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ABSTRACT 

The present paper is a study on dispersion of reactive solute in an oscillatory flow of a two-fluid, three-layer 

Casson-Newtonian continuum using Aris-Barton’s approach. A two-fluid model of blood flow has been 

considered, the fluid in the central region is taken to be a Casson fluid (a core of red blood cell suspension) and 

a peripheral layer of plasma modelled as Newtonian fluid. The governing equations for the velocity distribution 

have been solved using a perturbation technique, and the effective dispersion coefficient has been evaluated 

numerically (FDM) by solving the moment equations. Using the Hermite polynomial representation of central 

moments the axial distribution of mean concentration is determined. The main objective is to look into the 

impact of yield stress, peripheral layer thickness, irreversible and reversible reaction rate on the dispersion 
process. The study has significant applications on the transport of species in a blood flow system. 

Keywords: Axial-dispersion coefficient; Peripheral layer; Casson fluid; Reaction rate; Two-fluid; Three-layer. 

NOMENCLATURE 

D  molecular diffusivity 

Da  Damköhler number 

cD  apparent dispersion coefficient 

e  amplitude of pressure pulsation 

j  space index 

iH  Hermite polynomials 

i  time index during navigation 
r  radial coordinate 

Pe  Péclet number 

pR  plug core radius 

oR  central core radius 

cS  concentration of the mobile phase 

csS  concentration of the immobile phase 

Sc  Schmidt number 

cmS  mean concentration distribution 

t  time 

2  Skewness 

3  Kurtosis 

cpw  velocity for plug flow in Casson region 

cw  velocity for shear flow in Casson region 

nw  velocity for shear flow in Newtonian 

region 

z  axial coordinate 

 

c  shear stress of Casson fluid 

n  shear stress of Newtonian fluid 

y  yield stress 

c  density of Casson fluid 

n  density of Newtonian fluid 

c  viscosity of Casson fluid 

n  viscosity of Newtonian fluid  

  Womersley frequency parameter 

  peripheral layer thickness 

  Dirac delta function 

  irreversible reaction rate 

  phase exchange rate 

k  kth
 order central moment 
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1. INTRODUCTION 

Hydrodynamic dispersion studies concern the rate of 

broadening of reactive/nonreactive solute in shear 

flow, and it depends upon the cross-sectional 

geometry, discharge velocity, and diffusion 

coefficient. The other influences on dispersion are 

flow unsteadiness, chemical reactions, boundary 

irregularities and such other effects observed in the 

physiological or extra-corporeal context. In view of 

its extensive applications in biomedical engineering, 

physiological fluid dynamics, environmental science 

and allied fields, the problem of hydrodynamic 

dispersion of solute in solvent flowing through 

various conduits has been broadly studied during the 

last several decades. 

Taylor (1953) has initiated the study, investigated the 

dispersion of a passive solute in a viscous fluid flow 

through a narrow pipe under steady laminar 

condition due to the simultaneous action of 

molecular diffusion and variation of the velocity over 

the cross-section. Aris (1956) considered 

longitudinal diffusion to broaden Taylor’s 

hypothesis and built up a technique, ‘method of 

moments’ to examine the behaviour of the second-

order central moment. But, these two approaches are 

valid for large time only. Further, Barton (1983) 

resolved the technical difficulties of Aris’s method 

of moments which is true for all time and is known 

as Aris-Barton’s method of moments. 

The transport models exist in the literature, 

discussing dispersion phenomena in diverse 

situations. Because of the existence of conductive 

walls in lungs and blood vessels, it is imperative to 

discuss the dispersion process take into account the 

wall property while understanding the indicator 

dilution technique and other mechanisms in the 

bronchial region. Considering the absorbing 

boundary wall reaction, Balasubramanian, 

Jayaraman, and Iyengar (1997) investigated the 

dispersion in a curved tube using Taylor’s analysis. 

In an unsteady channel flow, the connection between 

absorption and the longitudinal dispersion was 

uncovered by Mondal and Mazumder (2005), 

utilizing Aris-Barton technique. Using generalized 

dispersion technique, Sankarasubramanian and Gill 

(1973) explored dispersion in laminar flows in the 

presence of first-order reaction at the tube boundary. 

