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ABSTRACT 

Cartesian grids represent a special extent in unstructured grid literature. They employ chiefly created algorithms 

to produce automatic meshing while simulating flows around complex geometries without considering shape 

of the bodies. In this article, firstly, it is intended to produce regionally developed Cartesian meshes for two 

dimensional and three dimensional, disordered geometries to provide solutions hierarchically. Secondly, 

accurate results for turbulent flows are developed by finite volume solver (GeULER-NaTURe) with both 

geometric and solution adaptations. As a result, a “hands-off” flow solver based on Cartesian grids as the 

preprocessor is performed using object-oriented programming. Spalart-Allmaras turbulence model added 

Reynolds Averaged Navier Stokes equations are solved for the flows around airfoils and wings. The solutions 

are validated and verified by one two dimensional and one three dimensional turbulent flow common test cases 

in literature. Both case studies disclose the efficaciousness of the developed codes and qualify in convergence 

and accuracy. 

 

Keywords: Cartesian grid generation; Finite volume solver; Turbulent flows; Object-oriented programming; 

RANS equations; Spalart-Allmaras (SA) turbulence model. 

NOMENCLATURE 

A surface area 

Cd  drag coefficient 

Cl  lift coefficient 

Cp specific heat at constant pressure 

Csuth sutherland constant 

De destruction term 

Di diffusive term 

F inviscid flux term 

G viscous flux term  

E total energy 

H total time step 

M Mach number 

M∞ Mach number at reference state 

Q conserved variable 

P production term 

Pr Prandtl number 

Rea Reynolds number based on speed of 

sound 

S source term 

𝑆̃ spalart-Allmaras modified vorticity 

𝑆̅ modified vorticity variable 

T fluid temperature  

V control volume 

c  airfoil chord length 

cp pressure coefficient 

cv1 a constant in Spalart-Allmaras model 

cv2 a constant in Spalart-Allmaras model 

cv3 a constant in Spalart-Allmaras model 

cw1 a constant in Spalart-Allmaras model 

cw2 a constant in Spalart-Allmaras model 

cw3 a constant in Spalart-Allmaras model 

dwall distance to wall in Spalart-Allmaras 

model 

e specific internal energy 

fv1 a function in Spalart-Allmaras model 

fv2 a function in Spalart-Allmaras model 

fw a function in Spalart-Allmaras model 

g a function in Spalart-Allmaras model 

gn a function in Spalart-Allmaras model 

h semi-height of the tunnel 

n normal vector 

p static pressure 

q diffusive flux  

r a function in Spalart-Allmaras model 

t, turb turbulent 

u velocity vector in x-direction 

v velocity vector in y-direction 

w velocity vector in z-direction 

x Cartesian coordinate perpendicular to yz 

y Cartesian coordinate perpendicular to xz 

z Cartesian coordinate perpendicular to xy 

γ specific heats ratio  
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θ angle of attack 

λ bulk viscosity 

μ viscosity (absolute) 

ν viscosity (kinematic) 

ρ density 

S̃ a constant in Spalart-Allmaras model 

S̅ tensors of viscous stresses 

φ modified χ 

χ a variable in Spalart-Allmaras model 

 

 
1. INTRODUCTION 

The “Cartesian grid” term belongs to earlier times of 

1970’s; Peskin (1972) firstly used this term in 

cardiac mechanics and 2D blood flow simulations. 

The obvious advantages of Cartesian grid generation 

approach over the conventional body conforming 

methodology are summarized as: 

 Regardless of the intricacy of the submerged 

bodies on their boundary, the Cartesian grid 

remains the same excluding boundaries that are 

in the neighbourhood of the solid wall where 

cut-cells are deployed. 

 Any kind of adaptation is very easy to execute, 

i.e. around a shock wave, finer mesh can be 

obtained automatically. Moreover, 

computational time is saved without excessive 

computational cell count and without losing 

accuracy. 

 The governing equations are solved on a 

Cartesian grid based computational domain. By 

this method, grid generation greatly reduces in 

complexity; therewith relatively simpler 

solutions of the governing equations are 

maintained in Cartesian coordinates. 

