
Journal of Applied Fluid Mechanics, Vol. 12, No. 3, pp. 715-728, 2019. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.29252/jafm.12.03.28836 

Turbulent Energy Dissipation Rate and Turbulence Scales 

in the Blade Region of a Self-Aspirating 

Disk Impeller 

J. Stelmach†, R. Musoski, C. Kuncewicz and M. Głogowski

Lodz University of Technology, Faculty of Process and Environmental Engineering 

Wolczanska 213, 90-924 Lodz, Poland 

†Corresponding Author Email: jacek.stelmach@p.lodz.pl 

(Received January 29, 2018; accepted December 19, 2018) 

ABSTRACT 

Instantaneous radial and axial velocitieques of water in the tank with a self-aspirating disk impeller operating 

without gas dispersion were measured by the PIV method. A comparison of mean square velocity pulsations 

confirmed previous observations that the area in which turbulence is non-isotropic is small and extends about 

3 mm above and under the impeller and radially 12,5 mm from the impeller blade tip. Based on velocity 

measurements, the distributions of energy dissipation rates were determined using the dimensional equation 

 = C·u’3/D and Smagorinsky model. Adoption of the results of the dimensional equation as a reference value

allowed us to determine the Smagorinsky constant value. This value appeared to be smaller than the values

given in the literature. It has been shown that eddies in a small space near the impeller had sufficient energy to

break up gas bubbles flowing out of the impeller. Based on the obtained energy dissipation rate distributions,

appropriate turbulence scales were determined.
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NOMENCLATURE 

B baffle width 

D impeller diameter 

d diameter of gas bubble or eddy 

E energy 

g acceleration of gravity 

H liquid height in the tank 

h distance of the impeller from the tank 

bottom 

k turbulent kinetic energy per unit mass 

k wave number 

N rotational frequency 

T tank diameter 

u’ mean square velocity pulsation (in terms of 

RMS) 

 energy dissipation rate

K spatial Kolmogorov scale 

 spatial integral scale

 spatial Taylor scale

 density

 surface tension

Re Reynolds number  

Fr’ modified Froude number 

1. INTRODUCTION

Liquid circulation in the tank with a self-aspirating 

disk impeller has an influence on the residence time 

of gas in the tank (Kurasiński and Kuncewicz, 2009). 

For this type of impeller most important is the space 

near the impeller blade, where the bubbles of 

dispersed gas are disintegrated only by the eddies 

whose size and energy are suitable to disrupt the 

bubble. Both parameters can be determined on the 

basis of local energy dissipation rate  (Pohorecki et 

al., 2001; Laakkonen et al., 2006). This, in turn, is 

defined on the basis of the measurements of liquid 

flow velocities in the tank. Hence, to explain the 

phenomena occurring near the blades of a self-

aspirating disk impeller an accurate hydrodynamic 

description in this area is required. In the case of PIV 

measurements the classical definition described by 

Eq. (1) can be used to determine the distribution of 

energy dissipation rates (Sharp et al., 1998; 

Saarenrinne and Piirto, 2000; Sheng et al., 2000; 

Baldi et al., 2002; Baldi and Yianneskis, 2003; 
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Kilander and Rasmuson, 2005; Tanaka and Eaton, 

2007; de Jong et al., 2009; Delafosse et al., 2011) 
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For three-dimensional flow, where u’ is the velocity 

pulsation in the x direction, v’ is the pulsation in the 

y and w’ in z direction, the following relationship (2) 

is obtained 
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In the PIV method a two-dimensional velocity 

distribution is obtained. However, under the 

assumption of isotropic turbulence, the missing 

elements in the z direction can be replaced (Xu and 

Chen, 2013; Hoque et al., 2015) using the following 

relationships (3), (4) and (5) 
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Upon substitutions and transformations we have 

obtain Eq. (6) 
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which is used to calculate local energy dissipation 

rates on the basis of data obtained from the two-

dimensional PIV system. Literature data 

(Saarenrinne and Piirto, 2000) indicate, however, 

that Eq. (2) gives correct results with spatial 

resolutions (understood as distance l between 

velocity vectors in the PIV method) close to the 

Kolmogorov scale K. According to the literature 

(Bartels et al., 2000; Micheletti et al., 2004; Joshi et 

al., 2011), good results (error of the order of 15%) in 

the case of l >> K are obtained with filtration based 

on the Smagorinsky model (Rösler, 2015) 
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where l is the distance between velocity vectors in 

the PIV method. However, the value of  is affected 

by a so-called Smagorinsky constant. Usually, 

Cs = 0.17 is assumed but there are also values ranging 

from 0.11 to 0.21 (Baldi et al., 2002). 

