase and isotropic permeability) as, 

l
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                                                          (3) 

 

where 
iS  denotes the source term corresponding to 
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velocity 
iu  

in the appropriate direction and K  is 

permeability. For the purpose of modeling the 

above term, K is prescribed as a function of liquid 

volume fraction (
lg ). Towards this, the Carman-

Kozeny relation (Brent et al. 1988) is used within a 

range of validity of 5.00  lg , i.e., 

 2

3

0
1 l

l

g

g
KK


                                                  (4) 

Here, 
oK is porosity constant. It may be mentioned 

here that the above-mentioned Carman-Kozeny 

relation is found to be reasonably valid till the 

liquid fraction (
lg ) attains a value of 0.5, which is 

the critical value of liquid fraction ( cr

lg ) for 

application of the Carman-Kozeny model. For 

5.0lg , a hybrid model is used (Morvan et al. 

1999),  
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Here, F and G are described according to the 

rheology of suspensions (Brenner 1970) as, 
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lg                                                     (8) 

Here, cr

lg  is the critical liquid fraction for 

application of Carman-Kozeny equation. It is 

worthwhile to mention here that in accordance with 

the physics of dendritic morphology occurring due 

to the evolution of solid dendrites in liquid matrix 

during phase change phenomena in multicomponent 

solidifying system (Morvan et al. 1999) several 

models are used in contemporary literature for 

accurate prediction of mushy zone flow physics 

(Oldenburg et al. 1992) and associated rheological 

characteristics (Brenner 1970). The rheology of 

suspensions (Brenner 1970) of solid in a liquid is a 

complex function of its physical properties and of 

processes that occur on the scale of the suspended 

solid particle morphology. Some important factors 

are volume fraction of different constituent phases, 

phase/particle interaction, nature of bulk flow field. 

In the present study, depending on the volume 

fraction of the liquid in the phase-changing domain, 

different functional forms describing the physics of 

solid-liquid interaction are identified for appropriate 

modelling of mushy zone fluid flow. Accordingly, 

depending on the local liquid volume fraction, 

permeability factor is determined and Eqs. (3) - (7) 

is used to evaluate the solid-liquid interaction force.  

The buoyancy source term,
bS , in Eq. (2), 

constitutes of both thermal and solutal effects, and 

is given by the differences between local and initial 

values of temperature and liquid solute 

concentrations, respectively. In the present context, 

density and concentrations are implicitly related 

through Boussinesq approximation, following the 

conventional assumption that the important density 

changes are those associated with buoyancy force in 

the liquid (solutal buoyancy and thermal buoyancy) 

(Ganaoui et al. 2002; Prescott and Incropera 1996). 

In the case of a ternary alloy, the buoyancy term in 

Eq. (2) can be written as: 

Sb= 

)]()()([ 022210110 CCCCTTg lslsT     

                                                                               (9) 

Here, 
T and 

s  are the thermal volumetric 

coefficient of expansion and solutal volumetric 

coefficient of expansion respectively, 
0T  is the 

initial temperature, and 
0C  is the initial solute 

concentration. Subscript ‘1’ and ‘2’ refer to element 

1 and element 2 respectively. 

The thermal energy conservation equation is given 

as follows: 
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where, 
,kTkk ck and H is the latent enthalpy. 

here, g denotes volume fraction, and subscripts l 

and s corresponds to liquid and solid phases 

respectively. T is the temperature, c is the specific 

heat, and k is the thermal conductivity.  

The species conservation equation is given as 

follows: 
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Here, D  is the mass diffusion coefficient and 
cS  is 

the source term. Equation (11) represents the 

general form of species conservation equation and 

is determined by the microstructure under 

consideration. In case of non-equilibrium 

solidification represented by a columnar dendritic 

microstructure, we have 

 llpss DgkDgD                                        (12) 
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In the present case of a ternary alloy system, two 

independent species transport equations need to be 

considered; one equation for each constituent 

species. The relevant boundary conditions are as 

follows: 

Left wall: u =0, v =0,  c

T
k h T T

x



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
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xCl  1)( =0, xCl  2)( =0                               (14) 

Right wall: u =0, v =0, 0
T

x





, xCl  1)( =0, 

xCl  2)(  =0                                                     (15) 

Top wall: u =0, v =0, 0




y

T , yCl  1)( =0, 

yCl  2)( =0                                                      (16) 

Bottom wall: u=0, v=0, 0




y

T , 

yCl  1)( =0, yCl  2)( =0                              (17) 

Here, u and v  are velocity components along x-axis 

and y-axis respectively, 
ch  is the convective heat 

transfer coefficient. The initial conditions are 

written as: 

 At t=0, u=0, T =Ti , ( Cl )1= ( Ci )1, ( Cl )2 = ( Ci )2    

                                                                             (18) 

2.2 Modelling of Solutal Undercooling 

For the purpose of modelling the microscopic 

advection effects, partition coefficient  
pk  

in Eq. 

