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ABSTRACT 

Free convection around cold circular cylinder above an adiabatic plate at steady-state condition has been 

investigated both numerically and by artificial neural networks. There is a growing demand for a better 

understanding of free convection from a horizontal cylinder in the areas like air cooling, refrigeration and air 

conditioning system, etc. Governing equations are solved in some specified cases by finite volume method to 

generate the database for training the neural network in the range of Rayleigh numbers of 105 to 108 and a 

range of cylinder distance from adiabatic plate (L/D) of 1/4, 1/2, 1/1, 3/2 and 4/2, thereafter a Multi-Layer 

Perceptron network is used to capture the behavior of flow and temperature fields and then generalized this 

behavior to predict the flow and temperature fields for other Rayleigh numbers. Different training algorithms 

are used and it is found that the back-propagation method with Levenberg-Marquardt learning rule is the best 

algorithm regarding the faster training procedure. It is observed that ANN can be used more efficiently to 

determine cold plume and thermal field in less computational time and with an excellent agreement. From 

obtained results, average Nusselt number of the cylinder investigated to study the effect of adiabatic wall on 

the isothermal cylinder. It also observed that in spaces farther than L/D = 3/2, average Nusselt number is 

almost constant, so the affect is renouncement and it works like a cylinder in an infinite environment. 
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1. INTRODUCTION 

In this research a numerical methods and neural 

network analysis are used for two-dimensional 

laminar free convection from an isothermal cold 

circular horizontal cylinder above an adiabatic plate 

under steady state that is used in the many 

applications such as energy storage systems, air 

conditioning, air cooling, solar heating and cooling, 

natural circulation, etc. Previous investigations used 

different kinds of methodologies for the hot 

cylinder, while hear the case studied when the 

temperature of the cylinder surface is below the 

surrounding one. 

Artificial neural networks originate from the works 

of McCulloch and Pitts (1990) who demonstrated 

the ability of interconnected neurons to calculate 

some logical functions. For further detail analysis, 

to reduce cost of studies and saving computational 

time, soft programming methods new approaches 

such as Artificial Neural Networks can be an 

alternative and a new attempt. Artificial Neural 

Networks have been used by various researchers for 

modeling and predictions in the field of energy 

engineering systems.  

The most important problems in engineering 

applications such as heat exchangers, boiler design 

and air cooling systems for air conditioning are 

study of natural convection heat transfer. Natural 

convection heat transfer from a horizontal cylinder 

has been studied numerically and experimentally 

for over 50 years but it is reported by the 

researchers (Atayılmaz et al. 2010) that the 

obtained results show high levels of deviation 

among each other due to various reasons. 

Yamamoto et al. (2004) studied Natural convection 

around a horizontal circular pipe coupled with heat 

conduction in the solid structure. One of the 

foremost studies on the neural networks took place 

by Thibault et al. (1991). They introduced the 

artificial neural networks and solved three problems 

by this method to prove that it has a complete and 

exact result. One of the best problems that could 

explain the competence of neural networks was 

solved by Heckel et al. They worked on the 

convection of the vertical cylinders. It was a 

complicated problem contained 32 parameters in 

nonlinear equations. 

http://www.jafmonline.net/
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Recently, artificial neural networks are used to 

simulate and predict the behavior of computational 

and experimental mass/heat transfer phenomena 

(Temeyer et al. 2003; Hasiloglu et al. 2004; Varol 

et al. 2007) and for fluid flow (Firat and Goungor 

2007). Saito et al. (1969) in several experiments for 

Grashof numbers of 2×106 to 3×106, investigate the 

effect of adiabatic plate above heated horizontal 

cylinder. Their results show that the rate of heat 

transfer is minimized when the ratio of cylinder 

distance from plate to its diameter is about 0.12. 

Free convection heat transfer from the hot pipe 

below an isothermal surface for Rayleigh numbers 

of 103 to 105 and 1/10 < L/D < 1/2 is studied by 

Lawrence et al. (1999). Results show that when the 

distance between pipe and surface is greater than 

the diameter of the pipe, the effect of the surface on 

the heat transfer rate of the pipe is negligible. They 

also report that Nusselt number increases for 

spacing of about L/D = 1/4.  