 Moving boundaries and topological changes are 

also simulated and captured easily in Cartesian 

grids. 

 User intervention is held in minimum by 

Cartesian methods permitting automatic grid 

generation. Both grid generation and adaptation 

processes are automated. The proper definition 

of the problem is the user’s only task. 

Therefore, there is a continuing effort for 

further automating the grid generation and 

adaptation processes. 

Purvis and Burkhalter (1979) originally defined 

Cartesian grid methods in their study for 2D potential 

flow solutions; but the approach used in this study is 

based upon exquisite state-of-art work of Clarke et 

al. (1986) who expanded Peskin's method to 

inviscid, two-dimensional, steady flows. In the 

following year, Gaffney et al. (1987) improved this 

approach for 3D Euler solver on Cartesian grids. In 

the following decade (De Zeeuw, 1993; Pember et 

al., 1993; Aftosmis et al., 1998) Cartesian grid 

generation methods are automated and numerical 

solution schemes are utilized with adaptive 

refinement/coarsening ability. In 2000’s, essential 

studies were performed on elaborated applications 

(Ji et al., 2010; Berger et al., 2012; Liu et al., 2013) 

and consequentially, in the last decade by the 

progress in computing efforts and capabilities of 

computers (Kupiainen and Sjögreen, 2009; Sang and 

Yu, 2011; Liang, 2012) Cartesian methods are 

started to handle extremely complicated geometries 

by the considerable progresses that are yet to come 

in robustness, computational efficiency and accuracy 

of the Cartesian based flow solvers. 

In this study, main focus is the development of a 

geometric/solution adaptive, automatically 

generated compressible flow solver that have ability 

in solving turbulent flows in both 2D and 3D over 

different types of elements. An explicit time 

marching scheme is used in finite volume 

discretization. Convergence is accelerated 

employing local time stepping. Object-oriented 

programming instructions are implemented in order 

to construct a Cartesian grid generator as the 

preprocessor of the finite volume solver that is 

capable of producing accurate solution of turbulent 

flow around 2D airfoils and 3D bodies. The solver is 

created to generate the solutions of turbulent flow 

over two-dimensional airfoils and three-dimensional 

bodies. Spalart-Allmaras (SA) turbulence model is 

selected as a turbulence modelling scheme, is 

successful than algebraic models while being 

computationally cheaper than Direct Numerical 

Simulation (DNS) and sophisticated two-equation 

models. Viscous terms of governing equations and 

SA turbulence model are subjoined and added into 

the flow solver.  

2. MATERIALS AND METHODS 

In this chapter, Reynolds-averaged Navier-Stokes 

equations (RANS) with SA model (RANS-SA) are 

presented in integral definition as the compressible 

flow governing equations. The finite volume 

statement of 3D RANS-SA equations is attained by 

cell-centred scheme. Riemann Solver of Roe (Toro, 

2009) and Advection Upstream Splitting Method 

(AUSM) of Liou are the assigned flux construction 

schemes in which the flux computations through cell 

boundaries are estimated. Full Approximation 

Storage (FAS) (Ashford, 1996) multi-grid scheme is 

used to increase the convergence rate. Second order 

scheme is occupied and followed for the derivation 

of conserved variables in both two and three 

dimensions and used in conjunction with multi-grid 

techniques. Solution adaptation and primitive 

variables are calculated by the least squares 

reconstruction scheme. Details about mesh 

generation techniques and their implementation rules 

can be found in Kara et al. (2015). 

2.1 Flow Solver 

Gauss divergence theorem is applied on an arbitrarily 

selected control volume, V, using RANS-SA 

equation, which is generated as follows: 
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where, G stands for the viscous flux vector, F stands 

for the inviscid flux vector, S stands for the source 

term, V stands for the cell volume, and Q stands for 

the conserved variable vector: 
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where, u, v and w are the velocity components in 

three dimensions, x, y and z directions, 

respectively, ρ stands for the density, E stands for 

the total energy and ν ̃  stands for the SA working 

variable. Inviscid flux vectors, F, are as follows in 

equations Eqs. (3): 
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where, p stands for the pressure (static) and H stands 

for the enthalpy (total). 
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Combining the equation of state and Eqs. (4) and (5) 

gives: 
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where, e stands for the specific internal energy and γ 

stands for the specific heats ratio. Viscous flux 

vector, G, is given in Eqs. (7): 
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The viscous stresses, τij, are defined by: 
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where effective viscosity, μeff, is the total of eddy 