In few cases flow through the annular tube (Sarkar 

and Jayaraman (2004), Mazumder and Mondal 

(2005)) were likewise considered, and also discussed 

the applicability to a catheterized artery. Transport 

due to convection and diffusion in a thin (or long) 

curved (for Newtonian fluid) and circular pipe (for 

Micropolar fluid) were considered by Marušic-

Paloka and Pažanin (2011), and Pažanin (2013) 

under catalytic wall reaction. Considering a curved 

channel, Rosencrans (1997) has investigated the 

effect of curvature on the Taylor dispersion 

processes. It is found that the effective diffusion is 

reduced by curvature characteristics. By extending 

the homogenization technique, Wu and Chen (2014) 

studied the transverse variation of concentration for 

the scalar transport along a straight pipe. In a recent 

work, Roy, Saha, and Debnath (2017), discusses the 

dispersion of reactive solute released in an unsteady 

flow between two coaxial cylinders under the 

presence of first-order reaction in bulk flow. 

Of late, dispersion in non-Newtonian fluids has been 

getting more attention due to its assorted applications 

in biochemical processing, cardiovascular system, 

polymer processing, etc. Specifically, in blood flows, 

species are transmitted as an outcome of diffusive 

and convective mechanisms. Following the 

dispersion model of Taylor-Aris, Sharp (1993) 

investigated the dispersion phenomena in Bingham, 

Casson, and Power Law fluids flow through 

conduits, viz., parallel plates and circular tube 

respectively. Using generalized dispersion 

technique, the dispersion of a solute in a Casson fluid 

flowing through pipe and channel was examined by 

Dash, Jayaraman, and Mehta (2000) who has 

discussed its utilization in blood flow and established 

a significant influence of yield stress on the rate of 

dispersion. Siddheshwar and Manjunath (2000), and 

Siddheshwar and Markande (1999) were 

investigated dispersion in plane and Hagen-

Poiseuille flows of a Micropolar fluid. Subsequently, 

Nagarani, Sarojamma, and Jayaraman (2004) 

considered the effect of boundary absorption on 

dispersion in such flows of a Casson fluid. 

In the above investigations, some of the authors 

clarified the effectiveness of longitudinal dispersion 

on blood streams, treating blood as a Newtonian or 

non-Newtonian fluid depending on the value of shear 

rate. For the lesser shear rate, experimental results 

(Charm and Kurland (1965), Blair (1959)) show that 

Casson fluid model can be suitable to describe the 

behaviour of blood flow through smaller arteries, 

with hematocrits, anticoagulants, temperature and 

other factors included. Further, while blood flows 

through micro blood vessels, Bugliarello and Sevilla 

(1970), and Cokelet (1972) has experimentally re-

ported the presence of the peripheral layer of plasma 

(Newtonian fluid) and a core region of suspension of 

all the erythrocytes as a non-Newtonian fluid. Thus, 

in realizing the actual nature of blood streams in 

micro vessels, it will be more realistic to consider 

two fluid nature of blood stream rather than a single 

fluid, where the non-Newtonian property of the core 

region is represented by Casson model, and the 

Newtonian fluid represents the plasma layer. 

Irreversible and reversible reactions are found to be 

natural in the human body (especially in blood flow), 

e.g. (i) the procoagulant subsystem of blood clotting 

consists of a series of irreversible chemical reactions; 

(ii) as blood passes through the alveoli of the lungs, 

hemoglobin molecules pick up oxygen which is then 

released as the blood travels to other parts of the 

body. This loading and unloading of oxygen by the 

blood are similar to a reversible reaction. The effect 

of reversible phase exchange between the flowing 

gas in the lumen and the stationary bronchial wall 

tissue has been studied by Davidson and Schroter 

(1983). Using homogenization method, Ng (2006) 

studied the influence of reversible and irreversible 

reactions on the transport process when fluid flows 

through a pipe and the same has also been studied by 
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Paul and Mazumder (2009) considering the 

annularity of the pipe. Further, an analysis of 

dispersion under Poiseuille and Couette flow has 

been done by Debnath, Paul, and Roy (2018) where 

both the reversible and irreversible reactions exist at 

the inner wall of the annulus. In view of literature, 

the studies on the combined effect of reversible and 

irreversible reactions on dispersion have been mostly 

assumed in Newtonian fluids, though there is hardly 

any work which has considered the same for single-

fluid Casson model or two-fluid, three-layer models. 