Often, instead of using complicated Eqs. (1-7) a 

simple relationship (8) combining the value of  with 

velocity pulsations u’ is applied 
3

.
u

C
L




  (8) 

where: 'u  – average velocity pulsation in terms of 

RMS [m/s], C – numerical coefficient, L –linear 

dimension [m]. According to the theory, the linear 

dimension L should be the size of the largest eddies 

in the tank (integral scale of eddies). Typically, 

however, it is not known and the impeller diameter 

is substituted for the linear dimension (Kresta and 

Wood, 1993) because it is assumed that the biggest 

eddies have dimensions similar to the impeller 

diameter. Such a simplification, however, requires 

the determination of coefficient C, which can depend 

additionally on rotational frequency of the impeller 

(for the self-aspirating disk impeller C = 5.2 (Kania 

and Kuncewicz, 2002) for L = D). The value of 

coefficient C was determined precisely by the 

method of summation of control volumes. Therefore, 

values calculated from Eq. (8) will be treated as 

reference data. Literature data (for example 

Micheletti et al., 2004) and our own research 

(Stelmach et al., 2005) indicate, however, that the 

values of  calculated by different methods may vary 

considerably. 

In the literature (Wilcox, 1994) one can also find a 

definitional relationship with the thickness of the 

boundary layer, but its utility for calculating  on the 

basis of liquid velocity measurements seems to be 

limited. 

Knowing the energy dissipation rate allows spatial 

scales of eddies to be determined (Escudié and Liné, 

2003). Dimensions of the smallest eddies can be 

calculated from Kolmogorov’s theory 
1/4
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The size of Kolmogorov eddies also determine the 

size of the smallest gas bubbles that can occur in a 

two-phase liquid-gas system. 

Another scale used to describe turbulent flows is the 

Taylor scale. This scale determines the size of eddies 

of intermediate size between the Kolmogorov K 

scale and integral scale , for which fluid viscosity 

has a significant effect on the dynamics of the 

turbulent eddies in the flow. In isotropic turbulent 

flows, the size of eddies in this range can be 
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calculated from the relation (10) 

2
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The largest scale in the energy spectrum is the 

integral scale. Eddies from this range receive energy 

from the impeller and transmit it to a smaller eddy 

(eddy cascade). The maximum size of this scale is 

limited by the characteristic linear dimension of the 

device. For Rushton turbine the sizes of eddies in this 

range can be calculated (Wu and Patterson, 1989) 

from the relation (11) 
3/2

Λ 0.85.
k


  (11) 

where 𝑘 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅̅) is the kinetic energy 

of turbulence and in the case of isotropic turbulence 

it is 𝑘 =
3

2
∙ 𝑢′2̅̅ ̅̅ .Outside the impeller zone, the order 

of magnitude of macroscale was shown to be D/4.4 

(Costes and Couderc, 1988) or D/4 (Ranade and 

Joshi, 1990; Michelet, 1998). 

With the size of eddies their energy is connected by 

which they can disrupt gas bubbles flowing out of the 

outlets of the self-aspirating disk impeller. The wave 

number k corresponding to length scale r is k = 2∙π/r. 

In the previous studies (Stelmach et al., 2005) it was 

found that for the tested impeller in the eddy energy 

spectrum there is an area of wave numbers in which 

Kolmogorov’s -5/3 law (Eq. (12)) is fulfilled (inertial 

range) 

  2/3 5/3..E k k    (12) 

where: E(k) – density of eddy energy spectrum 

[m3/s2],  – energy dissipation rate [m2/s], k – wave 

number [1/m],  ≈ 0.5 – Kolmogorov’s constant. 

