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ABSTRACT 

Large-eddy simulation of a laminar separation bubble on a flat plate has been performed and compared with 

the data in the literature. Suitability of different subgrid-scale models has been examined for simulation of 

transition. Comparison of various parameters and three-dimensional visualization of instantaneous flow fields 

indicate that standard Smagorinsky model, being too dissipative, is not suitable for this kind of problem and 

fails to properly resolve transition. With the application of low Reynolds number correction and a reduced 

model constant, a good agreement with the dynamic model is obtained at a lower computational cost. Of the 

three SGS models investigated, dynamic model gives the most physically accurate description of transition. 

The simulations illustrate that the appearance of Λ-vortices, vortex stretching and break down of longitudinal 

streaks characterize the transition process. Low values of reverse flow make it clear that a convective 

instability is involved. It is concluded that the initial amplification of disturbances is due to Tollmien -

Schlichting mechanism while the roll-up of the shear layer takes place due to Kelvin-Helmholtz instability. It 

is observed that the universal log-law profile is not reached by the velocity profiles even far downstream. 

Keywords: Separation bubble; Large-eddy simulation; Smagorinsky model; Dynamic model. 

NOMENCLATURE 

Cf skin friction coefficient 

Cp coefficient of pressure 

CS smagorinsky model constant 

p pressure 

rms root mean square 

*
in

Re


Reynolds number based on displacement 

thickness at inlet and free stream velocity   

Relt Reynolds number based on transition 

length  

θs
Re Reynolds number based on the boundary 

layer momentum thickness at separation 

τ
u friction velocity

um mean streamwise velocity 

U∞ free stream velocity at inlet 

wτ wall shear stress 

δ boundary layer thickness 

*
δ displacement thickness 

*

in
δ displacement thickness at inlet 

θ momentum thickness 

θs momentum thickness at separation 

ij
 sub-grid scale tensor

1. INTRODUCTION

Laminar separation bubbles (Fig. 1) are usually 

found in low Reynolds number flows such as flows 

over airfoils or low-pressure (LP) turbine blades 

where the flow separates under steady flow 

conditions. The separated shear-layer undergoes 

transition as it is highly sensitive to perturbations 

near the point of separation. Non-linear breakdown 

of traveling waves is hypothesized to be the cause 

of transition (Dovgal et al. 1994). The flow is re-

energized by the resultant turbulent layer and 

reattachment takes place to form a separation 

bubble (Horton, 1967; Roberts, 1980). 

The ability to predict and control the formation of 

laminar separation bubble has great practical 

importance in many engineering flows. Still the 

knowledge of flow structures and mechanism of 

transition in the bubble region is incomplete (Jones 

et al., 2010). The receptivity of the bubble to the 

disturbances arising from different sources is only 

partly understood. The present study aims to 
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simulate the flow environment of a laminar 

separation bubble to look into the mechanism of 

transition, generation of large and small-scale 

eddies and their interactions. 

 

 
Fig. 1. Laminar separation bubble showing 

contours of um, streamlines (light coloured) 

and other features. 
 

Early numerical work on laminar separation 

bubbles focused on the prediction of time-averaged 

structure and this trend remained unchanged up to 

early nineties. Since the beginning of nineties, a 

number of researchers used Navier-Stokes equation 

to resolve details of unsteady separation bubbles. 

Pauley et al. (1990) simulated unsteady structures 

in a rectangular channel without using a turbulence 

model. It was observed that the adverse pressure 

gradient caused periodic vortex shedding. Ripley 

and Pauley (1993) simulated the characteristics of 

separation found in experimental study of Gaster 

(1967). Allen and Riley (1995) describe an 

investigation into the flow properties associated 

with small two-dimensional separation bubbles, 

commonly found on the leading edge of airfoils. Lin 

and Pauley (1996) numerically investigated 

separation from an airfoil. According to them, the 

unsteadiness of shear layer is caused by a Kelvin-

Helmholtz (K-H) instability. 