In the recent work of authors (Debnath, Saha, 

Mazumder, and Roy (2017b), Debnath, Saha, and 

Roy (2017), Debnath, Saha, Mazumder, and Roy 

(2017a)), the effect of interphase mass transfer on the 

transport coefficients discussed for a two-fluid, 

three-layer model of Casson-Newtonian continuum 

under steady and pulsatile nature of the stream. This 

work incorporates the flow oscillation, two-fluid 

blood model (solvent in the core and peripheral 

regions are assumed to be Casson and Newtonian 

fluid), two kinds of reactions are present at the 

boundary: reversible (phase exchange) and 

irreversible (wall absorption) reactions. Thus, the 

present study is an attempt to bring in as many 

physiological effects as possible in the blood flow 

analysis through a rigid artery. 

2. THE PROBLEM UNDER CONSI-

DERATION 

We consider a unidirectional axisymmetric flow of a 

three-layer fluid through a cylindrical pipe (or rigid 

arteries) of radius R . Figure 1 depicts the flow 

geometry for the present model. A cylindrical 

coordinate system is considered where z  and r  

represents the axial and radial coordinates 

respectively (the bar signifies that they are 

dimensional). The problem is fixed under the 

following considerations: 

(i) Blood is represented as a three-layer fluid with 

the core of a red blood cell suspension enveloped 

by a peripheral layer of plasma. For 

characterizing the blood in the core and 

peripheral region are described by Casson and 

Newtonian model respectively. 

(ii) The imposed outward periodic pressure gradient 

has been taken for characterizing the 

unsteadiness in species transport and is given by: 

0 1sin( ),p

p
A A t

z



  


                                              (1) 

 

 
Fig. 1. Three-layer Casson-Newtonian 

continuum. 

where p  is the pressure, 0A  and 1A  are the steady 

and fluctuating components of the pressure gradient, 

p  is the pulse frequency, and t is time. 

(iii) The low Reynolds number flow is supposed 

to be laminar, axisymmetric, incompressible and 

in fully developed region streams are directed only 

in the axial direction as the system in the axial 

direction is infinitely extended. Let, the axial 

component of velocities for Casson and 

Newtonian fluid is ( , )cw r t and ( , )nw r t  which 

satisfies the momentum equation in the axial 

direction as:  

( )1
     0 ,c c

c o

w rp
r R

t z r r




 
    

  
               (2) 

1 ( )
    ,n n

n o

w p r
R r R

t z r r




  
    

  
           (3) 

here c  and n  are the shear stress of Casson and 

Newtonian fluids, also c  and n  are the densities 

of the respective fluids. The quantity oR  is the ratio 

of the central core radius to the normal pipe radius. 

The Casson constitutive equation is a non-linear 

relation between shear stress and shear rate (Aroesty 

and Gross (1972)), and that of a Newtonian fluid is a 

simple linear one. Hence the time-dependent, 

unidirectional flows in different regions of the 

system are governed by: 

1 1 1

2 2 2

0                             if   for 0

( )    if   for ,

                   if  =0 for 

c
c y p

c
c y c c y p o

n
n n y o

w
r R

r

w
R r R

r

w
R r R

r

 

    

  

 
    


 

      
 


    

 

(4) 

with the boundary conditions 

  is finite, and   0     at   0

,  and              at   ,

0                                     at   

c
c

c n c n o

n

w
r

r

w w r R

w r R



 

 
  


   


  



            (5) 

where y and pR  are the yield stress and plug core 

radius. The quantity c  and n  are the viscosity 

for Casson and Newtonian fluids. In Eq. (4), the 

velocity gradient will be zero if c y  , implying 

the existence of plug flow region. 