Thus, if the value of  is known, one can calculate 

the energy of eddy of diameter d and compare it with 

the surface energy of the bubble Es = π∙d2∙σ of the 

same diameter. 

At the beginning of self-aspiration, after exceeding 

the critical value of the modified number Fr’cr = 0.21 

(Forrester et al., 1998; Stelmach, 2000; Ju et al., 

2009) the gas stream and the number of bubbles are 

very small, and gas bubbles only slightly interfere 

with the system hydrodynamics. In this case, in the 

analysis of phenomena occurring during gas 

dispersion the turbulence parameters obtained for a 

single-phase system can be used. For example, it has 

been observed for the discussed impeller that gas 

bubbles are broken only by eddies. Therefore, 

knowledge of distribution  in the vicinity of the 

impeller blades should enable calculating the gas size 

distribution based on the population balance model. 

In this model, in the equations describing the 

frequency of bubble breaking  is 

important/necessary parameter (Martinez-Bazan et 

al., 1999; Lehr et al., 2002; Laakkonen et al., 2007). 

The first aim of the study is to examine turbulent 

energy dissipation rate in the vicinity of the blade of 

a self-aspirating disk impeller operating without gas 

dispersion at rotational frequency slightly higher 

than the critical rotational frequency. The second aim 

of the work is to determine the spatial turbulence 

scales in the tank and to analyze the energy of eddies 

with respect to the surface energy of gas bubbles 

flowing out of the impeller. 

2. EXPERIMENTAL 

Experiments were carried out in a flat-bottomed 

glass tank of diameter T = 292 mm equipped with 

four baffles of width B = 0.1·T. The self-aspirating 

disk impeller of diameter D = 125 mm was placed at 

height h = 78 mm above the tank bottom. The tank 

was filled with distilled water (t = 20°C) to the height 

H = 0.3 m. Tracer particles of mean diameter 10 m 

were added to water. To reduce optical distortions, a 

cylindrical tank was placed in a rectangular tank and 

the space between the walls of the tanks was filled 

with water. Velocity measurements were made for 

rotational frequency of the impeller N = 6 s-1 

(360 min-1) in the plane defined by the axis of 

rotation of the impeller and the bisector of the angle 

between the baffles (Fig. 1). In the measurement 

conditions the Reynolds number was Re = 93580 and 

the modified Froude number Fr’ = 0.258. The 

impeller was operating without gas dispersion (the 

inlet in the shaft was stopped closed). In these 

conditions the power number was Po = 0.812 and the 

energy dissipation rate for the whole tank was 

m = 0.266 m2/s3. In order to facilitate the comparison 

of the values of  with other types of impellers, this 

parameter is often given in a dimensionless form 

* = /(D2·N3). In the discussed case this is 

m* = 0.0788. 

 

 
Fig. 1. Schematic diagram of the measurement 

system. 
 

The measurements were made using a LaVision PIV 

measuring system with a double-pulse laser with 

maximum power of 135 mW and an ImagePro 

camera with 2048 px × 2048 px resolution equipped 

with a Nikkor 1.8/50 lens. The aperture of the lens 

was stopped down to the value ensuring a maximum 

resolution (the f-number was 5.6). The measurement 

area was approximately 60 mm × 60 mm. Laser 

pulses were initiated by an external trigger 

synchronized with impeller blade. The thickness of 

the light knife was 1 mm. Due to the importance of 

the area near the impeller blade where during a 

normal operation gas bubbles were subjected directly 

to eddies formed behind the blade, measurements 

were made for seven angular positions of the blade 

relative to the measurement plane at distances -15°, 

-10°, -5°, 0°, +5°, +10° and +15° in relation to the 

light knife (Fig. 1). For each angular position of the 

blade 200 double photographs were taken for 

velocity averaging. Time interval between the pulses 

was t = 415 s. This value was calculated on the 

assumptions: 1 – radial and axial velocities are less 
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than 20% of tip blade velocity, 2 – pixel shift 

(displacement of tracer particles in the photographs) 

10 pixels. The limit value for the first assumption 

was defined on the basis of previous measurements 

by the LDA method (Stelmach et al., 2002). 