The DNS of Alam and Sandham (2000) and Spalart 

and Strelets (2000) fully resolve the transition in a 

laminar separation bubble. It is inferred by Alam 

and Sandham (2000) that the Λ-vortex-induced 

breakdown causes the transition in the separated 

shear layer which then reattaches as turbulent flow. 

The turbulent layer then undergoes a slow recovery. 

Spalart and Strelets (2000) used suction in a 

channel flow to generate the adverse pressure 

gradient. However, they did not consider artificial 

forcing of disturbances upstream of separation. 

They discard the entry-region disturbances as the 

cause of transition and conclude that the transition 

process includes a wavering shear layer followed by 

K-H vortices, which instantly become three-

dimensional. Yang and Voke (2001) predicted the 

characteristics of laminar separation bubble and 

transition at a change of surface curvature. Marxen 

et al. (2003) introduced 2-D disturbances upstream 

of separation using an oscillating wire and imposed 

3-D disturbances using array of thin metal spacers. 

Their conclusion is that viscous T-S instability is the 

primary instability mechanism. Wissink and Rodi 

(2003) performed their DNS of separation bubble in 

the presence of oscillating flow. They conclude that 

a K-H instability, such as found in the laminar 

separation bubble simulation with steady inflow 

(Spalart and Strelets, 2000), causes the initial roll-

up of the shear layer 

Roberts and Yaras (2006) and McAuliffe and Yaras 

(2008) used a coarse DNS to examine transition in a 

separation bubble. Jones et al. (2010) investigated 

the flow around an airfoil using very low amplitude 

perturbations. They could not find any evidence of 

absolute instability. The interaction of mean flow 

and transition in a transitional separation bubble 

was investigated by Marxen and Rist (2010) while 

The interaction of different instability modes in the 

process of transition in a separation bubble was 

numerically investigated by Brinkerhoff and Yaras 

(2011).  

It is evident from the above discussion that despite 

such a long history of research, the problem of 

transition in a laminar separation bubble is only 

partly understood and still demands attention. One 

of the principal objectives of this study is to resolve 

the physics of a laminar separation bubble by LES 

and to examine the effect of sub-grid models. Here, 

focus is on the applicability of Smagorinsky model 

against the dynamic model in predicting transition 

of the separated layer, coherent structures and 

turbulent eddies near and after reattachment. The 

receptivity of disturbances of the separated layer 

leading to transition and breakdown has also been 

discussed. 

2. NUMERICAL FORMULATION  

2.1 Governing Equations  

The filtered mass and momentum equations, for an 

incompressible fluid flow in a Cartesian coordinate 

system, can be given as, 

0
j

j

u

x





                                                 (1) 

 
*

21

Re
in

iji
j i i

j i j

u p
u u u

t x x x


  
     

   
     (2) 

Here, ui and p denote velocity and pressure fields 

respectively while the overbar denotes the filtered 

variables The SGS tensor is calculated by 

Smagorinsky model (Smagorinsky, 1963) for two 

values of model coefficients Cs, 0.17 & 0.1 apart 

from the dynamic model proposed by Germano et 

al. (1991) and modified by Lilly (1992). 

Schematic of the computational domain is shown in 

Fig. 2. The lengths are scaled with respect to 
*

in
δ  

and the velocities with respect to U∞. Dimensions of 

the computational box are given in Table 1. It 

should be noted that Alam and Sandham (2000) had 

taken the same domain dimensions. The flow 

Reynolds number based on 
*

in
δ  and U∞ is 500. 
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Table 1 Dimensions of the computational box. 

Lx(
*

in
δ ) Ly(

*

in
δ ) Lz(

*

in
δ ) 

200 10 30 

 

 
Fig. 2. Schematic of the computational domain. 

 
2.2 Boundary Conditions 

At the inlet, a Blasius velocity profile is specified 

for u corresponding to *
in

Re


= 500, while v =w =0. 