We suppose that blood is flowing through an 

artery and some finite amount of chemical species 

is injected into the flow. We assume that the 

species is completely miscible with the flowing 

fluid and will undergo two kinds of reaction at the 

boundary: reversible phase exchange with the wall 

material and irreversible absorption at the wall. 

Due to the reaction considered above, it is realized 

that some of species segment adheres to the tube 
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wall and rest of the species move with the 

streaming fluid. Hence to recognize the type of 

chemical substance, two phases are considered in 

the modelling of species: mobile phase and 

immobile phase. Species that flows with fluid is 

known as mobile phase, and that which is fixed at 

the wall is known as immobile phase. 

Let the concentration of the mobile phase be cS , and 

the concentration of the immobile or stationary phase 

be csS . In equilibrium, they can be represented by a 

ratio, viz., partition coefficient as: cs

c

S

S
 

(constant). 

In general, when equilibrium is not achieved, the 

following first-order kinetics describes the exchange 

of the two phases: 

( )cs
c cs

S
K S S

t


  


                                                      (6) 

where K is a constant represents the rate of the 

reversible reaction. 

The convection-diffusion equation for the present 

problem is: 

2

2
( , ) ,c c c cS S S SD

w r t D r
t z r r rz

    
    

     

  (7) 

here D  is the constant molecular diffusivity. 

The initial and boundary conditions for solving the 

transport Eq. (7) are 

0

0 3

2

(0, , ) ( ) ( ), (0 )

( ) ,
( )

1 for 0
( )

0 for

c c

c

S r z S X r z r R

M
S

R

R z
z

d

r dR
X r

dR r R








  










  
  

   

         (8) 

0cS   as z                                              (9) 

for a finite extent of axial distribution  

0     at    0,cS
r

r


 


                                               (10) 

      ( ) at ,c cs
c c cs

S S
D S K S S r R

r t

 
      

 

(11) 

where ( )X r and ( )z refer to a function of r  and 

the Dirac delta function. 0cS  is the concentration of 

solute mass uniformly introduced over the cross-

section of a circle of radius dR  at time zero. Here 

' 'd  is the ratio of the radius of the cylinder 

containing solute to that of the entire tube. If 1d  , 

initially the concentration cloud occupies the entire 

cross-section of the pipe. 

Following dimensionless quantities are assumed for 

the present problem: 

 

0 00 0
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D D D D

R
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  




    



    




    


  





     



  


(12) 

here 0w  denotes the time-averaged velocity in the 

axial direction. Pe  is the Pèclet number, defined as 

the ratio of advection rate to the diffusion rate of 

species transport. Sc  is the Schmidt number, 

describes the relation among viscous diffusion to the 

molecular diffusion. 

Substituting the above dimensionless quantities in 

Eqs. (7) - (11) may be rewritten as : 

2

2 2

1 1
( , )c c c cS S S S

w r t r
t z r r r Pe z

     
   

     
 (13) 

2

(0, , ) ( ) ( ), (0 1)

( )
( ) ,

1 for 0
( )

0 for 1

cS r z X r z r

z
z

d Pe

r d
X r

d r








  



 



   
  

                     (14) 

0   as   ,cS z                                                    (15) 

0 at 0,cS
r

r


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
                                                  (16) 

( )   at   1,c
c c cs

S
S Da S S r

r


     


            (17) 

The significance of the parameters Da ,   and   

representing the heterogeneous reactions at the 

boundary of the tube is noted in Table 1. 

The quantity cnS  (concentration of the immobile 

phase) mentioned in Eq. (17) is governed by non-

dimensioning Eq. (6) as: 

  with

( , ) [ ( ,1,

  (0, ) 0.

) ( , )],cs c c

cs

sS t z D

S

a S t z

z

S t z
t


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


           (18) 



S. Debnath et al. / JAFM, Vol. 12, No. 3, pp. 987-1000, 2019.  

 

 
991 

 

 

Table 1 Physical significance of reactions parameter 

Parameter Name Physical significance 

Da Damkhöler number 
Represent the kinetics of the phase exchange; if 1Da , then the reaction 

rate is much greater than the diffusion rate. 

Γ Absorption parameter 
Represents the rate of solute of loss; if 1 , then huge amount of mass 

is depleted in a short time. 