Data processing was performed using the DaVis 7.2 

program. Two-pass data processing was used with 

the final size of the analyzed area being 32 px × 32 px 

(i.e. about 0.95 mm × 0.95 mm) without overlaying. 

3. RESULTS AND DISCUSSION 

The spatial Kolmogorov scale calculated on the basis 

of mean energy dissipation rate is 

K = (3/)0.25 = 0.044 mm, while the distance 

between velocity vectors determined in the PIV 

method is many times bigger and amounts to 

0.95 mm. The measurement area should have a size 

of 3 mm × 3 mm to ensure the distance between 

velocity vectors equal to the average Kolmogorov 

scale. Near the impeller the linear Kolmogorov scale 

has smaller values, thus for the adopted setting of the 

PIV system the flow of microstructures cannot be 

analyzed. 

In our previous works (Stelmach et al., 2003a, 

Stelmach et al., 2003b, Kania and Kuncewicz, 2002), 

distribution of energy dissipation rate for random 

positions of the blade relative to the baffle was 

determined (this applies to measurements using the 

LDA and PIV methods). In this work, a trigger was 

used that was synchronized with the position of the 

impeller blade. Thanks to this, distribution maps of 

energy dissipation rate  were obtained depending on 

the position of the measuring surface relative to the 

baffle. 

3.1 Isotropy of Turbulence 

Due to the use of the Smagorinsky model, the 

isotropy of turbulence for axial and radial 

components was investigated. In the case of isotropic 

turbulence the velocity pulsations in both directions 

should be the same. Since the measurements were 

made for a fixed position of the blade relative to the 

baffles, no periodic component was removed (Wu 

and Patterson, 1989; Kresta and Wood, 1993). The 

test results obtained using the LDA method show that 

beyond the impeller region the turbulence is isotropic 

(Stelmach, 2001). The use of the PIV method 

produced only two velocity components. Figures 2 

and 3 show the contour plots of dimensionless mean 

square velocity pulsations for blade positions -15° 

and +15° relative to the plane of the light knife.  

Analysis of these figures leads to the conclusion that 

outside the blade region there is nearly isotropic 

turbulence (for the analyzed components). The 

correlation coefficient between pulsation 

components of axial and radial velocities is 

Rc = 0.705 (the CORREL function of MS Excel was 

used which returns the correlation coefficient 

between two data sets). For data from outside the 

impeller region defined as R < 70 mm and 

60 mm < H < 80 mm (dashed line in Figs. 2 and 3), 

the correlation coefficient increases to Rc = 0.956. 

This confirms the earlier observations and justifies 

the possibility of averaging velocity pulsations, e.g. 

in the calculation of the energy dissipation rate. 

 

 
Fig. 2. Dimensionless RMS for blade 15° behind 

the light knife: a) radial, b) axial. 

 

 
Fig. 3. Dimensionless RMS for blade 15° in front 

of the light knife: a) radial, b) axial. 

 

The values of Rc for all the surveyed positions of the 

blade are summarized in Table 1. 
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Table 1 Values of correlation coefficients 

Position 

Correlation coefficient 

All data 
Beyond the 

impeller region 

-15° 0.705 0.956 

-10° 0.662 0.950 

-5° 0.595 0.944 

0° 0.721 0.943 

+5° 0.595 0.944 

+10° 0.673 0.944 

+15° 0.649 0.946 

 
Since the measurements for the PIV method showed 

isotropic turbulence for the radial and axial 

directions it is assumed that this is a confirmation of 

the results obtained by the LDA method. Previous 

studies have shown that there is an inertial subrange 

in the energy spectrum. Fulfillment of the 

assumption of the isotropy of turbulence makes it 

possible to calculate the energy dissipation rate. 

3.2 Determination of the Value of 

Smagorinsky Constant 

As mentioned previously, the value of Smagorinsky 

constant should be in the range from 0.11 to 0.21. 