A convective boundary condition (Orlanski, 1976) 

is imposed at the outlet, which can be written as 

0i i
c

c

u u
U

t x

 
 

 
                                                 (3) 

Here, subscript c denotes the direction normal to the 

outflow boundary. Uc, the convective velocity is 

considered to be constant across the outflow 

boundary and is fixed at each time step by 

averaging the velocity normal to the boundary over 

a transverse plane.  

On the lower boundary a no-slip condition is 

applied i.e. u = v = w = 0. At the upper boundary, u 

= 1.0 and  v = w = 0 and a suction profile following 

the Gaussian distribution of the wall-normal 

velocity component has been specified. The 

expression of the suction-velocity distribution 

following Alam and Sandham (2000) is given by, 

2( ) exp[ ( ) ]s s sS x a b x c                          (4) 

The values of constants are given in the Table 2. 

Because of Gaussian distribution, the suction will 

be effective locally as shown in Fig. 2.  

 

Table 2 Numerical parameters of suction and 

forcing profile 

as bs cs af bf cf ω β 

0.15 0.02 25 30.08-3 0.125 10 0.15 0.41 

 

As naturally occurring disturbances are non-existent 

in numerical simulations, a disturbance strip applied 

upstream of separation triggers the transition of 

shear layer. The disturbance strip is applied to the 

normal velocity by the function given below, 

following Alam and Sandham (2000). 

2( , , ) exp[ ( ) ] sin( ) sin( ) f f fx z t a b x c t z     

(5) 

The constants af, bf and cf controlling the 

disturbance are given in Table 2. The flow is 

assumed to be homogeneous in the spanwise 

direction; hence a periodic boundary condition is 

applied to all the velocity components in the 

spanwise direction. 

2.3 Computational Details 

The grid is slowly stretched in the wall-normal 

direction while the grid is uniform in the other two 

directions. In Table 3, a comparison of the grid 

spacing has been made with the simulations of 

Spalart (1988), Kim et al. (1987) and Alam and 

Sandham (2000). The wall shear stress varies along 

the streamwise direction and accordingly uτ varies. 

Here, the wall units are calculated on the basis of uτ 

at x = 170, where the boundary layer has relaxed to 

an approximate canonical layer. The wall units in 

other two directions are evaluated in a similar 

manner. The resolutions are compared in terms of 

x


 , y


  and z


  at y+ = 9.0. Further, number of 

grid points within y+= 9.0 (N) is tabulated to assess 

the near wall resolution. 

 

Table 3 Comparison of the wall units 

Case x


  y


  at y+ 

= 9 
z



  
N 

KMM 11.78 1.33 7.00 13 

Spalart 20.00 - 6.70 10 

Alam & Sandham 20.73 0.90 6.20 16 

Present 

LES 

160×64×32 31.18 1.24 23.4 8 

200×64×32 24.64 1.23 23.1 8 

200×64×64 24.38 1.21 11.25 8 

260×64×64 16.07 1.20 10.96 8 

260×96×64 16.14 0.72 11.21 13 

 
To ensure grid independence, simulations were 

carried out using five levels of mesh, viz. 

160×64×32, 200×64×32, 200×64×64, 260×64×64 

and 260×96×64 cells in the x, y and z directions 

respectively. Variations of Cf for different grid 

levels are plotted in Fig. 3. It can be seen from Fig. 

3 that the changes in evolution of Cf  and bubble 

length are insignificant as the 200×64×64 grid is 

refined further. Hence, a mesh of 200×64×64 points 

is chosen here for subsequent calculations.  

It should be noted that the near wall resolution at x 

= 170, where an attached turbulent layer appears, is 

Δx+ 24, Δy+ 1.0 and Δz+ 11. Turbulent 

boundary layer simulations using a second-order 

accurate scheme roughly need Δx+ 50, Δy+ 1.0, 

Lx 

δ
* 

x 
y  z  

Suction  

profile 

Disturbance 

Strip 

Ly 

Lz 
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Δz+ 20 for a LES and Δx+ 15, Δy+ 1.0, Δz+ 6 

for a DNS (Ovchinnikov et al., 2006). However, the 

grid requirements are less established for resolution 

of transitional flow, which obviously demands more 

refined grid and may be problem dependent. Based 

on the previous work (Sarkar, 2007, 2008, 2009; 

Sarkar and Sarkar, 2009), it appears that the present 

mesh is capable of resolving transition. With the 

chosen grid, simulations are performed for the 

following cases,  

(i) Smagorinsky model, Cs= 0.17 

(ii) Smagorinsky model, Cs= 0.1  

(iii) Dynamic model. 

