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ABSTRACT 

Laminar flow of non-Newtonian fluid (shear-thinning) through a 1:3 planar gradual expansion is numerically 

investigated, for various Power-Law index (0.6, 0.8 and 1.0) and expansion angles (15, 30, 45, 60 and 90°) at 

different generalized Reynolds number (1 ≤ Reg ≤ 400). The study of these parameters effect on the flow 

pattern allowed the determination of the two critical generalized Reynolds numbers (Regcr1 and Regcr2), which 

correspond to the transition from the symmetric to the asymmetric flow and the appearance of the third 

recirculation zone respectively. The results showed that decreasing the Power-Law index or the expansion 

angle stabilizes the flow by increasing significantly the two critical generalized Reynolds numbers. In order to 

predict the two critical generalized Reynolds numbers, two correlations have been proposed. 
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NOMENCLATURE 

H expansion downstream height 

h expansion upstream height 

K consistency index 

L length 

n Power-Law index 

P pressure  

Re Reynolds number 

,u v velocity components  

mU mean velocity 

RX reattachment length 

SX separation length 

,x y cartesian coordinates 

 expansion angle

 dynamic viscosity

 fluid density

 shear stress

Subscripts 
cr critical 

d downstream 

ex expansion 

g generalized 

u upstream

1. INTRODUCTION

The laminar flow of non-Newtonian fluid through a 

symmetric expansion has received the attention of 

many researchers for a long time because of its 

fundamental as well as practical importance. The 

geometry can be found in numerous equipment of 

different industries, such as food, pharmaceutical 

and petrochemical industries, and many other 

applications. 

For Newtonian fluids, there have been a number of 

experimental studies interested by the phenomenon 

of bifurcation flow in channels with a sudden planar 

expansion. Durst et al. (1974) used flow 

visualization and laser-anemometry measurements 

to examine 1: 3  sudden planar expansion in a duct. 

In their experiments, two symmetric vortices along 

the walls of the expansion were observed at 

56Re   ( Re  based on upstream duct height and 

maximum velocity). At 114Re  , flow bifurcation 

was already observed with vortices of unequal size. 

A third vortex was found between the two vortices 

at 252Re  . The same experimental methods were 

employed by Cherdron et al. (1978) to provide a 

detailed description of the velocity in a sudden 

planar expansion with different aspect and 
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expansion ratios. Their measurements showed that a 

decrease in the aspect and expansion ratio has a 

stabilizing effect which extends the range of 

Reynolds numbers over which symmetric flow can 

exist.  

Fearn et al. (1990) presented an experimental and 

numerical investigation of 1:3 sudden planar 

expansion. They found that 40 45crRe .  with Re  

based on the channel’s upstream half height and 

maximum inlet velocity. There have also been 

considerable numerical investigations of sudden 

expansion flow. Battaglia et al. (1997) and Drikakis 

(1997) studied numerically the effect of the channel 

expansion ratio on the symmetric and asymmetric 

flow in two-dimensional channels. They found that 

the critical Reynolds number decreases with 

increasing channel expansion ratio. At a fixed 

supercritical Reynolds number, the location at 

which the jet first impinges on the channel wall 

grows with the expansion ratio. Chiang et al. (2000) 

performed many computational investigations in 

order to study the side-wall effect on a fluid flow 

downstream of a channel expansion which is plane. 

The expansion ratio under investigation is 3 and the 

aspect ratios in the range of 3 to 48, in the three-

dimensional analyses. Their results show that a 

decrease in aspect ratio has a stabilizing effect. 

Schreck and Schäfer (2000) report the same 

observation. This confirms the experimental 

observation of Cherdron et al. (1978). 

De Zilwa et al. (2000) have developed a calculation 

method to represent flows downstream of plane 

symmetric expansions with dimensions and 

velocities encompassing laminar and turbulent 

flows. Their results show that for laminar flow, the 

increase of the separating boundary layer thickness 

leads to longer regions of separation and no 

dominant frequency for Reynolds numbers up to 

those at which the third separation region was 

observed. Jotkar et al. (2015) have studied the 

linear instability mechanisms of two-dimensional 

flows through straight-diverging channels with 

variable angle of divergence  , and expansion 

ratio (1: 2 and 1: 3 ). The results show that the two 

critical Reynolds number values are affected by the 

expansion ratios and the angle of divergence.  