(13) has to be appropriately modified. The basis of 

such modification lies on the physics of 

macroscopic solidification models using the lever 

rule or Scheil’s equation describing the microscopic 

solute conservation, with the assumption of well-

mixed solute in the liquid state. In practice, the 

solute gets accumulated on the liquid phase within 

diffusion boundary layer next to the interface. This 

gives rise to ‘solutal undercooling’, which can be 

quantified as the difference between the interfacial 

and volume-averaged liquid species concentration. 

This primarily refers to a change in local liquidus 

temperature due to the change in species 

concentration and depend on the thermodynamic 

and physical properties, such as diffusivity, 

boundary layer thickness, morphological 

parameters, volume fraction etc. Solutal boundary 

layer characteristics at the interface affects the 

solute distribution in the bulk domain, which, again 

affects the convective flow field, resulting in overall 
macrosegregation pattern. Incorporation of such 

considerations in the macroscopic modeling 

framework calls for devising a method to capture 

the effect of solutal undercooling. Towards this, an 

effective partition coefficient 

pk( ) is defined and 

correlated with the equilibrium partition coefficient 

)( pk as  

   lDR
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p
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k
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1                                   (19)    

Here 
pk  is given by the ratio of solid composition 

to bulk liquid composition, R is the rate of interface 

movement,   is the diffusion boundary layer 

thickness, 
lD is diffusion coefficient in the liquid 

phase. Equation (19) assumes immense significance 

as it relates the composition of solid to the alloy 

composition and growth conditions. The parameter 

 lDR  is often defined as the local solutal Peclet 

number and takes into account the effect of solutal 

undercooling. Above consideration is necessary to 

determine the overall flow behavior, and the final 

macro-segregation pattern. 

3. NUMERICAL MODELLING 

The coupled governing differential equations 

described in the preceding section are solved using 

a finite volume methodology (Patankar 1980).  The 

transport equations are solved according to the 

SIMPLER algorithm (Patankar 1980). The above 

algorithm is appropriately modified to account for 

phase change considerations during non-

equilibrium solidification due to solutal 

undercooling. This is achieved by modification of 

partition coefficient for convective effects in the 

algorithm. For the purpose of implementation, it is 

important to characterize the ratio of advection to 

diffusion strength defining the solutal Peclet 

number  lDRPe  . The convective strength 

can be expressed as AV  , where   is phase 

change rate per unit volume,  V  is the volume of 

the control volume, A  is the solid-liquid 

interfacial area. The diffusion strength can be 

defined as 
refL lD , where 

refl is the diffusion 

length scale in the liquid. The liquid-phase mass 

conservation equation is discretized to obtain the 

phase change rate as: 

 
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An implicit forward differencing scheme is adopted 

to discretize the transient term in Eq. (20). The 

convective source term is discretized using upwind 

formulation. 

The strength of diffusive transport can be properly 

evaluated with prescription of macroscopic 

estimates of diffusion length scale made as, 

t
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where x


 is the location of the mushy-liquid 

interface and t is the time step.  

For accurate prediction of the liquid fraction in the 

present enthalpy-based approach, the latent heat 

content of each computational cell is updated 

according to the temperature and/or species 

concentration values predicted by macroscopic 

conservation equations, during each iteration within 

a time step. In the present context, an iterative 

update scheme (Brent et al. 1988), is adopted as, 

1][  nPH =
nPH ][ + 

]}{}[{ 1

0 nPpnp
P

P HFch
a

a
                        (22) 

where 
PH  is the latent heat content of the  
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Table 1 Thermodynamic parameters of elements for ternary alloy 

Element 
Carbon 

(C ) 

Manganese 

(Mn) 

Nickel 

(Ni) 

Cin  (Wt %) 0.08 0.1 0.1 

s (1/Wt %) 1.10 × 10-2 
1.92 × 

10-3 
6.85 ×  10-4 

Dl  (m2/s) 
2.0× 

10-9 
2.0×  10-9 2.0×  10-9 

Ds  (m2/s) 5.6 ×  10-10 1.2 ×  10-13 1.9 ×  10-13 

ll CT  (K/Wt%) -78 -3.32 -1.6 

kp 0.34 0.75 0.94 

 

 

computational cell around grid point P, h is the 

sensible enthalpy, pc is the specific heat,  is a 

relaxation factor, n is the iteration level, 
pa and 

pa0  are the coefficients of the finite volume 

discretization equation (Patankar 1980), and 1F is 

the inverse of the latent heat function. It is to be 

noted here that in the above equation, 1F  needs to 

be devised consistently with the microscopic 

physics followed in the present mathematical 

formulation, so that accurate results pertaining to 

specific solidification model is obtained. For the 

non-equilibrium solidification situation with solutal 

undercooling, the function 1F  can be expressed  

as                 

   
1

1
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
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

 
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Lmpmp
L

H
TTcTcHF        (23) 

where pc  is the specific heat of the mixture, L is 

the latent heat, mT  is the melting point of the 

solvent, LT  is the liquidus temperature, and 


pk
 
is 

the effective partition coefficient.  