 
Fig. 3. Evolution of Cf for different grid levels. 

 

 

It may be noted that being absolutely dissipative 

,the Smagorinsky model is incapable of 

accounting for the backscatter and shows 

excessive dissipation. However, this shortcoming 

is partly offset by using the low-Reynolds number 

model of Voke (1996), which is expected to 

simulate the transitional flow. 

Seven flow passes with wall disturbance were 

allowed to evolve the separation bubble, breakdown 

and the downstream development, each pass taking 

10000 iterations. Statistics were taken for further 

ten flow passes after the flow reached dynamic 

stability. It may be noted that the dimensionless 

time step is 0.02. The simulation took about 70 hrs 

on an Intel Xeon, 2.6 GHz, quad-core, twin 

processor machine with 16 GB RAM. 

3. RESULTS AND DISCUSSION 

3.1 Validations 

The LES solver used here has been thoroughly 

validated in several studies (Sarkar, 2007, 2008, 

2009; Sarkar and Sarkar, 2009) for transitional 

and turbulent flows. As stated, the computational 

domain used here is same as that of Alam and 

Sandham (2000). It has also been confirmed that 

the normal and streamwise lengths were 

sufficient to resolve the developing boundary 

layer. However to check the spanwise length, the 

two-point correlations are calculated. In detail, 

turbulent flow consists of eddies in different size 

and orientation.  

An idea of eddy size and orientation can be 

obtained by studying the relation between velocity 

and other fluctuating quantities at different 

locations and time. A correlation is defined as  

     i j i j
s s x,r ,τ =s x,t s x+r,t+τ , where si, sj are 

fluctuating quantities. Now, the space-time 

correlation coefficient is written as 

 
2 2

, ,i j

ij

i j

s s x r
R

s s


 .  

Two quantities are perfectly correlated if R = 1 and 

uncorrelated if R = 0. In general the value of R lies 

between 0 and 1. Following the above definition, 

the spanwise two-point correlations for different 

components of velocity are obtained as 

uu 2

u(z,t)u(z+dz,τ)
R =

u

, 
vv 2

v(z,t)v(z+dz,τ)
R =

v

and  

ww 2

w(z,t)w(z+dz,τ)
R =

w

 

Ruu, Rvv and Rww have been plotted in the Figs. 4(a), 

(b) and (c) respectively for different wall normal 

locations. In all these cases, the streamwise location 

is x = 150. The decay of the correlations to zero 

confirms that the domain length used in the 

spanwise direction is adequate. 

 

 
Fig. 4. Spanwise two-point correlations. 

 
Figure 5 shows the evolution of Cf  for different 

SGS models and comparison with the data of Alam 

and Sandham (2000). For calculating Cf , the local 

free-stream velocity given by 

0

( , )= -

y

e zU x y dy
 

(Spalart & Strelets, 1997) is used.  
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Table 4 Points of separation and reattachment 

for different simulations 

 
Table 4 tabulates the mean separation and 

reattachment points. It is seen from Cf  plots in Fig. 

5 that results from the dynamic model are closer to 

the DNS of Alam and Sandham (2000). 

 

 
Fig. 5. Comparison of evolution of Cf for SGS 

models with DNS of Alam and Sandham (2000). 

 

 
Fig. 6. Comparison of Cp for SGS models with 

DNS of Alam and Sandham (2000). 

 
Smagorinsky model with Cs = 0.17 grossly 

overestimates the reattachment point and the bubble 

length. However, the reattachment point and bubble 

length predicted by the Smagorinsky model with a 

reduced value of model coefficient (Cs = 0.1) are 

very close to the values obtained from the dynamic 

model. After reattachment, the levels of Cf resolved 

by the Smagorinsky model under predict the DNS 

data. 