For non-Newtonian fluids, Mishra and Jayaraman 

(2002) have used a continuation method with a 

finite element grid and a geometric perturbation to 

compute two successive symmetry-breaking flow 

transitions with increasing Reynolds number in 

flow of generalized Newtonian fluids through a 

1:16 sudden planar expansion. The results show that 

when the extent of shear-thinning is increased 

(lower n), the onset Reynolds number increases and 

the predicted extent of pressure recovery lowers. 

Neofytou and Drikakis (2003) employed three non-

Newtonian models (Casson, Power-Law, and 

Quemada model), to investigate the instabilities 

occurring in flow through a 1: 2 sudden expansion. 

The computations reveal that similar to Newtonian 

fluid flow through a suddenly expanded channel, 

instability also occurs in non-Newtonian fluids 

flow. The instability is manifested by a symmetry 

breaking of the flow separation. The onset of the 

instability depends on the specific parameters 

involved in each model’s constitutive equation.  

Oliveira (2003) studied numerically the flow of 

viscoelastic liquids with constant shear viscosity 

through a symmetric 1: 3 planar sudden expansion 

for a range of Reynolds numbers from 0 to 100. The 

constitutive model used follows the modified 

FENE-CR equation (valid for relatively dilute 

solutions of polymeric fluids). They found that the 

elasticity effect is to delay the onset of the 

bifurcation and reduce the degree of flow 

asymmetry. Manica and De Bortoli (2004) offered a 

numerical solution of incompressible laminar flows 

through a channel with 1:3 sudden expansion for 

Power-Law fluids. Results show that bifurcations 

occur for the range of Power-Law index 

0 2 2. n  . For shear-thinning fluids, the second 

bifurcation appears after that of the Newtonian 

situation while the opposite occurs for shear-

thickening. Ternik et al. (2006) studied numerically 

the flow of non-Newtonian fluid through a planar 

symmetric 1: 3  sudden expansion in order to obtain 

the critical Reynolds number values. The Quadratic 

model is employed to accommodate the shear-

thickening behaviour. The results indicate that the 

shear-thickening behaviour lowers the threshold of 

the transition from flow symmetry to its asymmetry 

and increases the reattachment length. 

 Neofytou (2006) numerically investigated the 

effects of attributes of generalized Newtonian fluids 

on the threshold of transition from symmetry to 

asymmetry flow through a symmetric 1: 2 sudden 

expansion. The study included both shear-thinning 

and shear-thickening fluids covering a range of 

Power-Law model indices from 0.3 to 3 whereas 

shear-thinning effects were investigated also with 

the use of the Casson model. Their results show that 

for both Power-Law and Casson models, the critical 

gRe  of transition from symmetry to asymmetry is 

linearly related to the dimensionless shear rate at 

the wall. Ternik (2009) investigated the effect of the 

generalized Newtonian fluids on the threshold of 

the transition from flow symmetry to its asymmetry 

for the flow through a 1:3 planar sudden expansion. 

He considered purely viscous shear-thinning fluids 

using the Power-Law model for 0 6n .  and 0.8, 

and compare them with the Newtonian fluid 

( 1 0n . ) in the range of generalized Reynolds 

number 10 150gRe  . Results indicate that the 

shear-thinning viscous behaviour increases the 

onset of bifurcation phenomena and the critical 

value of Reynolds number.  

Recently, Dhinakaran et al. (2013) used a finite 

volume method to investigate numerically the 

laminar flow of inelastic non-Newtonian fluids 

obeying the Power-Law model through a 1:3 planar 

sudden expansion. A broad range of Power-Law 

indices ( 0 2 4. n  ) and generalized Reynolds 

numbers ( 0 01 600g. Re  ) was considered. They 

found that the shear-thinning behaviour increases 

the critical gRe , while shear-thickening has the  
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Fig. 1. Illustration of (a) two-dimensional 1:3 gradual planar expansion geometry considered in the 

study and (b) blocks that were used; (c) mesh distribution near the expansion plane (Mesh 1, 45  , 

1 / 13  x h    and 1.5 / 1.5y h   ). 
 

 

opposite effect. Norouzi et al. (2015) studied 

numerically the flow of viscoelastic fluid through a 

1: 3 planar gradual expansion. Three angles of 30, 

45, and 60° are selected to clarify the effect of 

expansion angles. The exponential Phan Thien-

Tanner (EPTT) model is used as the constitutive 

equation. The results proved that an increase in 

expansion angles destabilizes the flow regime. 