Ω Phase partition ratio 
Represents retention if 1 , then partition happens more readily 

between the phases and the opposite is true for 1 . 
 

 

3. VELOCITY DISTRIBUTION 

Using the above dimensionless quantities to the Eqs. 
(1) - (5) are: 

( )1
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o

w r
p t r R

t r r



 

   
 

           (19) 

1 ( )
4 ( )      1,n n

o

w r
p t R r

t r r



 

   
 

            (20) 

1 1 1

2 2 2

0                             if   for 0

( )    if   for ,

                   if  =0 for 1

c
c y p

c
c y c y p o

n
n y o

w
r R

r

w
R r R

r

w
R r

r

 

   

 

 
    


 

      
 


    

 

(21) 

  is finite, and   0     at   0,

,  and              at   , .

0                                     at   1,

c
c

c n c n o

n

w
r

r

w w r R

w r



 

 
  


   

 



       (22) 

Here 2( ) (1 sin(  ))p t e Sc t  , 
1

0

A
e

A
  is the 

amplitude of the fluctuating pressure component, 

α is the Womersley frequency parameter. The 

analytical solution for the velocity distribution 

may not be possible here due to the non-linear 

coupled relations among Eqs. (19) - (21). Thus to 

solve the same we have followed the perturbation 

technique with perturbation parameter as ( 1
,

Sc
   

inverse of Schmidt number). While blood flows 

through small artery (Caro, Pedley, Schroter, and 

Seed (1978)), the Schmidt number ( )Sc  is 

supposed to be very high 3( (10 ))O hence,   is so 

small. The flow velocity in small blood vessels 

and coronary artery can be portrayed by 

considering the Womersley number to be small. 

Now, we suppose a regular perturbation solution 

of the form: 

0 1

0 1

0 1

0 1

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ,
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
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                 (23) 

Utilizing Eq. (23) in Eqs. (19) - (22), we get  

 

Zeroth Order Terms : 
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First Order Terms : 
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The boundary conditions for solving Eqs. (24) - (31) 

are: 

0 1
0 1

0 0 1 1 0 0 1 1

0 1
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(32) 

Solving the BVP of Eqs. (24) – (32), we get  

0 2 ( ) ,c p t r                                                                    (33) 
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(34) 
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2
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(38) 
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(39) 
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o
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  
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 

  


 

(40) 

Substituting the value pr R  in Eqs. (34) and (38) 

we can get the expressions for opw  and 1pw  as: 

       


1

2 2 2 2
0 0 0 2 2

3

2
2 22

4 2
( , ) ( ) (1 ) 1

3

1 (1 ) ,                         0

p

p
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r R
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(41) 
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(42) 

where
1 2, ,

p

o o

Rr

R R
   and 

( )

y
pR

p t


 is the plug 

core radius. Considering the first two-terms of the 

perturbation series the solution of velocity 

distribution in their respective layers are as: 

0 1

0 1

0 1

( , )        for    0 ,

( , )        for    , .

( , )        for    1,

cp p p p

c c c p o

n n n o

w r t w w r R

w r t w w R r R

w r t w w R r







    


    


    

(43) 

In Eq. (43), cw  and nw  are the velocities for shear 

flow in the Casson and Newtonian regions whereas 

cpw  is the constant velocity for plug flow region. The 

peripheral layer thickness can be approximated by 

oR  and is defined as ( [1 ])oR   . Thus the present 

three-layer model will be reduced to a single-fluid 

Casson model if one consider 1oR  or 0  . 

4. MOMENT EQUATIONS 

The 
thk  moment of concentration distribution for 

the mobile phase can be defined, following Aris 

(1956), as 

( )( , ) ( , , )k k
c cS t r z S t r z dz




                                (44) 

and likewise for the immobile phase we may assume: 

( )( ) ( , ) .k k
cs csS t z S t z dz




                                        (45) 
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Using Eqs. (44) and (45), the Eqs. (13) - (17) can be 

rewritten in the form of ( )k
cS  and ( )k

csS  as: 

( ) ( )
( 1)

( 2)

2

1
( , )