Results calculated on the basis of Eq. (8) are shown 

in Fig. 4(a). Figure 4(b) shows the distribution of 

energy dissipation rates calculated from the 

Smagorinsky model for Cs = 0.11. The comparison 

of Figs. 4(a) and 4(b) leads to the conclusion that in 

the corresponding points of measurements there are 

big differences in the value of  = /(D2·N3) 

calculated from Eqs. (7) and (8). For remaining 

positions of the blade the results are similar. 

 

 
Fig. 4. Energy dissipation rate for blade 15° 

behind the light knife. 

Because values calculated from Eq. (8) are treated as 

reference data, the value of Smagorinsky constant 

should be decreased. Figure 5(a) shows results 

obtained from term   
i j

SRMS j,ij,i

2
  for 

different Cs values. On the other hand, Fig. 5(b) 

shows calculation results of the relationship 

 
i j

S
i j

RMS j,ij,i
 . 

 

 
Fig. 5. Determination of the optimal value of 

Smagorinsky constant. 

 

3.3 Blade 15° Behind the Light Knife 

Values  calculated from Eqs. (8) and (7) for 

corrected value Cs are shown in Fig. 6. Basing on 

Fig. 6 it can be concluded that the maximum value of 

 occurs before the geometric center of the blade 

and is about 50 times bigger than the average value. 

A quick decrease in the value of  is observed in all 

directions on a small area (framed in Fig. 4(a)) 

limited by radii R = 50 mm and R = 85 mm and 

heights H = 55 mm and H = 85 mm. Outside it the 

distribution becomes uniform. This means that in the 

ring near the blade most energy supplied to the tank 

is dissipated. 

Figure 7 shows distributions of turbulence scales 

calculated from Eqs. (9), (10) and (11) for  
calculated from Eq. (7) at the assumed value of 

Cs = 0.07. To facilitate comparisons, radial profiles 

of turbulence scales were determined for three 

heights H = 60, 71 and 80 mm, i.e. for the impeller 

region. In this region we can find constant values of 

the analyzed turbulence scales. The largest eddies are 

about 25 mm in size which rises outside the impeller 

region to about 45 mm. Taylor eddies are about 0.8 

mm in size which outside the impeller region slightly 

rises. The smallest eddies are about 0.02 mm in size, 
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but they are rapidly growing as they move away from 

the impeller region. 

 

 
Fig. 6. Energy dissipation rate for blade 15° 

behind the light knife. 

 

 

 

 
Fig. 7. Spatial turbulence scales for blade 15° 

behind the light knife: a) Kolmogorov’s, b) 

Taylor’s, c) integral. 

 

3.4 Blade 10° Behind the Light Knife 

For Cs = 0.07 distributions * obtained from Eqs. (7) 

and (8) show good agreement (Fig. 8). The 

maximum values occur at the height of the impeller 

at a distance of about 5 mm from the impeller tip and 

its geometric center. 

 

 
Fig. 8. Energy dissipation rate for blade 10° 

behind the light knife. 
 

The turbulence scales (Fig. 9) do not change 

compared to the previous position of the blade. 

3.5 Blade 5° Behind the Light Knife 

For this blade position the distributions of energy 

dissipation rate did not change compared to position 

-10° (Fig. 10). Only their maximum values decreased 

slightly. 
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For the discussed position of the blade, no changes 

in turbulence scales were observed compared to 

positions -10° and -15° as shown in Fig. 11. 

 

 

 

 

Fig. 9. Spatial turbulence scales for blade 10° 

behind the light knife: a) Kolmogorov’s, b) 

Taylor’s, c) integral. 

 

 

Fig. 10. Energy dissipation rate for blade 5° 

behind the light knife. 
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Fig. 11. Spatial turbulence scales for blade 5° 

behind the light knife: a) Kolmogorov’s, b) 

Taylor’s, c) integral. 

 

3.6 Blade in the Light Knife Plane (0°) 

The distributions and values of energy dissipation 

rates for the plane lying in the plane of the impeller 

blade did not change compared to position -5° (Fig. 

12). 