Figure 6 shows the variation of normalized wall 

pressure along the streamwise direction for different 

sub-grid models. The distribution of pressure 

coefficient from the DNS of Alam and Sandham 

(2000) is also superimposed. The flow encounters 

an adverse pressure gradient after x = 15, depicting 

a negative slope of -Cp curve. A sharp decrease in 

the value of Cp makes it clear that the bubble is of 

‘short’ type. A slow favorable pressure gradient is 

observed downstream of reattachment indicating 

relaxation of boundary layer. The pressure 

distribution predicted by all the sub-grid models 

almost collapse on a single line and agree well with 

the DNS before the reattachment The differences 

are apparent downstream of reattachment, where, 

the flow resolved by the Smagorinsky model with 

reduced model coefficient approaches that of the 

dynamic model. 
 

 
(a)  
 

(b) 

 

(c) 

Fig. 7. LES of a laminar separation bubble 

showing streamlines and um= 0 line (dashed line) 

for (a) dynamic model; (b) Smagorinsky model, 

Cs = 0.1 and (c) Smagorinsky model, Cs = 0.17. 

 

3.2 Mean Flow Structure 

Reθs and Relt are two important variables used to 

characterize the mean flow. The length of transition 

(tl /
*

in
 ) is defined as the distance from separation 

point to the point of minimum skin friction. The 

length of separation bubble (lb/
*

in
 ) is also 

calculated from Cf distributions for both the 

Smagorinsky and dynamic models.  

The values of these parameters are tabulated and 

compared with the data of Alam and Sandham 

(2000) in Table 5. LES tends to predict larger 

bubble length and thus overestimate Relt particularly 

for the Smagorinsky model. The momentum 

thickness at separation θs is estimated as 0.533 

against the DNS data of 0.49, whereas, 
θs

Re   

Case 

Separation 

Point 

(x/
*

in
δ ) 

Reattach

ment 

Point 

(x/
*

in
δ ) 

Point of 

cf,min 

Smagor

insky 

Cs = 0.1 22.7 45.3 41.0 

Cs = 0.17 23.3 51.5 45.0 

Dynamic model 22.3 43.6 39.0 
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Table 5 Data related to mean bubble shape 

 

 

predicted by the LES is 266.5 against 246. All the 

SGS models evolve almost the same values of θs 

and 
θs

Re , difference in the values arising only at 

third decimal place.  

Figure 7 shows the streamlines for all the LES 

cases, depicting the shape of the bubble and the 

recirculation region. The point of separation is 

marked as S and reattachment as R. The pictorial 

views of the bubbles from the Smagorinsky model 

with Cs= 0.1 and the dynamic model are more or 

less the same; however, the bubble from the 

Smagorinsky model with Cs= 0.17 looks very 

different with a large separation length. The length 

of the bubble progressively increases from the 

dynamic to Smagorinsky model with Cs= 0.17, 

where core of the recirculation is different for the 

three cases. 

Figure 8(a) shows the mean streamwise velocity 

and Figs. 8(b)-(d) depict the root mean square 

streamwise, wall-normal and spanwise velocities 

respectively, obtained from the dynamic model. In 

Fig. 8(a) it is seen that the boundary layer develops 

against an adverse pressure gradient and separates 

near x = 22. The separation bubble with a flow 

reversal and the reattachment are also illustrated. 

The slow relaxation of the separated shear layer 

after reattachment, is also seen in Fig. 8(a). The 

evolution of turbulence after separation is 

demonstrated by Figs. 8(b)-(d). It is seen that the 

growth of perturbations starts just downstream of 

separation. The growth rate, after initial low, 

increases appreciably after x = 39, the location 

where Cf  has the minimum value. This observation 

can be used to infer that turbulence is generated  

mainly in the reverse flow region. Fig. 9 

demonstrates the growth of three-dimensional 

motion over the separation region using 

superimposition of streamlines and urms values. It 

clearly reflects that growth of urms occurs in the 

second half of the bubble, which becomes 

maximum near reattachment. The near wall 

turbulence appears several bubble lengths after 

reattachment. 