1
                                        + ( 1) ,

k k
kc c

c

k
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S S
r kw r t S

t r r r

k k S
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  
  

    



(46) 

with 

 

   

( ) 2

( )

( )
( ) ( ) ( )

( )
          for 0

(0, )

0                  for 0

0      at      0, .

    at    1

k
c

k
c

k
k k kc

c c cs

X r
k

S r d Pe

k

S
r

r

S
S Da S S r

r


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  
 
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 
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 

         
  




(47) 

In the immobile phase the equation for the moments 

of the mass distribution is 

( ) ( ) ( )

( )

( ,1) ,

                     with initial condition (0) 0.

k k k
cs c cs

k
cs

d
S Da S t S

dt

S

   
 



(48) 

 

Using integral moment, the cross-sectional mean 

concentration for the mobile phase can be defined as: 

1( ) ( )

0
( ) 2  ( , ) ,k k

c cS t r S t r dr                                    (49) 

with this definition, Eqs. (46) and (47) become 
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( 1) ( 2)

2

2  ( ) ( ) ( ,1)
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 

  

(50) 
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.

                =     0    for  0

k
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Pe

k


  


 

                                  (51) 

The 
thk  order central moment about mean of the 

concentration distribution can be defined as 

1 2

0 0
1 2

0 0

( )
( ) ,

 

k
g c

k

c

r z z S drd dz
t

rS drd dz






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

  

  
           (52) 

where 

(1)

(0)

  

  

cc
g

c c

Sz S d
z

S d S




 
  

  
                         

represents the ‘centroid’ or ‘first moment’ of the 

solute distribution; (0)
cS  refers to the entire mass 

of the chemical species in the flowing stream. 

The higher order central moments achieved from Eq. 

(52) for values of 2,3,4,k   are: 

(2)

2
2 (0)

(3)

3
3 2(0)

(4)

2 4
4 3 2(0)

( ) ,

( ) 3 , .

( ) 4 6 ,

c

g

c

c

g g

c

c

g g g

c

S
t z

S

S
t z z

S

S
t z z z

S



 

  


 





   



   



         (53) 

Aris (1956) first discovered the physical 

significance of these central moments to the 

dispersion process. The overall behaviour of the 

slug can be efficiently described by these integral 

moments. Among them, the dispersion coefficient, 

cD  can be obtained from the second central 

moment, 2  and is written as: 

21
.

2
c

d
D

dt


                                                              (54) 

The coefficient of Skewness 
3

2
2 3 2( / )    and 

Kurtosis 2
3 4 2( / 3)     are also imperative as to 

measure the degree of symmetry and peakedness of 

the concentration distribution respectively. 

5. NUMERICAL SOLUTION OF 

MOMENT EQUATIONS 

In this section, using the finite difference Crank-

Nicolson implicit scheme, a numerical solution of 

the moment Eq. (46) subject to the conditions (47), 

together with Eq. (48) has been presented for all time 

dispersion analysis. The solute is supposed to inject 

uniformly over the cross-section of the pipe. We 

consider ( 1)M   parts having same length r  to 

divide the whole width of the tube, and they are 

illustrated by the grid point j  along r-axis. Thus the 

general formula can be written as ( 1)jr j r    

when r  is the increment of r . Let, i  represents 

the grid point for time along t-axis and t  be the 

increment of t , then the general formula for time is 

also written as ( 1)it t i    . From the above 

mentioned formulas, it can be realized that the grid 
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values at pipe’s axis ( 0r  ) and wall ( 1r  ) can be 

obtained for 1j   and M  respectively, whereas 

values at initial time ( 0t  ) are found for 1i  . Let, 

the discretized values of ( )k
cS  is denoted by 

( )( , )k
cS i j  at their corresponding grid points. With 

the use of above discretization technique, the 

moment equation is now transformed to a set of 

algebraic equations: 

( ) ( )

( )

( 1, 1) ( 1, )

                               + ( 1, 1) ,

k k
j c j c

k
j c j

P S i j Q S i j

R S i j T

   

  
   (55) 

where , ,j j jP Q R and jT are the matrix elements. 