 

 
Fig. 12. Energy dissipation rate for the blade in 

the light knife plane. 

 

3.7 Blade 5° in Front of the Light Knife 

In the case of the distributions of energy dissipation 

rates (Fig. 14) the biggest values occur at a small 

distance from the blade tips. This means that bubbles 

flowing out from openings in the blade can be 

disrupted by eddies generated by the impeller blade. 

Changing the blade position by 5° does not change 

the distribution of the turbulence scales (Fig. 15). 

 

 

 

 
Fig. 13. Spatial turbulence scales for blade in the 

light knife: a) Kolmogorov’s, b) Taylor’s, c) 

integral. 
 

3.8 Blade10° in front of the light knife 

An increase of the maximum values of energy 

dissipation rate was observed in relation to the 

previous blade position. However, the area of this 

increase is small and its importance in the process of 

gas bubble disruption during gas dispersion is also 

small (at a small number of bubbles it is little 

probable that a bubble can appear in this area). 
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Fig. 14. Energy dissipation rate for blade 5° in 

front of the light knife. 

 

 

 

 
Fig. 15. Spatial turbulence scales for blade 5° in 

front of the light knife: a) Kolmogorov’s, b) 

Taylor’s, c) integral. 

 

 
Fig. 16. Energy dissipation rate for blade 10° in 

front of the light knife. 
 

Further movement of the blade does not affect the 

size of turbulence scales (Fig. 17). 

3.9 Blade15° in Front of the Light Knife 

The distribution of velocity pulsations corresponds 

to the distribution for position -15°. 

For the last of the analyzed blade positions, the 

distributions of the discussed turbulence scales are 

almost the same as for all previous positions. 
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Fig. 17. Spatial turbulence scales for blade 10° in 

front of the light knife: a) Kolmogorov’s, b) 

Taylor’s, c) integral. 

 

 
Fig. 18. Energy dissipation rate for blade 15° in 

front of the light knife. 

 

 

 

 
Fig. 19. Spatial turbulence scales for blade 15° in 

front of the light knife: a) Kolmogorov’s, b) 

Taylor’s, c) integral. 

50

60

70

80

90

100

30 40 50 60 70 80
H

[m
m

]

+10°

0
0 01.

0 02.

0 03.
0 04.

H=71mm

H=60mm
H=80mm

R [mm]


K
[m

m
]

a)

0

0 0025.

0 0050.

0 0075.

0 0100.

0 0125.

0 0150.

0 0175.

0 0200.

0 0225.

0 0250.

0 0275.

0 0300.


K

[m
m

]

50

60

70

80

90

100

30 40 50 60 70 80

H
[m

m
]

0

1

R [mm] 


[m

m
]

H=71mm

H=60mm

H=80mm

+10°

b)

50

60

70

80

90

100

30 40 50 60 70 80

H
[m

m
]

+10°

0
10
20
30
40
50


[m

m
]

R [mm]

H=71mm

H=60mm

H=80mm

c)

0

5

10

15

20

25

30

35

40


[m

m
]

40 60 80

50

60

70

80

90

100

R [mm]

H
[m

m
]

+15°

a)

40 60 80

50

60

70

80

90

100

R [mm]

+15°

b)

0    0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10

40 60 80

50

60

70

80

90

100

R [mm]

H
[m

m
]

+15°

a)

40 60 80

50

60

70

80

90

100

R [mm]

+15°

b)

0    0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10

0

0 0025.

0 0050.

0 0075.

0 0100.

0 0125.

0 0150.

0 0175.

0 0200.

0 0225.

0 0250.

0 0275.

0 0300.


K

[m
m

]

50

60

70

80

90

100

30 40 50 60 70 80

H
[m

m
]

+15°

0
0 01.

0 02.

0 03.
0 04.