From the aforementioned discussion, it is clear that 

a comprehensive investigation on the flow of purely 

viscous non-Newtonian fluids in planar expansions 

is still lacking of an angle of expansion below 90° 

(gradual expansions). The object of the present 

paper is to examine the details of the symmetric and 

asymmetric flow patterns obtained in the laminar 

steady flow of incompressible shear-thinning fluids 

through a 1:3 planar gradual expansions. The non-

Newtonian fluids used follow the Power-Law 

model ( 0.6n   and 0.8 ) and are compared to the 

Newtonian fluid ( 1.0n  ). In order to evaluate the 

effect of gradual expansion angles , four angles 

including 15, 30, 45 and 60° are selected, and are 

compared to a sudden expansion ( 90   ). The 

effect of generalized Reynolds number is examined 

in the range of 1 - 400. 

2. MATHEMATICAL FORMULATION 

2.1.   Problem Description 

The shear-thinning fluid flow in a 1:3 planar 

gradual expansion was considered as depicted in 

Fig. 1(a). According to the figure, the lengths and 

heights of the upstream and downstream sections 

relating to the first and third parts are respectively 

represented as uL , h , dL  and H . The length and 

the expansion angle of the second part are denoted 

as exL  and  , where 3H / h , uL h , 

exL h / tan( )  and 75 d exL h L . To ensure 

that the length of the channel is large enough for 

fully-developed flow to establish itself at the exit 

(outlet), a comparison of numerical profiles with the 

analytical one for the three "n" tried and for three 

angles of expansion (90°, 45° and 15°) is presented 

in Fig. 2(b). This figure shows an excellent 

agreement between numerical and analytical 
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profiles, which confirms that the channel length is 

sufficient. 
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b) 
Fig. 2. Analytical and numerical fully-developed 

velocity profiles at 200gRe  and for 0.6n  , 

0.8 and1.0 : a) inlet and b) outlet. 
 

2.2.   Governing Equations 

The flow is considered laminar, steady and 

incompressible and the fluid in the planar expansion 

flows in the positive x-direction. This 2D flow is 

governed by the continuity equation    

0
u v

x y

 
 

 
  (1) 

and the momentum equations: 

xyxxu u P
u v

x y x x y




     
      
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 (2) 

xy yyv v P
u v
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 


     
      
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 (3) 

The Power-Law model is used, and the extra-stress 

tensor is calculated as 

 2ij ijD    (4) 

and ijD is the rate of deformation tensor 

1

2

ji
ij

j i

uu
D

x x

 
  

   

 (5) 

The viscosity function follows the Power-Law 

model and is calculated as 

  1nK     (6) 

Where K is the consistency index, n is the Power-

Law exponent and   is the effective shear rate 

which is related to the second invariant of the rate 

of deformation tensor ( ijD ) by 

2 22

2 : 2 2
u v u v

D D
x y y x


       

        
        

 (7) 

Generalized Reynolds number used in this work 

obeying the relation of Metzner and Reed (1955) 

and is defined as 

 

 

2
6

Re
4 2

n n
m

g n

U h

K n n





   

 (8) 

3. NUMERICAL PROCEDURE AND 

VALIDATION 

The governing Eqs. (1) - (3) are solved using the 

software ANSYS Fluent 16.0, which employs the 

finite volume method. The Semi-Implicit Method 

for the Pressure-Linked Equations (SIMPLE) 

algorithm was used for solving the pressure–

velocity coupling. To discretize the convective 

terms, Quadratic upwind differencing scheme 

(QUICK) was used and the central difference 

scheme used to discretize diffusive terms. The 

absolute residual values of the continuity, x-velocity 

and y-velocity are set at 610 , 810 and 
810 respectively. 

3.1.   Boundary Conditions 

The different boundary conditions used in this study 

are: 

- At the entrance, the boundary condition is 

set to be velocity inlet with a fully-developed 

velocity profile and for the laminar flow of Power-

Law fluids in a channel is given by Bird et al. 

(2002) as: 

 
 1 /

2 1
1

1 / 2

n n

m

n y
u y U

n h

    
     

      

 (9) 

This boundary condition is introduced in ANSYS 

Fluent 16.0, using a User-Defined Function (UDF). 

A comparison of the analytical and numerical 

velocity profile at the inlet of the expansion at 

200gRe for different Power-Law index n  ( 0.6 , 

0.8 and1.0 ) as shown in Fig. 2(a). The results 

show an excellent agreement between analytical 

and numerical profile. This confirms that the UDF 

elaborated in this study gives a good result. It is 

noted that the decrease of the Power-Law index 

flattens the velocity profile near the center of the 

channel. 