(turbulent) viscosity, μt and the molecular viscosity, 

μ. λ is the bulk viscosity defined by Stoke's 

relationship (Eq. 8.g). The diffusive fluxes, qi’s, are 

defined by Fourier's heat conduction law:
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where, T is the fluid temperature, µ∞ is the reference 

viscosity (dynamic),  T∞ is the reference temperature 

and Csuth stands for an effective temperature called 

Sutherland constant. For air, Csuth is taken as 110.4 K 

and T∞ is taken as 273.15 K. 

Turbulent viscosity, µt, is empirically modelled and 

calculated from SA working variable, ν ̃ , of the 

turbulent transport equation. One should note that 

using this turbulent transport equation, the continuity 

equation, three momentum equations and energy 

equation, the number of equations reaches six which 

is sufficient to solve and close the system with five 

unknown primitive variables, ρ, u, v, w, p and 

turbulent viscosity µt. Last term in RANS-SA 

equation, the source vector, S, is given as: 

 0 0 0 0 0
T

tSS                        (11) 

Detailed derivations and implementation techniques 

of SA working variable, ν ̃  and source term, St, are 

given in Appendix. 

2.2 Computational Hierarchy 

User intervention is held in minimum by Cartesian 

methods permitting automatic grid generation. Both 

grid generation and adaptation processes are 

automated. The proper definition of the problem is 

the user’s only task. Cartesian grid algorithms are 

implemented in order to improve computational 

efficiency. Initial step is the creation of the domain 

and uniform mesh generation. The determination of 

cell types by inside-outside test is the second step. 

Afterwards, geometric adaptation consisting of four 

parts; box, cut-cell, split-cell and curvature 

adaptation (only in two dimensions), is applied to the 

uniform mesh. About 100 different solid body 

models were tested for the correct grid generation 

code. Rest of the code contains the flux computations 

which are not detailed in this article, can be found in 

the previous study (Kara et al., 2016). 

The developed/coded final program is named 

GeULER-NaTURe (Cartesian Grid generator with 

eULER-Navier Stokes TURbulent flow solver). 

Following initialization of the program, a data file is 

called for needed grid generator/solution information 

(see Tables 1-2-3), grid generator and flow solver 

starts automatically and successively till initially 

provided break point of the program is reached. 

Then, the output files (graphs, tables, contours etc.) 

are exported in predefined formats. 

In Fig. 1, the flow chart of GeULER-NaTURe is 

presented. The steps are explained in authors’ 

previous studies (Kara et al., 2015; Kara et al., 

2016). 

All cells are flagged for refinement using a 

predefined limiting/threshold value. Although the 

desired residual value is reached, if this value for the 

refinement is not achieved, the solution is sent for the 

refinement cycle until the threshold value is passed. 

3. RESULTS 

In this chapter, the GeULER-NaTURe code is 

validated and verified for turbulent flows with two 

test cases. The computational hierarchy shown in 

Fig. 1 is followed. The numerical calculations are 

performed in a personal computer with a dual CoreTM 

3.20-GHz processor (I5), 12 GB RAM and a 

FORTRAN Compiler. As the two-dimensional test 

case, a flow around NACA0012 airfoil at a fairly 

high and real-life-flight Reynolds number of 9 

million and Mach number, 0.799, at the corrected 

angle of attack of 2.26º (corrected for interference of 

the wind tunnel wall) is examined in GeULER-

NaTURe to provide pressure distribution around the 

airfoil comparing with NASA's experimental 

benchmark data. In the second turbulent flow test 

case, validation of GeULER-NaTURe results is 

executed by comparing them with NASA's 

experimental benchmark data from NASA’s 

AGARD report of the transonic flow at free stream 

Mach number, 0.8395, and real-life-flight free 

stream Reynolds number of 11.7 million around 

three-dimensional ONERA M6 wing. 