In another study, Ashjaee et al. (2007) used an 

interferometer to investigate free convection from a 

cylinder below an adiabatic wall for Rayleigh 

numbers of 1000 to 40000. Their results show that 

for L/D > 3/2 the effect of the wall on cylinder heat 

transfer is negligible. These results are validated in 

similar investigations on free convection heat 

transfer from a horizontal circular cylinder 

(Sadeghipour and Razi 2000, Correa et al. 2005) 

and vertical confining surfaces (Atmane et al. 

2003). 

Also, the artificial neural network is used for 

modeling natural cooling of single and multiple 

horizontal cylinders by Tahavvor and Yaghoubi 

(2008). This method is also employed by Tahavvor 

and Yaghoubi (2009; 2011) to simulate the early-

stage of frost formation over a cold horizontal 

cylinder. 

From the review of the literature, it can be observed 

that ANN scheme has rarely employed for natural 

convection of cold cylinder and an adiabatic plate 

procedure. Therefore, in this study, a computational 

procedure based on finite volume method and 

neural network analysis is used to simulate the free 

convection heat transfer from a cold horizontal 

cylinder located above an adiabatic wall. This 

configuration is used in many industrial 

applications such as refrigeration industries, 

chemical industries, power plants, and anywhere 

which is required to transfer a fluid from one 

location to another. 

2. PROBLEM DEFINITION 

Figures 1 and 2 show the geometry for a horizontal 

cylinder above an adiabatic wall surrounded by 

ambient air, and its grid generated for the CFD in 

five geometries, respectively. It is obvious that the 

mesh centralization and compression is around the 

cylinder and adiabatic plate. 

Figure 3 shows the boundary conditions in CFD 

solution. The temperature of cylinder surface (Ts) is 

assumed to be lower than ambient air temperature 

(T∞). Since the flow is symmetric about a vertical 

plane passing through the center of the cylinder, the 

half-plane is considered. Therefore, the solution 

domain is bounded by half of adiabatic wall, half-

cylinder surface, lines of symmetry, and the outer 

boundaries (Fig. 3). 

 

 
Fig. 1. Geometry. 

 

 

2.1 Governing Equations 

The governing equations based on Boussinesq 

approximation for 2D, steady, and laminar free 

convection around a horizontal cylinder in non-

dimensional form are as follows: 
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In the above equations, Ts and T∞ are cylinder 

surface and ambient temperature respectively. Also, 

R and θ denote the dimensionless coordinate of the 

cylindrical coordinate system and Ψ, ∅, ω, Ra, and 

Pr are polar stream function, dimensionless 

temperature, vorticity, Rayleigh number and Prandtl 

number respectively. 

The Boussinesq approximation is defined as: 

 

ρ ≈ ρ∞[1 − β(T − T∞) + ⋯ ]               (4a) 

β = −
1

ρ
(

∂ρ

∂T
)

P
                 (4b) 

where ρ∞ and β indicate the ambient density and 

thermal expansion coefficient respectively. 

Governing equations are solved using finite volume 

method. Average and local Nusselt numbers are 

defined as follows: 

NuD =
hD

k
                      (5) 
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(a)                                                         (b)                                                         (c)  

        
(d)                                                    (e) 

Fig. 2. Generated grid for five geometries. 

 

 
Fig. 3. Boundary conditions for CFD simulation. 

 

 
Fig. 4. Three layer feedforward artificial neural network. 

 

 

NuD =
1

π
∫ NuD

π

0
(θ)dθ =

q′′
w,DD

∆T k
                (6) 

Where h, D, and k are the convection heat transfer 

coefficient, cylinder diameter and air thermal 

conductivity coefficient respectively. 

As it is known the flows that appeared because of 

the density difference that occurred in the case of 

temperature difference are the free convection 

flows, and it is occurred in (104 ≤ Ra ≤ 108) for 

the horizontal cylinders. Hear the problem solved 

in(105 ≤ Ra ≤ 107) by CFD method, in three 

different Ra's and five different geometries, each 

one in different distance between cylinder and 

adiabatic wall. Equation (7) shows the Ra equation 

that give us the temperature difference, if thermal 

diffusivity coefficient (α), kinematic viscosity (ν), 

and thermal expansion coefficient (β) values are 

read in film temperature. 