- At the outlet, the boundary condition is 

set to pressure outlet (atmospheric pressure). 
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Table 1 Computational domain and mesh characteristics of the 1 3:  planar expansions geometry 

Block 
Nx 

Ny Rx Ry 
Nc 

α= 90° α= 60° α= 45° α= 30° α= 15° α= 90° α= 60° α= 45° α= 30° α= 15° 

1M  

block I 16 16 16 16 16 26 0.935 1 375 375 375 375 375 

block II 26 30 36 51 98 26 1 1 625 725 875 1250 2425 

block III 71 71 71 71 71 26 1.0145 1 1750 1750 1750 1750 1750 

block IV 267 267 267 267 267 26 1 1 6650 6650 6650 6650 6650 

block V 71 71 71 71 71 26 1.0394 1 1750 1750 1750 1750 1750 

Nc,total 11150 11250 11400 11775 12950 

2M  

block I 31 31 31 31 31 51 0.9675 1 1500 1500 1500 1500 1500 

block II 51 59 71 101 195 51 1 1 2500 2900 3500 5000 9700 

block III 141 141 141 141 141 51 1.0072 1 7000 7000 7000 7000 7000 

block IV 533 533 533 533 533 51 1 1 26600 26600 26600 26600 26600 

block V 141 141 141 141 141 51 1.0197 1 7000 7000 7000 7000 7000 

Nc,total 44600 45000 45600 47100 51800 

3M  

block I 61 61 61 61 61 101 0.9837 1 6000 6000 6000 6000 6000 

block II 101 117 141 201 389 101 1 1 10000 11600 14000 20000 38800 

block III 281 281 281 281 281 101 1.0036 1 28000 28000 28000 28000 28000 

block IV 1065 1065 1065 1065 1065 101 1 1 106400 106400 106400 106400 106400 

block V 281 281 281 281 281 101 1.0098 1 28000 28000 28000 28000 28000 

Nc,total 178400 180000 182400 188400 207200 
 

 

- Along the walls of the channel, no-slip 

condition is imposed for the fluid velocity.  

3.2.   Grid-Independency Study 

The grid independence of the results has been 

established on the basis of a detailed analysis of 

three different meshes: fine, medium and coarse 

(Table 1). For the general primitive variable 

 (separation and reattachment lengths) the grid-

converged value (i.e. extrapolated to the zero 

element size), according to Richardson 

extrapolation (Roache, 1997) is given as 

 

 
2 3

3
1

M M
ext M pr

 
 


 


 (10) 

Where 3M is obtained based on the finest grid, 

2M is the solution based on the next level of coarse 

grid, 2r is the ratio between the coarse and fine 

grid spacing and p  is the actual order of accuracy, 

where p  is calculated with the following equation 

 

3 2

2 1

ln

ln

M M

M Mp
r

 

 

 
 

   
(11) 

The grid size effect on the dimensionless output 

parameters such as the lengths of reattachment and 

separation ( 1RX , 2RX , 3RX  and 3SX ) was tested 

at three grid structures (symbolically represented as 

1M , 2M  and 3M  with 

min min/ /x h y h    0.04 , 0.02  and 0.01  

respectively). Three generalized Reynolds number 

( 360gRe  , 280gRe   and 200gRe   for 

0.6n , 0.8 and 1.0 respectively) and two 

expansion angles ( 90  and 15 ) were considered 

(Table 2).  

The value of Er  given in Table 2 is a quantification 

of the relative difference between the separation and 

reattachment lengths calculated with 2M  and that 

extrapolated. 

The maximum relative error in Table 2 was found 

to be about 3% at 0.6n , 360gRe  and 

90   for 3SX , this error reduces to about 2%  

when the expansion angle reduces to 15 . For 

1.0n , 200gRe  and 90  , the maximum 

relative error of 3SX was found to be about 1.7% 

and reduces to about 1.3% when the expansion 

angle reduces to 15 . As seen in Table 2, results for 

2M  and 3M  are close to each other. Due to 

larger CPU time and computational cost of 

3M especially when gRe  is close to the two 

critical values, mesh 2M  denotes a good 

compromise between the accuracy and 

computational efforts and hence all results reported 

herein are based on the use of mesh 2M . 