The discretized form of initial and boundary 

conditions are: 

( )

1
      for     0

(1, )

0         for     0

k
c

k
S j Pe

k




 
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                             (56) 

( ) ( )

( ) ( )

( )

( )

( 1,0) ( 1,2),

(axis of pipe), and

( 1, 1) ( 1, 1) .

2 ( ) ( 1, )

2   ( ),     (pipe wall)

k k
c c

k k
c c

k
c

k
cs

S i S i

S i M S i M

r Da S i M

r Da S i

  




     


      

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             (57) 

Where ( )( )k
csS i  can be computed from relation: 

( ) ( )
( ) ( )   ( 1, )

( 1) ,
1  

k k
k cs c

cs

S i Da t S i M
S i

Da t

   
 

 
 

(58) 

with the initial condition ( )(1) 0k
csS  . 

Due to the nature of tridiagonal coefficient matrix in 

Eq. (55), Thomas algorithm (Anderson, Tannehill, 

and Pletcher (1984)) has been followed by means of 

a MATLAB code, with the assistance of Eqs. (56) - 

(58). Details of the computation are mentioned in 

below: 

Step-1: Time-dependent axial velocity, ( , )w r t  is 

calculated first at all grid points using Eq. (43). 

Step-2: As ( , )w r t  is known in its grid points, then, 

( )k
cS  is computed from Eq. (46). 

Step-3: From Eq. (48), ( )k
csS  is computed with the 

use of ( )k
cS obtained from Step-2. 

Step-4: Finally with the use of required values 

obtained from Step-1 to 3 at the corresponding grid 

points,
( )k
cS  is evaluated from Eq. (49) with the 

help of Simpson’s one-third method. 

Numerical calculations have been executed for 

steady and unsteady velocity profiles with respect to 

yield stress, peripheral layer thickness, and with 

various reaction parameters to understand the 

individual dispersion processes. The present scheme 

is linearly stable for any finite value of 2/ ( )t r  , 

and with the variation of parameters value there is 

always a satisfactory result for a fixed mesh size  

( 0.00001, 1/ ( 1)t r M     ) and 100M 

respectively. During the computation, 1,d   

3 0.5,  10 ,  0.5Pe Sc e       are always 

kept constant. Using the aforementioned space and 

time discretization parameters an accuracy of 510

in the results have been confirmed. The dispersion 

process due to pulsatile nature of stream can be better 

recognized with the approximation of small time 

step. The stability and that of the accuracy of the 

results can be achieved with the consideration of 

small space discretization. 

6. DISTRIBUTIONS OF MEAN 

CONCENTRATION 

Using moments method we did not have the solution 

for concentration distribution, but those of the first 

four moments can be useful to find the mean 

concentration distribution, ( , )cmS t z  in the axial 

direction. For that purpose, we use the concept of 

Hermite polynomial representation for non-Gaussian 

curves (Mehta, Merson, and McCoy (1974)), as: 

2(0)

0

( , ) ( ) ( ) ( ),cm c n n

n

S t z S t e b t H 






          (59) 

where 

(1)

(0)
2

( )
,  

2

cg
g

c

Sz z
z

S





   and nH ’s are 

Hermite polynomials that satisfy the recurrence 

relation with 0( ) 1H   : 

1 1( ) 2 ( ) 2 ( ),   0,1,2,....n n nH H nH n          

The coefficients nb ’s are: 

0 2 0 3
0 1 2 3 4

2

21
,  0,  ,  .

24 962

b b
b b b b b

 


    

With the use of central moments documented in Eq. 

(53), we can now calculate ( , )cmS t z  axially from 

Eq. (59) at any given location and time. 