Integral parameters such as 
*

 ,   and shape factor 

( *
H   ) are important to characterize the shear 

layer. These are presented in Fig. 10. It is observed 

that the variations of 
*

 ,   and H obtained from 

the dynamic model and the Smagorinsky model 

with Cs = 0.1 along with the correction for transition 

are almost identical. Thus, it demonstrates the 

usefulness of the modified Smagorinsky model for 

predicting transition of a separated layer. As 

expected, the results from the Smagorinsky model 

with Cs = 0.17 are not quite in agreement with the 

other two models and it is not recommended for this 

class of problems. 

  

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Profiles of (a) um (b) urms  (c) vrms  and  

(d) wrms. 

 

 
Fig. 9. LES of a laminar separation bubble 

showing streamlines, um and urms . 

Case lb/
*

in
  θs/ 

*

in
  

sθ
Re  tl /

*

in
  Relt 

DNS, Alam & Sandham 16.4 0.49 246 - 6667 

Dynamic model 21.3 0.533 266.5 16.7 7348 

Smagorinsky, Cs=0.1 22.6 0.531 265.5 18.32 8060 

Smagorinsky, Cs=0.17 28.2 0.530 265 21.71 9552 

(d) 

(c) 

(b) 

(a) 
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It is seen that
*

 increases from onset of separation, 

becomes maximum near the reattachment and 

decreases thereafter, whereas, θ drops a bit in the 

dead air region followed by a rapid increase in 

second-half of the bubble and then becomes 

asymptotic illustrating augmentation of turbulence 

with a slow relaxation after reattachment resulting 

in the  maximum value of H near the point of 

minimum Cf, defined as the end of transition  

(x= 39), and the maximum value of H becomes 4.7. 

The value of shape factor at reattachment is 3.3, 

which agrees well with Horton’s value, 3.5. Far 

downstream, this value drops down to 

approximately 1.5, indicating approach to 

equilibrium. 

 

 
Fig. 10. Evolutions of δ*, θ and H for the three 

SGS models. No symbol: dynamic model;  

□: Smagorinsky with Cs = 0.1;  

Δ: Smagorinsky with Cs= 0.17. 

 

3.3 Transition and Three-dimensional 

Motions 

Figure 11(a) shows contours of streamwise 

velocity in x-y plane at a particular time instant 

for the dynamic model. It shows that the shear 

layer thickens over the bubble, rolls up creating 

large-scale vortices, in typical K-H instability 

way. These vortices travel, retaining their 

structures, far downstream. This leads to 

predominant outer layer activities and slow 

relaxation to equilibrium. It may be noted that the 

darkest gray-scale represents the separation 

region and the separation is seen to extend to 

even around x = 60 as compared to the mean 

reattachment at x = 43.6 (Fig. 7(a)). 

The top view (x-z plane) of streamwise velocity 

contours for y = 0.1 is shown in Fig. 11(b). The top-

view confirms the initial two-dimensional character 

of the flow and the laminar separation of the 

boundary layer. The imposed perturbations seem to 

be growing with appearance of a sinuous spanwise 

undulation and the separated layer remains laminar 

up to x = 30. Three-dimensionality appears 

downstream of x = 35 and breakdown occurs near x 

= 43. The development of low-speed longitudinal 

streaks, characterizing near-wall turbulent flow, 

appears downstream of reattachment and is visible 

far downstream.  

The side views (y-z plane) are shown in Fig. 11(c). 

The contours at x = 31.0 elucidate the two-

dimensionality of the flow, though the spanwise 

symmetry about z = 0.38 Lz is slightly distorted due 

to transitional shear layer. The two-dimensionality 

is further disturbed at x = 39 with appearance of 

large-scale spanwise vortices. These vortices eject 

fluid from the inner layer and promote mixing. The 

initial symmetry is completely destroyed 

downstream of x = 83 and the near-wall fine-scale 

structures are apparent.  