3.3.   Validation 

In Fig. 3 the comparison of streamwise velocity 

profile of our numerical calculations for Newtonian 

fluid ( 1.0n  ) with the experimental values 

obtained in the work of Fearn et al. (1990) is 

presented. Three generalized Reynolds numbers are 

tested 34 7. , 80  and 186 7. , corresponding to: two 

symmetric vortices, two vortices of unequal size 

and three vortices respectively. An excellent 

agreement with the results of Fearn et al. (1990) can 

be observed. We note that in the results of Fearn et 

al. (1990) the values of these three Reynolds  
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Table 2 Mesh dependency tests for 90  and 15  
Mesh 

90    
 15    

1RX  2RX  3SX  3RX   
1RX  2RX  3SX  3RX  

0.6n   and 360gRe   

1M  17,9336 4,6771 15,4343 25,8221  18,9735 4,5594 16,9332 24,5262 

2M  19,8004 5,1587 17,3618 26,7936  19,8617 4,6669 18,1306 24,4165 

3M  20,1927 5,2686 17,8060 26,8736  20,0466 4,6874 18,4244 24,3230 

Extrapolated 20,2971 5,3011 17,9390 26,8808  20,0952 4,6922 18,5199 23,7834 

Er  (%) 2,4470 2,6861 3,2177 0,3243  1,1620 0,5398 2,1022 2,6621 

0.8n   and 280gRe   

1M  16,3530 4,5425 13,5150 27,4222  17,6100 4,4066 14,8478 26,5802 

2M  17,8900 4,9116 14,9962 28,5642  18,5375 4,4881 15,8010 26,8235 

3M  18,1722 4,9840 15,2808 28,7052  18,7302 4,5035 16,0096 26,8242 

Extrapolated 18,2357 5,0017 15,3485 28,7251  18,7807 4,5071 16,0680 26,8242 

Er  (%) 1,8955 1,8007 2,2953 0,5600  1,2951 0,4213 1,6619 0,0026 

1.0n   and 200gRe   

1M  14,5267 4,3051 11,6985 26,3726  15,7988 4,1874 12,9551 25,7068 

2M  15,5840 4,5662 12,6757 27,3675  16,4739 4,2479 13,6112 25,9772 

3M  15,7670 4,6128 12,8548 27,4997  16,6133 4,2600 13,7542 25,9947 

Extrapolated 15,8053 4,6229 12,8950 27,5200  16,6496 4,2630 13,7941 25,9959 

Er  (%) 1,4002 1,2270 1,7006 0,5540  1,0551 0,3548 1,3256 0,0720 
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Fig. 3. Comparison of the streamwise velocity profile between numerical results (present work) and 

experimental results (Fearn et al., 1990) at 1.0n  : (a) 34 7gRe . , (b) 80gRe   and (c) 186 7gRe . . 
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Table 3 Comparison between works concerned with the phenomenon of sudden-expansion flow 

asymmetry for Newtonian and non-Newtonian fluids 

Author Definition of Re  1gcrRe  
1gcrRe ( mU , h ) 

2gcrRe ( mU , h ) 

Newtonian ( 1 0n . ) 

Fearn et al. (1990) maxU , 2h /  40.5 53.9 - 

Foumeny et al.(1996) maxU , h  ≈ 80 ≈ 53.3 - 

Battaglia et al. (1997) mU , h  53.8 53.8 - 

Drikakis (1997) maxU , h  80 53.3 - 

Schreck and Schäfer (2000) maxU , h  81.2 54.1 - 

Ternik  (2009) mU , h  54 54 103.9 

Dhinakaran et al. (2013) mU , h  54.5 54.5 102.2 

Present work mU , h  54.4 54.4 99.4 

Power law ( 0 8n . ) 

Ternik  (2009) mU , h  76 76 - 

Dhinakaran et al. (2013) mU , h  74.1 74.1 158.3 

Present work mU , h  78.1 78.1 152.1 

Power law ( 0 6n . ) 

Ternik  (2009) mU , h  110 110 - 

Dhinakaran et al. (2013) mU , h  ≈ 110 ≈ 110 ≈ 252 

Present work mU , h  113.1 113.1 246.9 

 

 

numbers are 26 , 60  and 140  respectively (when 

the Reynolds number is based on the upstream 

expansion half-height and the maximum inlet 

velocity).  

For 34 7gRe .  and for the four positions (Fig. 3(a)) 

the profile remain symmetric about the centerline. 

The results show that after 4x / h  , the two 

recirculation zones have no effect on the velocity 

profile which becomes parabolic again from 

10x / h  . At a Reynolds number of 80  (Fig. 