4. RESULTS & DISCUSSIONS 

Numerical simulations are performed for the case of 

a (Fe-0.08wt%C-0.1wt%Mn) steel alloy with iron, 

carbon and manganese as the constituent elements. 

The liquidus temperature of the ternary steel alloy 

system for the present case is 1805 K, while the 

melt initially is at a uniform temperature of 1830K 

inside the domain. The heat transfer coefficient (hc) 

at the left wall is taken as 125 W/m2.K. Table 1 

summarizes the species-dependent thermodynamic 

characteristics, as adopted in the present work. The 

relevant thermophysical properties for steel are 

listed in Table 2. Different grid sizes (40 × 40, 60 × 

60 and 100 × 100) are used for the resolution of the 

computational domain of size (0.1 m × 0.1 m) to 

check for grid independence. For this purpose, 

magnitude of variation of solute concentration in 

the liquid is examined for optimum solution. It has 

been observed that the grid size of 60 × 60 produces 

computationally economical results with a variation 

of 0.25% among all the different cases studied in 

the present investigation. It is also found that further 

refinement in grid spacing does not alter the 

numerical predictions appreciably. 

Table 2 Thermophysical properties of steel 

Parameter Value 

Specific heat (c ) 787 J/Kg. K 

Thermal conductivity of 

solid (ks) 
30 W/m.K 

Thermal conductivity of 

liquid (kl) 
27 W/m.K 

Thermal expansion 

coefficient (
T ) 2.0 × 10-4 K-1 

Density (  ) 7300 kg/m3 

Viscosity ( ) 6.0 × 10-4 kg/m.s 

Latent heat of fusion (L) 270 × 103 J/kg 

 

Figure 2 depicts the convection pattern for the 

selected alloy system, at time, t=120 s after 

beginning of solidification. Once cooling is started 

at the left vertical wall of the mould, the cold and 

dense fluid descends along the interface and turns 

near the bottom of the cavity, as demonstrated by 

the streamlines in Fig. 2. The streamlines show that 

the flow in the bulk melt is primarily 

counterclockwise, with a net downward flow 

occurring near the interface. With progress in 

solidification, rejected solute tends to reduce the 

mushy zone fluid density  and guides the fluid in 

the upward direction. The streamlines also show the 

development of a minor vortex due to solutal 

buoyancy effects near the bottom corner of the 

cavity. The development of this minor vortex is due 

to solutal gradient build-up caused by the 

transportation of solute by the thermal buoyancy 

driven major vortex. 

 

 
Fig. 2. Streamfunction plots at time =120 s for 

Fe-C-Mn steel alloy. 
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Figure 3 illustrates the composition variation of 

carbon along the longitudinal (x-axis) direction at 

different time intervals during the solidification of 

the present alloy system. For the purpose of 

comparison, present results are plotted along with 

those without the convection-correction of the 

partition-coefficient.  

Figures 3(a)-3(b) shows the composition 

variation at t=100 s and t=200 s respectively, and 

at a vertical location y=0.05m. Rejection of 

solute during solidification leads to a sharp 

increase in solute concentration near the 

interface. The thermally driven flow, being 

dominant, carries the rejected solute downward 

along the interface giving rise to a composition 

variation. When the solutal undercooling effects 

are not considered, the global double-diffusive 

convection effects primarily controls the bulk 

fluid flow in the domain. However, with the 

consideration of solutal undercooling (present 

model), there is an additional influence of solutal 

convection due to solute build-up at the tip of the 

solidified dendrites. Owing to enhanced strength 

of resultant convective flow, the rejected solute 

species are transported more effectively resulting 

in composition variation in the domain. 

Neglecting such non-equilibrium effects due to 

undercooling may lead to the prediction of almost 

homogeneous composition distribution in the 

bulk domain with a flatter curve, as depicted in 

Fig. 3. Similar behavior is also observed for the 

composition variation of the other elements.  

 

 
 

 
Fig. 3. Variation of liquid concentration in terms 

of mass fraction of solute (carbon) (a) at t = 100 

sec (b) at t = 200 sec. 