RaD =
gβ(T∞−Ts)D3

αν
                   (7) 

2.2 Boundary Conditions 

Boundary conditions are applied on boundaries of 

model as follows: 

 On the symmetry lines: All the normal gradients 

are equal to zero ψ = 0,
∂ψ

∂θ
= 0, ω = 0 
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 On the isothermal cylinder surface: No-slip and 

No-jump conditions are confirmed ψ = 0, ∅ =

0, ω = −
∂2ψ

∂R2
 

 On the outer region boundary: The pressure 

constant condition is established, while the 

pressure assumes the atmospheric one 

 On the adiabatic wall: It supposed to be 

completely insulated 
∂∅

∂θ
= 0 

2.3 Artificial Neural Networks 

Artificial neural network (ANN) is a recommended 

method for complex problems. By using this 

method, we generalize examples and predict 

continuation with a high rate. After applying 

numerical methods, output data's are used as a 

target for an appropriate neural network. Upon 

obtaining suitable results for each 15 states by 

numerical methods, the results are transferred in 

order to design an integrated new neural network 

for all range points to ordinary programming 

software.  

Figure 4 shows a view of the network used.  

As shown in this figure, the input matrix (p) 

contains three rows x-coordinate and y-coordinate 

of the nodes and Ra, which are the numerical results 

of fifteen desired range of temperatures and 

locations.  The target matrix (a3) also includes three 

rows of static temperature and velocity components 

(T, u, v) corresponding to the input nodes. The 

weights (w1, w2, and w3) and biases (b1, b2, and 

b3) are embedded in such a way that the lowest 

error between the target function and network 

output are seen. The input and the target have been 

coded such that the numbers are between zero and 

one. Thus, the logistic function (f1 and f2) can be 

used as a sigmoid transfer function in the hidden 

layers. The neural network used in the project is a 

three-layer neuron, two hidden layers and an output 

layer that has benefited from the linear transfer 

function (f3). It should be noted that after some trial 

and error, the above network with 15 and 10 

neurons in the hidden layers providing the lowest 

error rate, was accepted. Table 1 shows the network 

training parameters and its architecture which are 

used in this study. 

 

Table 1 ANN architecture and training 

parameters of neural networks used in this study 
Number of layers 3 

Activation 

functions 

Input layer: logistic sigmoid 

Hidden layer: logistic sigmoid 

Output: linear 

Number of neuron 

Input layer: 10 

Hidden layer: 15 

Output: 3 

Learning rule Levenberg-Marquardt 

Learning rule 

factor 

Decreasing: 0.1 

Increasing: 10 

Mean squared 

error goal 
10-5 

 

As mentioned before, to study the current project 

the back-propagation algorithm with Levenberg-

Marquardt learning rule was used as it is faster than 

other functions, uses less memory and has high 

accuracy. This algorithm is a gradient descent 

procedure, which is iterative tries to minimize the 

error criteria such as mean/sum square error 

between the predicted and desired output. The 

performance function in the Levenberg-Marquardt 

method is as follows: 

𝐹(𝑤) =  ∑ ∑ (𝐷𝑖𝑗 − 𝐴𝑖𝑗)
2𝐽

𝑗=1
𝐼
𝑖=1                  (8) 

The input argument of function F is the weights and 

biases. I and J are the number of pattern and number 

of outputs respectively and Dij and Aij are the 

desired and actual values of the ith output and jth 

pattern. 

Weights and biases are determined from the 

following relation: 

𝑤𝑖+1 = 𝑤𝑖 − (𝐻 + 𝛼𝑖𝐼)−1∇𝐹(𝑤𝑖)                (9) 

H and I are Hessian and Identity matrix respectively 

and α is learning parameter. When α=0 the 

Levenberg-Marquardt method tends to Gauss-

Newton method and when α is very large the 

Levenberg-Marquardt method tends to steepest 

descent algorithm. During the iterative procedure, if 

the error is decreased, α is decreased (usually by 

factor 0.1) to reduce the effect of gradient descent 

and if error is increased, α is increased (usually by 

factor 10) to follow gradient. 

The R2 value can be used or comparison and 

validation of the neural network results with the 

numerical method. 

R2 = 1 −
∑(ΩCFD−ΩANN)2

∑(ΩCFD−Ωm,CFD)2
                (10) 

Where ΩCFD the value is determined from CFD 

computations, ΩANN is the obtained value of Ω from 

artificial neural network and Ωm,CFD is the mean 

value of ΩCFD. The closer this value to 1, the better 

agreement between these 2 methods could exist. 