3(b)), the flow remains asymmetric until 

10x / h   where it is again symmetric and at 

21 82x / h .  the velocity profile is once again 

parabolic. For 186 7gRe .  (Fig. 3(c)), we observe 

the existence of a third recirculation zone between 

12 36x / h .  and 25 80.  whereas from 

52 06x / h .  the velocity has recovered its 

parabolic profile. 

Most authors cited in this paper explained the 

asymmetric flow phenomenon by the Coanda effect 

(Fearn et al., 1990; Oliveira 2003; Ternik et al. 

2006; Dhinakaran et al. 2013 and Norouzi et al. 

2015), where any perturbation of the flow field, 

pushing the main flow to one of the sides of the 

expansion, gives rise to larger velocities and lower 

pressures there, and hence the asymmetry (i.e. two 

vortices of unequal size) will naturally tend to be 

accentuated Oliveira (2003). It is also worthwhile 

pointing out that the appearance of the larger vortex 

on either the upper or the lower wall is purely 

random (Neofytou and Drikakis, 2003; Oliveira 

2003; Ternik et al., 2006 and Foumeny et al., 

1996). 

Table 3 presents a comparison between the values 

of critical generalized Reynolds numbers obtained 

in this study and those obtained by certain authors. 

For this comparison, columns 4 and 5 give the 

converted values of gcrRe  (respectively 1gcrRe  

( mU , h ) and 2gcrRe  ( mU , h )). This conversion is 

done to make the generalized Reynolds number 

based on the mean velocity mU  and the height h  at 

the inlet of the expansion. For the different values 

of n, the critical generalized Reynolds numbers 

obtained in this study are very close to those of the 

works reported in the literature. 

4. RESULTS AND DISCUSSION 

In this section, we present a detailed analysis of the 

results concerning the effects of expansion angle 

and shear-thinning behaviour on the vortices 

characteristics obtained for a generalized Reynolds 

number ranging from 1 to 400.   

The Figs. 4(a–c) show an excellent agreement 

between our predictions and those of Ternik (2009) 

and Dhinakaran et al. (2013). This also includes 

bifurcations observed in these figures where its 

appearance depends on the generalized Reynolds 

number and the Power-Law index. Figure 4(a) 

displays the variation of the lengths of the upper 

and lower recirculation zones with the generalized 

Reynolds number at 1n   (Newtonian fluid). For 

1gg crReRe   ( 1 54 4gcrRe . ) the flow remains 

steady and symmetric (i.e. 1 2R RX X ). The length 

of recirculation zones grow linearly with gRe , 
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when gRe  exceeding this critical value the flow 

becomes asymmetric (i.e. 1 2R RX X ) and the 

length of the lower recirculation zone continues to 

increase conversely the upper recirculation zone 

continues to decrease up to 80gRe  . Beyond this 

value, 1RX  continues to increase while 2RX  varies 

slightly up to 99 4gRe .  ( 2gcrRe ). This value of 

gRe  corresponds to the apparition of a third 

recirculation zone in the downstream of the smallest 

recirculation zone. For 2gg crReRe  , the third 

recirculation zone starts to grow and the two other 

vortices continue to increase. Noting that the 

growth of 1RX  and 3RX  is more intensive than 

2RX  and 3SX . These remarks were also observed 

for Figs. 4(b) and 4(c). Comparing these two figures 

with Fig. 4(a), we notice that for the shear-thinning 

fluids ( 0 8n . and 0 6n . ) the two flow 

transitions are delayed due to the decreases of the 

flow sensitivity to the perturbation as the shear-

thinning behaviour is enhanced (n decreases). This 

is also attested by Ternik (2009) and Dhinakaran et 

al. (2013). The values of the critical generalized 

Reynolds numbers for shear-thinning-fluids are 

given in Table 3. 

 

Figure 5 illustrates the influence of the shear-

thinning behaviour on the separation and 

reattachment lengths of the recirculation zones for 

different expansion angles. This figure shows that 

the decrease of Power-Law index delays the flow 

transition regardless of the expansion angle and 

affects the vortices characteristics. 

It is noted that for the same generalized Reynolds 

number, the distance x / h  from which there is no 

recirculation zone decreases with the decrease of 

the Power-Law index. This is due to the reduction 

in the fluid viscosity (shear-thinning) when the 

power law index decreases. This result is similar for 

all expansion angles. 