 

 
Fig. 1. Flow chart of GeULER-NaTURe. 

 

3.1 NACA 0012: M∞=0.799, θ=2.26º, 

Re=9x106 

The performance of GeULER-NaTURe flow solver 

in predicting separated flows is tested in the case of 

high Re, steady, 2D flow around NACA0012 airfoil. 

The experimental data from NASA’s Langley 8-Foot 

Transonic Pressure Tunnel (Harris, 1981) is used to 

validate the GeULER-NaTURe results in turbulent 

flow. Because of tunnel’s large span-chord ratio and 

small side-wall-boundary-layer effects, the data of 

this experimental study is accepted as a benchmark 

test case for predicting separated flows. GeULER-

NaTURe solution of chord-wise pressure 

distributions for NACA 0012 airfoil at a fairly high 

and real-life-flight Reynolds number of 9x106 and 
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Mach number, 0.799, at the corrected angle of attack 

of 2.26º is compared with the experimental study of 

Harris (1981) and computational results of Aybay 

(2004). Harris (1981) used the analysis of Barnwell 

(1978) to calculate the incremental difference in the 

angle of attack (in degrees), Δα = -0.125*Cl*c/h, 

where Cl is the lift coefficient, c is the chord length, 

h is the semi-height of the tunnel. Details can be 

found in Barnwell (1978). 

 

  
Fig. 2. Mesh generation after three level solution 

adaptation around NACA 0012. 

Eventual, solution adapted mesh constructed around 

the geometry is shown in Fig. 2 above. In Fig. 3, for 

initial cell dimensions of 0.05 and 0.02, lift 

coefficient converges around 0.48 and 0.45, 

respectively. For the initial cell dimension of 0.01, it 

converges around 0.39 which is the exact 

experimental result of Harris (1981). 

Boundary conditions, Cartesian grid statistics, and 

GeULER-NaTURe inputs are summarized in Tables 

below. 

Table 1 Boundary conditions 

Mach Number (Free stream), M∞ 0.799 

Reynolds Number, Re 9 x 106 

Angle of Attack, ° 2.26 

Prandtl Number, Pr 0.72 

Turbulence Prandtl Number, Prt 0.90 

Specific heats ratio of the fluid, γ 1.4 

Temperature (Free stream), T∞ 273.15 
 

Table 2 Grid statistics (Cartesian) 

Outer boundary size factor 20 

Boundary size factor 2.5 x 1.5 

Number of successive divisions 4 

Size of small cells per maximum 

body dimension on each plane 

0.01, 

0.02, 0.05 

 

Table 3 Solution parameters 

Numerical flux solution scheme AUSM or Liou 

No. of refinement-coarsening cycle 2 

Multiplication no. for refinement 0.05 

Order of the solver 2nd 

Residual exponent for convergence -5 

 

In Fig. 4 below, the computed pressure coefficient 

distributions by GeULER-NaTURe flow solver on the 

suction (upper) surface and the pressure (lower) surface 

by using three different initial small cell dimensions, 

namely 0.05, 0.02 and 0.01 are given together with the 

experimental benchmark study of Harris (1981). 

Predictions shown in Figs. 4(a) and 4(b) for the lower 

surface are seen to be almost identical except the 

overshoot at the critical shock occurrence on the upper 

surface and cannot capture the characteristic plateau 

distribution after the shock. The slight overshoot of the 

critical shock on the suction surface is the result of 

staircase phenomenon of cut-cells near the solid 

boundary (Kidron et al., 2009). The Cartesian methods 

suffer from this phenomenon and can overcome it if 

meshing near the boundary layer is designed body-

conformal but this cancels out the advantageous 

automated grid generation specialty of Cartesian 

methods. The solution given in Fig. 4(c) shows a better 

prediction of the flow characteristics but there is a small 

deterioration in the solution of the noncritical pressure 

surface side. The concave behaviour of the curve of case 

4 between x/c = 0.35 and 0.45 can be interpreted as a 

response to sharp pressure drop at x/c = 0.45, and this 

phenomenon consolidates the effectiveness of 

GeULER-NaTURe turbulent flow solver.  