 

Figure 4 illustrates the development of 

macrosegregation of the constituent elements during 

solidification. Macrosegregation effects are 

calculated as follows: 

21
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where the subscript ‘ i ’ denotes solute element 

under concern. 

Figure 4(a) shows the macrosegregation of 

carbon and manganese for Fe-0.08wt% C-

0.1wt%Mn alloy  In order to better quantify the 

novel simulation model developed in the present 

study, a separate case study is undertaken by 

changing the solute composition of the alloy 

system. Accordingly, Fig. 4(b) depicts the 

macrosegregation development for Fe-0.08wt% 

C-0.1wt%Ni alloy, for which the thermodynamic 

parameters are given in Table 1. Figures 4(a)-

4(b) also compares the present model results with 

the case when no solutal undercooling effects are 

considered. For the particular case when the 

solutal undercooling effects are not incorporated 

in the model (i.e. no correction of pk ), the level 

of solute redistribution shows an initial rising 

trend, followed by asymptotic saturation of the 

concentration distribution. On the other hand, 

with the inclusion of non-equilibrium effects due 

to solutal undercooling, the additional strength of 

solutal convection intensifies the overall 

advective transport of the solute species in the 

flow domain, thereby giving rise to an enhanced 

value of macrosegregation. The solute 

concentration profile shows a rising trend for 

both the case studies as compared to the case 

when no solutal undercooling are considered. 

Overall, the macrosegregation distributions for 

the elements (carbon, manganese and nickel) are 

analogous with the segregation intensity 

depending on the partition coefficient of the 

element. In the alloy under consideration in the 

present study, the Mc value (i.e carbon 

macrosegregation) is higher than 
MnM  (i.e 

macrosegregation for manganese) and 
NiM  (i.e 

macrosegregation for nickel), as seen from the 

Figs. 4(a)-4(b). 

A comparative study between existing 

experimental data (Ferreira et al.2004) and 

present numerical simulation is performed. The 

reported experimental data in the literature refers 

to solidification of a ternary alloy system in a 

vertical water-cooled mold (Ferreira et al.2004). 

The casting assembly is a directionally solidified 

water-cooled mould and experiments were 

performed with Al8.1wt%-Cu3wt%-Si alloy, 

under controlled solidification conditions. The 

thermophysical properties of this alloy are given 

in Table 3.  

Figure 5 compares the simulated macrosegregation 

level of copper and the corresponding experimental 

results (Ferreira et al.2004). It is observed that the 

predictions from the present model agrees well with 
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the corresponding experimental results; the average 

error being less than 0.5%, and the maximum 

difference is no more than 3.8% from the literature. 

It can be deduced from the preceding observation 

that the consideration of nonequilibrium phenomena 

arising out of solutal undercooling renders better 

predictive ability to the present model which lead to 

more accurate determination of the 

macrosegregation characteristics. 

 
Table 3 Thermophysical properties of the Al-Cu-

Si alloy 

Parameter Value 

Specific heat (c ) 1089 J/Kg. K 

Thermal conductivity of 

solid (ks) 

191 W/m.K 

Thermal conductivity of 

liquid (kl) 

88 W/m.K 

Solute Diffusivity (D) 3.5 ×  10-9 m2/s 

  

Density (  ) 2698 kg/m3 

Partition coefficient 

(Cu/Si) 

0.1015/0.1052 

 

Liquidus slope (Cu/Si) -3.39/-6.646 K/Wt% 

Latent heat of fusion (L) 380 J/kg 

 

 

 
Fig. 4(a). Predicted carbon and manganese 

macrosegregation levels during solidification. 

 

 
Fig. 4(b). Predicted carbon and nickel 

macrosegregation levels during solidification. 
 

 
Fig. 5. Comparison between experimental results 

and numerical predictions. 
 

5. CONCLUSION 

In the present work, a macroscopic mathematical 

model is developed for studying transport 

phenomena and macrosegregation during ternary 

alloy solidification process. An attempt has been 

made to capture the non-equilibrium effects due to 

solutal undercooling by adopting a novel 

methodology based on fixed-grid, enthalpy-control 

volume approach. Numerical simulation for 

multicomponent steel alloy solidification is 

undertaken and the overall transport behaviour and 

macrosegregation characteristics are analysed. 

Evolution of segregation patterns indicates the 

nature of composition distribution in the solidifying 

domain and provides quantitative estimation of the 

macrosegregation. Simulation case-studies points 

towards the fact that the non-equilibrium effects on 

account of solutal undercooling strengthen the 

advective effect, which in turn can lead to enhanced 

value of macrosegregation. The model predicted 

results are also compared with the available 

experimental data and good match can be observed.  
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