One other value for comparing result of two 

mentioned methods is Mean Square Error (MSE) 

that is explained as follows: 

MSE =
∑(ΩCFD−ΩANN)2

number of nodes
               (11) 

Results with minimum errors are achieved by 

applying inputs to different networks and using trial 

and error. In this procedure iterations start by 

networks of less layers and neurons, gradually 

increase number of neurons in hidden layers and 

then elevate number of layers up to getting the best 

result. It is evident that from a point onward, the 

increase in digits will not improve results and even 

increases the risk of error. Although, it should be 

noted that networks usually will get closer to an 

intended error in a logical period of time. If this 

time increases, it could be understood that from 

here on no considerable change will be observed in 

the mentioned network. 

Having access to a network with an acceptable 

error, the R2 value and MSE were calculated to 
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determine the correlation of the two aforementioned 

methods. The temperature and velocity profiles can 

be evaluated or any charting application and 

compared with the results of CFD. 

This geometry can also be used with other Rayleigh 

numbers (other than three Rayleigh numbers 

assigned to the network) to realize how practical 

and comprehensive is the method. To solve the 

above problem in each distant (L/D) using the 

neural network, we drafted 5 artificial neural 

networks for each distant which could be used in 

predicting flow regime in a whole range of 

Rayleigh numbers. In this work, the range of 

variation of Rayleigh numbers is 105 to 108 and 

about 44000 data were chosen for each Rayleigh 

number and distance, generated from CFD. Results 

of each distance were used for training of ANN.  It 

is expected that these five networks be more 

adaptive with CFD results obtained since they are 

designed for one and only one specific geometry. In 

the result part, we will provide a more detailed 

comparison of these results. 

3. RESULTS AND DISCUSSIONS 

In this study to minimize computational cost and 

time, one of the soft computation techniques, 

artificial neural network, is used to determine the 

flow and temperature domains around a cold 

horizontal cylinder above an adiabatic wall for 

different Rayleigh numbers. Obtained results are 

compared with CFD results. The database for 

training procedure is generated from a CFD code 

base on the finite volume method. The behavior 

fluid around the cold cylinder in free convection 

have different from the hot cylinder and it has not 

been studied yet. To achieve this aim following 

results are presented.  

The mentioned problem is solved and analyzed in 

15 different cases. To obtain a grid independent 

solution, various meshes are considered until the 

total forces of the cylinder almost became constant. 

The number of cells and nodes of each grid and the 

results of grid study are presented in Table 2. 

 
Table 2 The results of grid study on total force 

exerted on the cylinder 

L/D 

Grid No. 1 

# of nodes: 

26602 

Grid No. 2 

# of nodes: 

44336 

Grid No. 3 

# of nodes: 

70938 

2/1 0.0493049 0.0456667 0.0451383 

3/2 0.0236397 0.0229797 0.0221327 

1/1 0.0205309 0.0206524  

1/2 0.0111732 0.0110485 0.0110085 

1/4 0.0061767 0.0061195 0.0060207 

 
The governing equations are solved via SIMPLE 

technique in order to coupling the pressure and 

velocity values. Air is chosen as an operating fluid 

and its properties are considered in standard 

conditions. The outputs of CFD method are used as 

the input and target of the ANN to have an ability of 

comparing these two methods. Figures 5 thru 9 

show the comparison between the temperature 

profiles around cylinder using two methods. 

 

 
Fig. 5.Temprature distribution for case L/D = 2.0 

for (a) Ra = 𝟏𝟎𝟓, (b) Ra =𝟐 . 𝟗 × 𝟏𝟎𝟓, and  

(c) Ra = 𝟏𝟎𝟔. 

 

 
Fig. 6.Temprature distribution for case L/D = 1.5 

for (a) Ra = 𝟏𝟎𝟓, (b) Ra = 𝟓. 𝟖 × 𝟏𝟎𝟓, and  

(c) Ra = 𝟏𝟎𝟔. 

 
According to the obtained results, downward flow 

is clear and harmonies of these two methods are 

verified. By looking at this picture carefully, you'll 

notice that in lower Rayleigh we see lesser 

consistency with neural networks, because, in lower 

Rayleigh, the temperature difference between the 

cylinder and its environment is very low, thus, node 

values are very close to each other. The more the 

cylinder get closer to the adiabatic plate, the 

stronger vortexes observed below the cylinder. In 

another word, the separation point occurs at higher 

angles. The weak vortexes had almost no effect in 
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streamlines. These vortexes make the local Nusselt 

number and heat convection coefficient decries in 

the lower angels of the cylinder. 