To observe the effect of expansion angle on the 

separation and reattachment lengths of the 

recirculation zones, these lengths are plotted as a 

function of the generalized Reynolds number for 

different expansion angles and for the same Power-

Law index (Fig. 6). This figure shows that the 

decrease of the expansion angle delays both the 

transition from symmetric to asymmetric flow and 

the apparition of the third recirculation zone. This 

result is valid for the three Power-Law indices used 

in this study. 

From Figs. (5) and (6) one can see that the 

difference between the two critical generalized 

Reynolds numbers gcrRe  increases with either the 

decrease in the Power-Law index or the decrease in 

the expansion angle. For the different expansion 

angles and Power-Law indices used, one can note 

that the generalized Reynolds number has no 

influence on the length 2RX  from certain values. 
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Fig. 4. Variation of vortex size with generalized 

Reynolds number for the Power-Law fluid flow 

in a 1:3 planar sudden expansion ( 90   ), and 

comparison with the available literature data: 

a) 1 0n . ; b) 0 8n .  and c) 0 6n . . 

 

The variation of pressure gradient with axial 

distance for Newtonian and non-Newtonian fluids is 

depicted in Fig. 7 for different expansion angles at 

two 
gRe  (100, 200). This variation is presented by 

a plot of the dimensionless pressure drop 

(normalized by the dynamic pressure 20 5 m. U ) 

along the centerline (from entrance to exit). 

In an upstream region, the pressure drop is linear 

indicating fully-developed flow conditions for both 

Newtonian and shear-thinning fluids. As the fluid  
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Fig. 5. Variation of vortex size with 
gRe  for 1 0n . , 0 8. and 0 6. , at different expansion angles: 

a) 60   , b) 45   , c) 30    and d) 15   . 
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Fig. 6. Variation of vortex size with 
gRe  at different expansion angles for different Power-Law indices: 

a) 0.6n  , b) 0.8n  and c) 1.0n  . 



A. Menouer et al. / JAFM, Vol. 12, No. 3, pp. 789-801, 2019.  

 

798 

0 10 20 30 40 50 60 70 80
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n=1.0

n=0.8

p
/(

0
.5


U
2 m

 )

x/h

 =90°

 =45°

 =15°

n=0.6

   
0 10 20 30 40 50 60 70 80

-0.4

-0.2

0.0

0.2

0.4

0.6

p
/(

0
.5


U
2 m

 )

x/h

 =90°

 =45°

 =15°

n=0.6

n=0.8

n=1.0

 
a)                                                                                 b) 

Fig. 7. Normalized pressure variation along the channel centerline: a) 
gRe 100  and b) 

gRe 200 . 
 

 

 
Fig. 8. Flow patterns in the 1:3 planar sudden expansion ( 90   ) at different Power-Law index 

values: 0.6n  , 0.8n  and 1.0n  . 

 

flow passes the expansion plane ( 0x / h   ), the 

local pressure increases because of the flow 

deceleration through the downstream section. 

Subsequently, the pressure distribution returns to 

the linear variation within the downstream section 

of expansion. For the flow at higher gRe , the 

pressure variation is more complex and reflects the 

different reattachment lengths of the smaller and the 

larger asymmetric vortices (inflection seen in the 

curves) (Oliveira 2003 and Ternik 2009).  

In comparison to a Newtonian fluid, the pressure 

distribution for the shear-thinning fluid has larger 

gradients. The pressure recovery after the expansion 

is lower when the shear-thinning behaviour is 

enhanced. 

For the same flow index, the increase in the critical 

Reynolds number when the expansion angle is 

decreased is due to the change in pressure. Indeed, 

the reduction in the expansion angle causes a 

progressive decrease in cross-section and therefore 

a gradual increase in pressure, which stabilizes the 

flow. 

To illustrate the effect of shear-thinning and 

expansion angle on the flow patterns, the plots of 

streamline are presented in Figs. 8, 9 and 10 for 

different expansion angles 90 , 45  and 15  

respectively. For all these figures, the streamline is 

plotted at three Power-Law indices n  for three 

different regimes. These regimes are chosen as 

those chosen by Dhinakaran et al. (2013) and they  
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Fig. 9. Flow patterns in the 1:3 planar gradual expansion ( 45   ) at different Power-Law index 

values: 0.6n  , 0.8n  and 1.0n  . 

 

are: i) symmetric flow ( 10 8g gcrRe . Re ), ii) 

asymmetric flow [ 1 20 5g gcr gcrRe . (Re Re )  ] and 

iii) asymmetric flow with a third recirculating zone 

( 21 2g gcrRe . Re ). Since there is a strong variation 

of the two critical generalized Reynolds number 

values with n . 