H=71mm

H=60mm
H=80mm

R [mm]


K

[m
m

]

a)

0

5

10

15

20

25

30

35

40


[m

m
]

50

60

70

80

90

100

30 40 50 60 70 80

H
[m

m
]

+15°

0
10
20
30
40
50


[m

m
]

R [mm]

H=71mm

H=60mm

H=80mm

c)



J. Stelmach et al. / JAFM, Vol. 12, No. 3, pp. 715-728, 2019.  

 

725 

3.10 Summary and Comparison of the 

Self-Aspirating Disk Impeller with Rushton 

Turbine 

The obtained results are consistent with the energy 

dissipation rate values obtained for the tested mixer 

in LDA measurements (Stelmach et al., 2003a). 

However, the PIV method - due to the amount of data 

obtained in one measurement - allows for more 

precise determination of changes in measured 

parameters (for example ) in the measurement area. 

At the impeller level there is a pronounced 

correlation maximum value of the energy dissipation 

rate from the blade position relative to the baffles. 

The lowest values occur when the blade is in the 

plane between the baffles. The highest values were 

observed for the blade position 15° before and 

behind that plane. However, these changes disappear 

for r/T > 0.26, which corresponds to the radius 

r  75 mm and 12.5 mm distance from the blade tip. 

It is a cavern space with reduced pressure (Stelmach 

and Musoski, 2017). Vacuum in the cavity causes the 

liquid to be sucked inside. The streams of liquids 

flowing from various directions to the caverns cause 

in its interior a great turbulence and strong 

dissipation of energy. Inside the cavern, the breaking 

of gas bubbles detached from the interface inside the 

impeller was observed. 

Liquid circulation generated by the self-aspirating 

disk impeller is the same as the circulation for a 

turbine-disk impeller (Rushton turbine). The 

Rushton turbine is one of the most thoroughly tested 

impellers and is used to disperse gas supplied by a 

bubbler. Therefore, it can be treated as a reference 

impeller. Due to differences in the structure (closed 

and box-like construction of the self-aspirating 

impeller) differences can be expected in the 

hydrodynamics of liquid flowing in the tank. Fig. 20 

shows the profiles of energy dissipation rate for the 

investigated impeller (Eq. (8) after smoothing) and 

Rushton turbine (Wu et al., 1989; Micheletti et al., 

2004). 

The maximum values for the self-aspirating disk 

impeller are about 4 times smaller. On the other 

hand, the power consumption is more than 6 times 

lower (Po = 0.812 for self-aspirating disk impeller 

(Stelmach, 2000) and Po = 5.2 for the Rushton 

turbine (Stręk, 1983). Probably these differences 

result from a larger area of blades in the Rushton 

turbine. This can be confirmed by changes in much 

higher absolute value of *, which is observed 

particularly in the axial profile (Fig. 20(b)). It seems 

that for turbine impellers, measurements should be 

made in the same system as for a self-aspirating 

impeller, as according to some researches (Lee and 

Yianneskis, 1998; Sharp et al., 1998; Sharp and 

Adrian, 2001; Zadghaffari et al., 2010) the value of 

* near the Rushton turbine blades reaches 20. Other 

researches (Delafosse et al., 2009) show that the 

distribution of energy dissipation rates largely 

depends on the position of the blade relative to the 

measuring plane. 

For the self-aspirating disk impeller the maximum 

dissipation rates are about 30 times bigger than the 

average value. Similar values are observed in the 

case of the Rushton turbine (Wu and Patterson, 1989; 

Sharp and Adrian, 2001). For both impellers the 

maximum dissipation rates occur at the height of the 

impeller. However, in the case of the Rushton turbine 

this occurs at a bigger radial distance from the blade 

tip (Sharp and Adrian, 2001). In both cases the 

distributions of * depend on the position of blades 

relative to the baffles. For the Rushton turbine the 

highest value of * is 12, while for the self-aspirating 

impeller it is only 4. Nevertheless, these values are 

many times higher than for the impellers with axial 

flow (Baldi et al., 2002). 

 

 

 
Fig. 20. Profiles of turbulent energy dissipation 

rate. 

 

The energy dissipation rate affects the turbulence 

scales. At the height of the Rushton impeller, the 

integral turbulence scale  is about 1 mm (Lee and 

Yianneskis, 1998), while for the self-aspirating 

impeller it is several times larger reaching about 

25 mm. However, for the Rushton turbine some 

authors (Ståhl Wernersson and Trägårdh, 2000) give 

also bigger, close to 50 mm, values of this scale. 