Fig. 3. Transonic, turbulent flow around 

NACA0012: Convergence histories of the lift 

coefficient; M∞ = 0.799, θ = 2.26º; Re = 9x106. 

 

 
Fig. 4. Pressure coefficient (cp) distribution 

results of Harris (1981) compared with 

GeULER-NaTURe around NACA0012 with SA 

turbulence model having (a) 0.05 units, (b) 0.02 

units and (c) 0.01 units; M∞ = 0.799, θ = 2.26º; Re 

= 9x106. 
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Table 4 Comparison of the GeULER-NaTURe Cd and Cl results with Thibert et al. (1979) at eight 

different angle of attacks, °, for transonic test case of NACA 0012; M∞= 0.75, Re = 4x106.  

Mach Number Angle-of-Attack, ° 
Cd 

(Thibert) 

Cd  

(GeULER-NaTURe) 

Cl 

(Thibert) 

Cl 

 (GeULER-NaTURe) 

0,753 -1,67 0,0096 0,0168 -0,269 -0,324 

0,756 -0,84 0,0073 0,0112 -0,114 -0,165 

0,755 -0,05 0,0068 0,0092 0,010 -0,010 

0,754 0,74 0,0072 0,0106 0,124 0,145 

0,752 1,49 0,0088 0,0149 0,253 0,290 

0,753 2,26 0,0143 0,0240 0,399 0,427 

0,754 3,02 0,0246 0,0375 0,523 0,561 

0,752 3,79 0,0372 0,0552 0,620 0,691 

 

 

Mach contours of GeULER-NaTURe are very 

similar to the figure of a commercial CFD solver 

package, FloEFD (Mentor Graphics, 2010) shown in 

Fig. 5. As Mach contours show, the flow increases 

speed from M∞ = 0.9 to 1.34 over the upper surface, 

whereas change of the velocity along the lower 

surface is much smaller. Steep Mach gradient is 

captured around 60 % of the mid-chord for both 

cases.  

Figure 6 shows the pressure coefficients and their 

distribution computed on both sides of the airfoil 

with computational results taken from Aybay (2004) 

together with the computational results of GeULER-

NaTURe flow solver. Aybay (2004) obtained 

computational results by utilizing the viscous 

solution with triangular unstructured mesh and body-

conformal grid near the surface by the Spalart-

Allmaras model with tripping terms included. The 

shock location prediction of Aybay (2004) is around 

65 % chord airfoil which is worse than GeULER-

NaTURe solver. The results of Aybay (2004) are 

similar to GeULER-NaTURe results in the 

characteristic of the flow after the location of the 

shock; GeULER-NaTURe is ahead in predicting the 

exact location of the first point of the shock 

appearance. Experiments indicate that the flow 

separates from suction surface of NACA0012 around 

the middle of the chord (x/c = 0.55) after a strong 

shock. GeULER-NaTURe flow solver captures this 

shock-induced separation around x/c = 0.54 which is 

comparably better than Aybay’s study (2004) that 

captures the separation around x/c = 0.60. Smooth 

change of the cp along pressure surface of 

NACA0012 is resembled by GeULER-NaTURe 

flow solver. As a final note, in experiments of Harris 

(1981) the boundary layer is tripped at 5 % of 

NACA0012 chord, so that flow is fully turbulent 

downstream of this point. 

As the supplementary two-dimensional study, 

GeULER-NaTURe simulation results and the 

experimental validation study of Thibert et al. (1979) 

are  given on Table 4 as drag coefficient Cd and lift 

coefficient Cl values at eight different angle of 

attacks changing between -1.67 and 3.79,  with SA 

turbulence model having M∞ = 0.75, Re = 4x106. 

Change of Cd and Cl versus angle-of-attack results 

are depicted in Fig. 7 that shows the qualitative 

match of GeULER-NaTURe results with respect to 

the reference study both for Cd and Cl. 