For the sudden expansion 90    (Fig. 8), it is 

visible that for the three aforementioned regimes, 

the three vortices lengths increase within the Power-

Law index decrease. The same observation is valid 

for the gradual expansions with expansion angles of 

45    and 15    (Figs. 9 and 10). Comparing 

the Figs. 8, 9 and 10, we can observe that the 

decrease of the expansion angle increases the 

lengths of all vortices. One can see also that the 

width of the small corner recirculation zone 

decreases in the case of regime iii) both with the 

decrease of the expansion angle or with the increase 

of the Power-Law index.  

In order to determine the correlations of the two 

critical generalized Reynolds numbers as a function 

of n  and  , a modification taking into account the 

effect of the expansion angle was made on the two 

models of Dhinakaran et al. (2013) developed for a 

sudden expansion. These two correlations (Eqs. 

(12) and (13)) are derived on the basis of calculated 

numerical data for 1gcrRe  and 2gcrRe .  

   

0 038

1

112 1

1 5 0 5

.

gcr

92e
Re

sinh . n cosh . n


 

 (12) 

   

0 046 0 048

2

565 162 66

3

. .

gcr

e 74.5e
Re

sinh n cosh n

   
 

 (13) 

The comparison between numerical data and the 

two models is presented in Fig. 11, where the 

maximum error obtained is 3.2% and 1.24% for Eq. 

(12) and Eq. (13) respectively. 

The Fig. 11 shows also the variation of the two 

critical generalized Reynolds numbers 1gcrRe  and 

2gcrRe  as a function of n  and  . In this figure and 

as already pointed out, the decrease of the Power-

Law index or the expansion angle stabilizes the 

flow by increasing significantly the two critical 

generalized Reynolds numbers. Thus, one can see 

that the variation of 2gcrRe  as a function of n is 

faster than that of 1gcrRe .  

The results obtained previously showed the effect of 

Power-Law index and expansion angle on the flow 

pattern (recirculation zones), but no indication of 

the values of Reynolds number from which these 

zones appear ( g ,RARe ). Table 4 shows the value of 

g ,RARe  as a function of the Power-Law index and 

the expansion angle. This value increases either 

when the Power-Law index or the expansion angle 

decreases. The results obtained in this study show 

that for the 90  expansion angle the flow is always 

accompanied by a recirculation zones. This result is 

similar to that found by Dhinakaran et al. (2013) 

and Ternik (2010), who found that these zones are 

present even for very low values of generalized 

Reynolds number (up to 0.01). 
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Fig. 10. Flow patterns in the 1:3 planar gradual expansion ( 15   ) at different Power-Law indices 

values: 0.6n  , 0.8n  and 1.0n  . 
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Fig. 11. Effect of Power-Law index ( n ) and expansion angle ( ) on the two critical generalized 

Reynolds numbers: a)  gcrRe f n , b)  gcrRe f  . 

 

Table 4 Comparison of the g ,RARe  values for 

different expansion angle and Power-Law index 

g ,RARe  

( )   60 45 30 15 

1 0n .  1.88 9.38 19.38 43.13 

0 8n .  5.63 14.38 27.13 59.38 

0 6n .  10.63 23.13 40.63 85.63 

 

5. CONCLUSIONS AND 

PERSPECTIVES 

In the present study, laminar 2-D incompressible 

flow of shear-thinning fluid through a planar 

gradual expansion is investigated numerically. non-

Newtonian Power-Law model is used for the 

problem simulations. Variation of different 

parameters such as Power-Law index n , expansion 

angle   and generalized Reynolds number gRe
 

are studied. The results indicate a great dependence 

of the problem flow pattern with these parameters 

and some of the results are pointed below: 

* The decrease of the Power-Law index or the 

expansion angle stabilizes the flow by 

significantly increasing the two critical 

generalized Reynolds numbers, and this is due to 

the decrease of the transverse pressure gradient. 
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* The value of generalized Reynolds number from 

which the recirculation zone appears increases 

when the Power-Law index or the expansion 

angle is decreased. For a sudden expansion, the 

flow is always accompanied by a recirculation 

zones. 

Research perspectives in this field include the 

detection of the bifurcation points for shear-

thickening fluids and the verification of the validity 

of the tow proposed correlations. On the other hand, 

study the effect of channel depth on the tow critical 

Reynolds numbers (3D study). 
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