Table 3 shows the R2 number for all 3 outputs of 

the networks for each geometry and Table 4 shows 

it for the general network. Results of comparing two 

methods have been shown in respective tables. As 

you can see in Table 3, comparing number R2 

shows that for five different designed networks, 

each for a specific geometry, our expectations have 

been met efficiently and since it is close to 1 it 

proves the fact that numerical methods and neural 

networks, in the study of heat transfer from the 

cylinder cooler than ambient, have a very good and 

acceptable compliance with each other. 

 

 
Fig. 7.Temprature distribution for case L/D = 1.0 

for (a) Ra = 𝟏𝟎𝟓, (b) Ra = 𝟓. 𝟖 × 𝟏𝟎𝟓, and  

(c) Ra = 𝟏𝟎𝟔. 

 

 
Fig. 8.Temprature distribution for case L/D = 0.5 

for (a) Ra = 𝟐. 𝟗 × 𝟏𝟎𝟓, (b) Ra = 𝟓. 𝟖 × 𝟏𝟎𝟓, and 

(c) Ra = 𝟏𝟎𝟔. 

At the beginning of the study, we expected overall 

network designed for all five geometry and in all 

ranges of Rayleigh, which was designed based on 

15 different states, would have a good agreement 

with Computational Fluid Dynamics, but through 

examining Table 4, we see that this expectation is 

only partly satisfied. However, it seems that due to 

the use of different geometries in network design, 

the results have not gone so well as a network for 

any geometry. 

 

 
Fig. 9. Temperature distribution for case L/D = 

0.25 for (a) Ra = 𝟐. 𝟗 × 𝟏𝟎𝟓, (b) Ra = 𝟓. 𝟖 × 𝟏𝟎𝟓, 

and (c) Ra = 𝟏𝟎𝟔. 

 

 

Table 3 𝐑𝟐 between network target and network 

outputs for five geometries 

L/D Temperature x-Velocity y-Velocity 

2.0 0.9227 0.9767 0.9738 

1.5 0.9098 0.9690 0.9406 

1.0 0.9381 0.9740 0.9753 

0.5 0.9870 0.9910 0.9904 

0.25 0.9904 0.9607 0.9592 

 
Table 4 𝐑𝟐 between targets and network output 

for general neural network 

 Temperature x-Velocity y-Velocity 

All cases 0.5943 0.7434 0.6421 

 

It looks like designed networks will benefit from 

higher degrees of adaptation in case they are 

designed for one or more close geometries. The 

more designed geometries are distant from each 

other, the more decline in the network is possible. 

In other hand, MSE number is calculated to 

compare these two methods more operational 

(Tables 5 and 6). 
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Table 5 Mean Square Error for networks in five 

geometries 

L/D Temperature x-Velocity y-Velocity 

2.0 2.1 × 10−5 6.6 × 10−5 6.7 × 10−5 

1.5 3.6 × 10−5 6.5 × 10−5 8.9 × 10−5 

1.0 3.7 × 10−5 6.4 × 10−5 5.9 × 10−5 

0.5 3.3 × 10−5 5.4 × 10−5 4.8 × 10−5 

0.25 9.5 × 10−6 2.7 × 10−5 3.1 × 10−5 

 

Table 6 Mean Square Error for general neural 

network 
 Temperature x-Velocity y-Velocity 

All 

cases 
6.1 × 10−4 7.8 × 10−4 2.8 × 10−4 

 

Comparing MSE numbers in Table 5 and 6 shows 

the two methods are really matching with each 

other, as, the more these numbers are close to zero, 

the more it indicates coordination of two methods 

used in the project. Similarly, by comparing the 

above numbers for the overall designed network 

which have been shown in Table 4 and 6, we can 

see these methods are relatively matched, although 

the results were not as good as an independent 

network for each geometry. 

The average Nusselt number over the cylinder wall 

is calculated, for the purpose of studying if the 

adiabatic wall has affected the amount of heat 

transfer from the isothermal cylinder (Table 7). 