 

 
Fig. 5. Mach number contours of (a) GeULER-

NaTURe with SA turbulence model having 0.01 

units and (b) FloEFD (Mentor Graphics, 2010) 

around NACA 0012; M∞ = 0.799, θ = 2.26º;  

Re = 9x106. 

 

 
Fig. 6. Pressure coefficient (cp) distribution of (a) 

Aybay (2004) compared with (b) GeULER-

NaTURe around NACA0012 airfoil with two 

solution refinements and SA turbulence model 

with 0.01 units; M∞ = 0.799, θ = 2.26º; Re = 

9x106. 
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Since no trip terms are included in Spalart-Allmaras 

version of the GeULER-NaTURe solver, it was 

expected to have a slightly delayed separation and a 

squeezed boundary layer after the separation point. 

SA turbulence model with tripping terms, modified 

one-equation models or two-equation models can be 

integrated into GeULER-NaTURe flow solver for 

predicting shock location comparatively well as a 

future work. 

3.2 ONERA M6: M∞=0.8395, θ=3.06º, 

Re=11.7x106 

As in Kara et al. (2016), AGARD report (Schmitt 

and Charpin, 1979) is taken as the reference 

experimental data. The surface grid structure is 

shown in Fig. 8. Surface mesh of ONERA M6 wing 

is eight times denser than the surface mesh used in 

authors’ previous study of inviscid, laminar flow 

(Kara et al., 2016). This is because the boundary 

definition is more crucial for viscous, turbulent 

solution than for inviscid, laminar solution. Wing 

geometry and grid statistics can be found in Kara et 

al. (2016). 

 

Fig. 7. Cd and Cl values of Thibert et al. (1979) in 

comparison with GeULER-NATURe turbulent 

flow solver results around NACA0012 airfoil at 

eight different angle of attacks having M∞ = 0.75, 

Re = 4x106. 

 

 
Fig. 8. (a) Magnified outlook of the surface grid 

of the ONERA M6 wing on XY plane, (b) 

isometric view of the Cartesian grid solution 

domain around the wing, (c) sliced expression of 

the whole domain wing-centred, (d) close-up 

view on the grid. 

The spanwise locations of pressure distribution 

around ONERA M6 wing are shown in Fig. 9. The 

lambda shock and its characteristic shape (Gaffney 

et al., 1986) are distinguished better by turbulence 

solution in Fig. 9 than inviscid, laminar solution in 

Fig. 12 and also in Kara et al. (2016). The lambda-

shaped dark blue region on ONERA M6 wing is built 

by weak leading-edge shock and strong mid-chord 

shock near the tip, the location of which is predicted 

better than inviscid, laminar solution. The isobar 

patterns of pressure distribution agree better with the 

results shown in Dadone and Bernard (2007). The 

shockwave locations on the upper surface of the 

ONERA M6 wing move downstream in comparison 

with the inviscid, laminar solution. This is due to the 

presence of boundary layer. 

 

 

Fig. 9. Spanwise slices on transonic ONERA M6 

wing, (a) y/b=0.44, (b) y/b=0.65, (c) y/b=0.80, (d) 

y/b=0.95; M∞=0.8395, θ = 3.06°, Re = 11.7 x 106, 

(viscous turbulent). 

 

Fig. 10. GeULER-NaTURe viscous, turbulent 

flow results of pressure coefficient (cp) 

distributions versus x/c on the surface of 

transonic ONERA M6 wing test case at (a) 

y/b=0.44, (b) y/b=0.65, (c) y/b=0.80, (d) y/b=0.95; 

M∞=0.8395, θ = 3.06°, Re = 11.7 x 106. 
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Two strong shockwaves are correctly resolved by 