To elucidate further, amplification of 

disturbances in the x direction are shown in Fig. 

12 for the dynamic model. The growth rate d(log 

u’)/dx just after separation is 1.4 that increases to 

6.2 in the middle of the bubble and then becomes 

1.3 in the region around x/l = 0.7, followed by a 

slowdown before reattachment. Spalart and 

Strelets (2000) reported a growth rate of 1-4 in 

the transition region that subsequently goes 

downs to 2. The growth rates of w’ at 

corresponding locations are 2.3, 7.1 and about 

1.0. The value of u' approaches around 12% 

downstream, while v' and w' relax more slowly 

dropping to about 5.5% and 6.5% respectively. 

Iso-surfaces of the spanwise component of 

instantaneous vorticity 
z

v u

x y

 
  

 
 resolved by 

the dynamic model are presented in Fig. 13, 

which is very helpful to visualize the three-

dimensional flow structure. The separated shear 

layer, which is two-dimensional initially, is 

distorted by nonlinear interactions and -vortices 

appear in the transition region due to vortex 

stretching mechanism. Breakdown to small-scale 

and random structures with complete loss of 

orientation occurs just downstream of 

reattachment. The presence of longitudinal 

streaks is also evident after reattachment, which 

is the characteristic of turbulent layer. The 

present simulation is very consistent with the 

DNS of Alam & Sandham (2000) in resolving the 

flow structure. However, in their DNS, Spalart 

and Strelets (2000) did not observe -vortices.  

3.4 Turbulence Statistics 

The contours of Reynolds stresses for the dynamic 

model are presented in Fig. 14 while the contours of 

turbulent kinetic energy (TKE) and the production 

(PKE) are depicted in Figs. 15 and 16 respectively. 

The imposed disturbances at x = 10 are reflected in 

contours of u u  , w w   and TKE. These 

perturbations initially decay and then are amplified 

downstream. Reynolds stresses grow from x = 29, 

which is about 35% of the bubble length. A similar 

trend is observed for TKE and PKE contours. Thus 

stresses and  TKE and PKE concentrate along the 

shear layer, moving away from the wall and 

showing their maxima near reattachment. In detail, 

u u   is maximum at the reattachment (x = 43), 

whereas, the shear stress u v   reaches the maximum 

just downstream of reattachment (x = 51). It takes  



N. K. Singh / JAFM, Vol. 12, No. 3, pp. 777-788, 2019.  

 

784 

 

 

 
Fig. 11. Contours of instantaneous streamwise velocity: (a) x-y plane at z = 30.0; (b) x-z plane at 

y = 0.05; (c) y-z planes at indicated x-locations. Maximum level is 0.98 and minimum level is -0.13. 
 

 

Fig. 12. Amplification of maximum r.m.s. values of u , v and w  along the streamwise direction. 
 

about 2.2 bubble lengths downstream for steep 

gradients of u u   and u v   to appear near to the 

wall. The contours of stresses, TKE and PKE are 

almost similar for the Smagorinsky model with low 

Reynolds number correction. However, the 

Smagorinsky model with Cs = 0.17 predicts a 

different evolution of stresses, TKE and PKE 

contours where the locations of their maxima 

change. 

3.5 Boundary-layer Relaxation 

Velocity profiles obtained from the dynamic model 

are shown in Fig. 17 for several downstream 

locations. It is observed that for the dynamic model, 

even at far downstream locations the profiles do not 

approach the universal logarithmic law of the wall 

and all profiles lie below the log-law. This has been 

observed by several researchers in experiments and 

simulations involving turbulent reattachment. 

Spalart and Strelets (2000) and Wasistho (1998) 

observed this in their simulations of laminar 

separation bubble. In their DNS, Le et al. (1997) 

noted this shift and gave a value of 2.54 for the 

intercept of logarithmic profile. They attributed this 

deviation to the combined effect of the low 

Reynolds number and adverse pressure gradient. In 

their experiments, Castro and Epik (1996) observed 

a similar effect. 