Near the impeller, the Kolmogorov length scale is 

approximately 0.02 mm. At the same time, it is the 

lower limit of the size of the gas bubbles dispersed 

by the test impeller. 

Eddies of the Taylor scale have approximately 

0.8 mm near the impeller tip. Therefore, they are 

smaller than the Sauter diameter d32 = 1.59 mm gas 

bubbles at the rotational frequency N = 6 s-1 

(Stelmach, 2007).  

At the impeller level, the dimensions of the integral 
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eddy scale are about 25 mm, i.e. they are several 

times smaller than the diameter of the impeller. This 

means that the use of the impeller diameter as a linear 

dimension in Eq. (8) is not entirely justified. 
However, it should be remembered that the 

dimensions of eddies with an integral scale are not 

known a priori. The linear dimension used only 

affects the value of the coefficient in Eq. (8). Since 

this value is determined experimentally for a given 

type of impeller, the use of the impeller diameter as 

a linear dimension does not lead to incorrect values 

of . 

In the area marked in Fig. 4(a) – the most important 

from the point of view of the ability of eddies to 

break bubbles – changes in turbulence scales are 

small and do not exceed several percent. 

3.11 Ability to Break up Bubbles 

Gas bubbles flowing out from the outlets of the self-

aspirating disk impeller are disrupted by eddies 

generated by the impeller. Figure 21 shows energy of 

the eddies of size ranging from d = 0.01 mm to 

d = 30 mm calculated from Eq. (25) for * = 4.5. In 

the same figure and for the same range of diameters, 

the surface energy of bubbles determined by 

equation 𝐸𝑠 = 𝜋 ∙ 𝑑2 ∙ 𝜎 is also shown. 

 

 
Fig. 21. Comparison of the energy of eddies and 

bubbles. 
 

In order for the eddy to disrupt a gas bubble its 

energy must be greater than the surface energy of the 

bubble (the bursting force must be greater than the 

cohesive force). More importantly, the size of the 

eddy should be smaller than that of the broken bubble 

(Lehr et al., 2002, Martín et al., 2008). For the 

assumed value of  eddies greater than 1.5 mm meet 

this condition. According to Stelmach et al. (2016) 

the sizes of bubbles flowing out of the impeller are 

less than 10 mm. Thus, for the self-aspirating disk 

impeller eddies behind the blade can disrupt gas 

bubbles in a fairly large range of their diameters. On 

the other hand, the observed presence of gas bubbles 

smaller than 1.5 mm can be explained in two ways: 

1. instantaneous energy dissipation rates may 

well exceed the average value accepted for 

calculation, 

2. small bubbles can form when disrupting larger 

bubbles. 

5. CONCLUSIONS 

Calculations of the energy dissipation rate based on 

the dimensional equation and Smagorinsky model 

give similar results, but correction of the 

Smagorinsky constant is necessary. High values of 

the energy dissipation rate appear also in the ring of 

inner radius 50 mm, external radius 85 mm and bases 

distant by 10 mm from horizontal surfaces of the 

impeller, i.e. slightly bigger than in the case of 

velocity. In this annular space most energy supplied 

by the impeller is dissipated. The small size of this 

space is most probably due to the small blade surface 

as compared to the Rushton turbine.  

In the space close to the impeller the average eddy 

size from the Kolmogorov (dissipative) range is 

 = 0.02 mm. The average size of eddies in the 

Taylor scale is  = 0.85 mm, and for the integral scale 

this value is  = 25 mm. Outside of the impeller 

region these values increase. 

Eddies generated by the self-aspirating disk impeller 

have energy sufficient to disrupt gas bubbles flowing 

out from the outlets. 

The maximum values of the dimensionless energy 

dissipation rate for the Rushton turbine are 

approximately 3 times greater than for the self-

aspirating impeller, while the mixing power is more 

than 6 times greater. This means that blades with 

smaller surfaces can also effectively transfer energy 

to the liquid. 
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