 

Table 7 Average Nusselt number 

L/D 
Ra =
105  

Ra =
2.9 ×
105  

Ra
= 5.8
× 105 

Ra
= 106 

2.0 8.655 11.010 13.362 15.374 

1.5 8.454 11.181 13.314 15.300 

1.0 8.251 11.334 13.551 15.626 

0.5 8.334 10.854 13.092 15.113 

0.25 6.749 9.318 11.592 13.886 

 
It is obvious that average Nusselt is increases by the 

increase of Ra and distance L/D. But after L/D=1.5 

(in higher distances) the Nusselt become almost 

constant, so we can assume that the adiabatic wall 

has no effect in (1.5≤ L/D ≤ ∞). In other word, the 

affect is renouncement and it works like a cylinder 

in an infinite environment (Sedaghat et al. 2015). 

Besides, by increasing the distance of L / D and 

increasing the Ra, the boundary layer of 

temperature around the cylinder becomes thinner, 

therefore increase in the average Nusselt number is 

occurred which is due to the greater impact of 

buoyancy forces compared to the viscosity forces. 

In the lower distances (L / D < 1/2) the alteration of 

the Nusselt number, become more (sudden 

decrease) due to the increase of the damping effect 

of adiabatic wall and dominance in the heat 

convection around the cylinder. Figures 10 and 11 

show the alteration of the average Nusselt number 

in terms of Ra and L / D based on Table 6. 
 

 
Fig. 10. Average Nusselt variation for different 

Rayleigh. 

 
Fig. 11. Variation of average Nusselt number for 

various values of L / D. 

 

It also obvious that the maximum alteration of the 

average Nusselt number in each Ra is about 22%. 

As we consider, the Nusselt in the free convection 

is affected by Ra or the geometry, hear in constant 

Ra, changing range of Nusselt is because of 

geometry. 

Two accidental other Ra in order to check the 

proficiency of the networks in other Ra numbers are 

entered into the network (Table 8), it shows an 

excellent agreement between CFD and ANN 

methods. 

 

Table 8 Mean Square Error for two accidental 

Ra 

 Temp. x-Velocity y-Velocity 
L

D
= 2 

Ra = 4 × 105 
6.5 × 10−4 5.2 × 10−2 5.1 × 10−3 

L

D
= 0.5 

Ra = 7 × 105 
2.4 × 10−3 7.0 × 10−2 6.2 × 10−2 

 

It's clear that we can trust in the neural networks in 

predicting the outputs in all range of Ra number. 

It is also be noted that to simulate the prescribed 

problem, a PC with a CPU of Intel(R) 2.0 GHz and 

installed memory 8.0 GB is used. With this 

configuration, each CFD simulation takes a time of 

about four hours. ANN training, due to a large 

amount of training data, takes a time of about 14 

hours. But after the training procedure, the ANN 

weights and biases are tuned and network learns 

and capture the behavior of flow and obtaining 

results from ANN for any other Rayleigh number 

take a time less than 10 seconds. Therefore, 

artificial neural networks save computational time 

considerably. 
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5. CONCLUSION 

Results from one of soft computations techniques, 

artificial neural networks, is compared with 

numerical results for simulation of free convection 

heat transfer from a cold cylinder above an 

adiabatic plate in 105 ≤ Ra ≤ 108. 

Results indicate that: 

 Excellent agreement was found between ANN 

results and numerical results in the 5 cases 

network designing for every special distance. 

 Back-propagation algorithm with Levenberg- 

Marquardt learning rule is the best choice for 

training this type of ANNs because of the 

accurate and faster training procedure and less 

computer space usage. 

 Artificial neural networks can be used fluently 

to determine flow and temperature domain in 

free convection cooling with considerably less 

computational time and cost. 

 Free convection from the cold cylinder is 

categorized as aiding flow while from the hot 

cylinder is categorized as opposing flow, 

therefore the behavior of these situations are 

different from each other. 

 The more the cylinder get closer to the 

adiabatic plate, the stronger vortexes observed 

below the cylinder as the separation point is 

occurred in higher angles. 

 When Rayleigh number increases, due to an 

enhancement of buoyancy force in comparison 

to the viscous force, the thermal and velocity 

boundary layers become thinner. 

 In lower Rayleigh, less agreement between 

neural networks and CFD solution is observed, 

since in lower Rayleigh the temperature 

difference between the cylinder and its 

environment is very low and as a result, node 

values are very close to each other and round-

off errors play an important role. 

 More average Nusselt number reduction takes 

place when the cylinder is closer to the 

adiabatic plate; owing to an enhancement of 

plate damping effect. 

 In spaces farther than L / D = 3/2, the average 

Nusselt number is almost constant, so the 

effect is renouncement and it works like a 

cylinder in an infinite environment. 
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