 



N. K. Singh / JAFM, Vol. 12, No. 3, pp. 777-788, 2019.  

 

785 

 

 
Fig. 13. Iso-surfaces of the spanwise component of instantaneous vorticity. Contour level is -0.55. 

 

 

Fig. 14. Contours of u u  , v v  , w w   and u v  ; maximum contour levels are 0.0276, 0.0091, 0.0113 and 

3.92×10-5 respectively. 

 

 

 
Fig. 15. Contours of TKE. 

 
 

 
Fig. 16. Contours of PKE. 
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Departure of boundary layer from equilibrium can 

be measured by Clauser parameter, defined as 

 1
2

f

H
G

CH


 . For a flat plate boundary layer with 

zero pressure gradient, its equilibrium value is 6.8. 

However, in the presence of a weak favourable 

pressure gradient at low Reynolds number, this 

value may not be appropriate (Alam and Sandham, 

2000). In Fig. 18, G is plotted against  R

R

x x


, 

showing a comparison with the data available in the 

literature. The value of G which is initially very 

high, signifying a non-equilibrium layer, gradually 

decreases to 6.4 for the dynamic model. To reach 

equilibrium, Castro and Epik (1996) suggest a 

recovery length of at least 75
R
δ . 

 

 
Fig. 17. Streamwise velocity profiles of relaxing 

boundary-layer for the dynamic model. 

 

 
Fig. 18. Clauser parameter, δR/h = 5.8 (a), 3.47 

(b), (Alam and Sandham, 2000). 

 
In Fig. 19 the distance from reattachment to the 

peak of skin friction (lr) normalized by bubble 

length has been plotted as a function of bubble 

length normalized by momentum thickness at 

separation.  

Data from the present study has been compared 

with the data from Spalart and Strelets (1997), 

Wasistho (1998) and a correlation (Alam and 

Sandham, 2000) given by  

1

2.4 69

r

sb

b

l

l
l




   
 

                                           (6) 

It can be seen from the plot that the data from the 

Smagorinsky model model with Cs = 0.1 and the 

dynamic model are very close to the solid line 

representing the correlation given by Eq. (6) while 

Smagorinsky model with Cs = 0.17 does not seem 

to follow it. 
 

 
Fig. 19. Bubble length versus the recovery 

length. 
 

4. CONCLUSIONS 

The present LES with dynamic model produces 

encouraging results, illustrating instability of shear 

layer, its transition and then breakdown leading to 

reattachment. It is demonstrated that the standard 

Smagorinsky model being too dissipative, fails to 

properly resolve transition of the separated layer. It, 

however, shows a close agreement with the 

dynamic model when it is modified and a reduced 

model constant is applied. Although, there are some 

differences in minute detail, it is worthwhile to use 

the low-Reynolds number correction for the class of 

problems involving shear layer transition.   

Comparison of various parameters and three-

dimensional visualization of instantaneous flow 

fields indicate that the dynamic model gives the 

most physically accurate description of transition. 

LES using the dynamic model closely reproduces 

the results of Alam and Sandham (2000) in the 

description of quantities of interest such as the point 

of separation, length of the separation bubble, 

momentum thickness at separation etc. The 

differences can be attributed to several factors 

including but not limited to imprecise definition of 

boundary-layer quantities. 

The simulations reveal that in the first quarter of 

bubble length the rate of growth of fluctuations is 

very small. Breakdown to turbulence takes place in 

the last half of the bubble. Turbulence statistics 

confirm the dominance of turbulent activities in the 

last half of the bubble and near reattachment. The 

development of near wall characteristics takes place 

far downstream. It is observed that the velocity 

profiles do not attain the universal log-law even far 

downstream; the value of intercept being 3.5. This 

observation is confirmed by the findings of other 

researchers too. 

Thus, it can be concluded that LES adequately 

resolves the flow field and transition. A DNS will 

reveal more features, but at a significant increase in 



N. K. Singh / JAFM, Vol. 12, No. 3, pp. 777-788, 2019.  

 

787 

the computational cost. 
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