GeULER-NaTURe turbulent flow solver. Pressure 

recovery between these two shockwaves on the 

upper surface after strong shock appearing in mid-

chord region of the wing is correctly predicted and 

resolved at y/b = 0.44 station, between x/c = 0.35 and 

0.55; on y/b = 0.65 station, between x/c = 0.2 and 

0.45 as shown in Figs. 10(a) and 10(b). This 

phenomenon indicates the solution accuracy of 

GeULER-NaTURe turbulent flow solver. At y/b = 

0.80 station, smooth change of the pressure from 

leading edge to the mid-chord of the wing is 

qualitatively assessed as in the case of the flow 

characteristics at y/b = 0.95 station. In short, at four 

spanwise locations, namely y/b=0.44, y/b=0.65, 

y/b=0.80 and y/b=0.95, turbulence solution (Fig. 10) 

of the surface pressure coefficients is in better 

agreement with experimental results in comparison 

with the surface pressure coefficients obtained from 

inviscid, laminar solution (Fig. 11) (Kara et al., 

2016). The reason for the scattering behaviour of the 

results (especially near the tip of the ONERA M6 

wing, i.e. at y/b = 0.80 and y/b = 0.95 stations) just 

after the first shock appearance is the inheriting 

staircase phenomenon (Kidron et al., 2009) of 

Cartesian methods that solution refinements are 

required to eliminate oscillations in the solution. At 

station y/b = 0.65, inviscid, laminar solution (Kara et 

al., 2016) was not submitted, since the pressure 

coefficient scattering cannot be captured because of 

the low resolution. 

 

 
Fig. 11. GeULER-NaTURe inviscid, laminar 

flow results of pressure coefficient (cp) 

distributions versus x/c on the surface of 

transonic ONERA M6 wing test case at (a) 

y/b=0.44, (b) y/b=0.80, (c) y/b=0.95; M∞=0.8395 

and θ = 3.06º (Kara et al., 2016). 
 

4. CONCLUSIONS 

In this article, it is intended to produce regionally 

developed Cartesian meshes for 2D and 3D 

disordered geometries to provide solutions 

hierarchically in the case of viscous compressible 

flows around such geometries. A “hands-off” flow 

solver based on Cartesian grids as the preprocessor 

is performed using object-oriented programming. 

Euler equations, Navier-Stokes equations and RANS 

equations with SA turbulence model are solved for 

the flows around airfoils and wings. 

In predicting separated flow, the performance of the 

GeULER-NaTURe flow solver with the addition of 

one-equation SA turbulence model is investigated by 

computing high Reynolds number steady flow 

around NACA 0012 airfoil at a fairly high and real-

life-flight Reynolds number of 9 million and Mach 

number of 0.799 with the corrected angle-of-attack 

of 2.26º. GeULER-NaTURe solutions are compared 

with the experimental benchmark study, 

computational studies and Mach number contour of 

a commercial CFD software package. Smooth 

change of the pressure coefficient along lower 

surface of the airfoil is resembled by GeULER-

NaTURe flow solver. 

 

Fig. 12. Spanwise slices on transonic ONERA M6 

wing, (a) y/b=0.44, (b) y/b=0.65, (c) y/b=0.80, (d) 

y/b=0.95; M∞=0.8395, θ = 3.06°, (inviscid, 

laminar), (Kara et al., 2016). 
 

The effectiveness of GeULER-NaTURE turbulent 

flow solver for the real flows around three-

dimensional bodies is tested by comparing the 

computational results with NASA’s experimental 

study around three-dimensional ONERA M6 wing at 

free stream Mach number of 0.8395 and real-life-

flight free stream Reynolds number of 11.7 million. 

The lower surface shows highly consistent 

agreement of pressure distribution throughout all 

locations as in the case of inviscid, laminar solution; 

moreover, the lambda-shaped region on the surface 

of the ONERA M6 wing is predicted well unlike 

inviscid, laminar solution. The shockwave locations 

on the upper surface of the ONERA M6 wing move 

downstream with the GeULER-NaTURe solution in 

comparison with the inviscid, laminar solution (Kara 
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et al. 2016). This is due to the presence of boundary 

layer. Two strong shockwaves are correctly resolved 

by GeULER-NaTURe turbulent flow solver. 

Pressure recovery between these two shockwaves on 

the upper wing surface after the strong shock 

appearing in mid-chord region of the wing is 

correctly predicted and resolved at y/b = 0.44 station, 

between x/c = 0.35 and 0.55; on y/b = 0.65 station, 

between x/c = 0.2 and 0.45 as shown in Figs. 10(a) 

and 10(b). This phenomenon indicates the solution 

accuracy of GeULER-NaTURe turbulent flow 

solver. At y/b = 0.80 station, smooth change of the 

pressure from leading edge to the mid-chord of the 

wing is qualitatively assessed as in the case of the 

flow characteristics at y/b = 0.95 station. In short, at 

four spanwise locations, namely y/b=0.44, y/b=0.65, 

y/b=0.80 and y/b=0.95, turbulence solution of the 

surface pressure coefficients is in better agreement 

with experimental results in comparison with the 

surface pressure coefficients obtained from inviscid, 

laminar solution. 

As the future works, some suggestions are given as 

follows: (1) Integrating special meshing techniques 

such as grid stitching, cell merging-cell linking to the 

code can be assigned as a future work in authors’ 

viewpoint. (2) Parallel programming can be applied 

on the GeULER-NaTURe so that more turbulence 

models can be added in it. (3) Faster convergence 

rates can be reached by the use of implicit time 

stepping techniques. (4) Different solver schemes 

other than Roe's Riemann Solver and AUSM can be 

added for faster solutions. 

To sum up, in current research a novel and original 

GeULER-NaTURe mesh based solver using object-

oriented programming is developed and executed. 

Performance of the program is justified via several 

test cases in both two- and three-dimensions in 

literature. All results disclose the efficaciousness of 

the developed codes and qualify in convergence and 

accuracy. 

APPENDIX 

The SA model is a one-equation model. The model 

determines the eddy viscosity using a parabolic 

partial differential equation. The method is 

originated from the work of Spalart and Allmaras 

(1992) with fully-turbulent conditions. Some 

modifications are used which are based on the 

studies available in literature (Oliver, 2008; Moro et 

al., 2011; Allmaras et al., 2012; Burgess and 

Mavriplis, 2012) for better numerical performance. 

The baseline, non-dimensional integral form of 

transport equation of SA turbulence model, 

excluding laminar suppression and trip terms, is 

expressed as (In closed form adapted from Eq. (1)): 

 turb turb turb turb

V A A V

Q dV F dA G dA S dV
t


  

     (A.1) 

explicitly integrated as: 

 . . .

V A

d
dV dA

dt
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where dwall is the closest distance to the wall 𝑅𝑒𝑎 is 

the Reynolds number based on speed of sound and 

the modified vorticity, S̃ is defined as: 

v22 2
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κ d

f 1   
1

 

 

a

wall

vX

X
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

          (A.7) 

The magnitude of vorticity, |ω| is defined in two 

dimensions and three dimensions, respectively, as 

follows: 

u v
abs

y x


  
  

  
                            (A.8.a) 
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(A.8.b) 

The Eqs. (A.3) and (A.4) are diffusive terms, Di, 

(A.5) is the production term, P and (A.6) is the 

destruction term, De, respectively. Source term is the 

differentiation of total of these three terms with 

respect to cell volume. The destruction term includes 

wall-related function, fw defined as: 

1/6
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where: 
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The kinematic eddy viscosity is obtained from: 

3
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The closure coefficients used in Eqs. from (A.2) 

through (A.10) are: 

1 2 1

2
0.1355;  ;  0.41;  0.622;  7.1 

3
b b vc c c       

(A.11) 
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In Eq. (A.7), S̃  is defined that it could become 

negative and in some conditions divergence becomes 

inevitable. Ashford (1996) modified S̃  S̃  of the 

production term (A.5) to assure non-negative values, 

thus yielding better numerical results: 

a v3S Re f S                                            (A.13.a) 

where: 
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where cv2 = 5. 

In full-scale aerospace applications, typical upper 

limit of 𝛸 = 105  or 2 𝑥 105  is used. In modified 

vorticity model S̃  cannot have negative values for 

physically relevant flow conditions and should never 

fall below 0.3|ω|. This suggestion is not true for all 

conditions so that Allmaras et al. (2012) suggested a 

new modification to prevent negative values of S̃ : 
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where  𝑐𝑣2 = 0.7  and  𝑐𝑣3 = 0.9. 
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