7. RESULTS AND DISCUSSION 

This study considers the effect of peripheral layer 

thickness on dispersion of reactive substances in a 

two-fluid, three-layer Casson-Newtonian continuum 

flowing through a narrow pipe when reversible and 

irreversible reactions exist at the boundary. The 

rheological parameter (or yield stress) is chosen to be 

small ( 20.04 /dyn cm ) as suggested by McDonald 

(1974) for blood flow in small diameter arteries. An 

attempt has been made to mathematically model the 

blood flow situation through a rigid artery. In this 
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work, the method of moments has been followed to 

estimate the dispersion coefficient numerically. The 

proposed numerical technique is validated by Case-I 

to III, as: 

Case-I: 0,    0,  e  0Da   and 0.0,  pR   

0.02,  0.04, 0.06,  0.08,  0.1,  0.2;  correspond to the 

study of dispersion in the presence of interphase 

mass transfer when the driving force has only a 

constant pressure gradient. Figure 2 is the plot of 

dispersion coefficient vs irreversible absorption 

parameter (  ), which completely concurs with the 

result obtained by Sankarasubramanian and Gill 

(1973) when 0.0pR  (Newtonian fluid) and also 

satisfies the results for Nagarani, Sarojamma, and 

Jayaraman (2004) for non-zero choices of pR  

(Casson fluid). It is important to specify here that 

Sankarasubramanian and Gill (1973) and Nagarani, 

Sarojamma, and Jayaraman (2004) used 

normalization scales different than that used in our 

work and so, in some cases, the scalar value of 

dispersion coefficients differ but the tenet, however, 

is similar to ours. 

 

 
Fig. 2. Variation of dispersion coefficient ( )cD

with absorption parameter ( ) for various 

values of plug radius ( )pR  for the case when  

0,  0,Da  and 0.e   

 

Case-II: The variation of cD with time is shown in 

Fig. 3(a) by considering 0,  0,Da   and 0pR   

under periodic pressure gradient ( 0.5e   ), which 

satisfies the qualitative nature of the results in Fig. 7 

of Mazumder and Das (1992). 

Case-III: For the parameters values described in Fig. 

3(b), the combined effect of reversible phase 

exchange and irreversible absorption can be 

perceived under steady Newtonian fluid flow 

situation (i.e., 0pR e    ), a result has been 

noticed previously by Lau and Ng (2007). [Fig. 3(b) 

become like Fig. 1 of Lau and Ng (2007)]. 

The time evaluation of cD  for different values of the 

reaction parameters has been plotted in Figs. 4 and 5 

for small and large time intervals. During this study, 

the small and large time intervals are intended within 

the range of [0 -0.08] and [0.42 - 0.5] respectively. 

Figs. 4(a, b) demonstrate the effect of phase 

exchange rate while Figs. 5(a, b) demonstrate the 

effect of absorption parameter at the pipe boundary 

on cD . From Fig. 4(a), it can be easily 
 

 

 

 

Fig. 3. (a) Plot of dispersion coefficient ( )cD  

with time for different values of absorption 

parameter ( )  when 0,pRDa    and

0.5;e    (b) variation of  cD  vs time under 

steady flow and unsteady convective diffusion 

when 0.pR e    

 

 

 

 

Fig. 4. Time variation of dispersion coefficient 

( )cD for different values of Da  when 1   in a 

two-fluid, three-layer Casson-Newtonian 

continuum ( 0.04, 0.03).y    (a) For small 

times, and (b) for large times. 

 

inferred that during the initial duration of time, cD  

diminishes as the phase exchange rate increases; 
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since the increase in the value of Da  is indicative of 

the increase in the reaction beyond the value of the 

rate of diffusion but the rate of decrease is not that 

significant. For instance at a fixed time 0.033, the 

computations of ,cD  shown in Fig.4(a), are 

0.001582, 0.001551 and 0.001494 respectively. 

From Fig. 4(b), one remarkable thing is seen, after a 

long time, cD  increases significantly with increase 

in the value of Da  which is in keeping with the 

result of (Mazumder and Paul 2012). It is seen from 

Fig. 5(a), for small time, the values of cD  decrease 

as absorption increases whereas a variable effect of 

cD  is seen for the long time interval (Fig. 5(b)). The 

decrease of the cD  with an increase in the value of 

  is fully understandable in this case, as large Γ 

helps to enhance the irreversible chemical reaction 

rate. But due to the presence of high retention rate (

1Da  ) as compare to low irreversible reaction rate 

( 0.3  ) at the boundary, a certain fall of cD  has 

been observed for larger time domain. Here, it is 

essential to note that the fall and growth of the 

dispersion coefficient with respect to the reaction 

parameters is not final. Based on the reaction 

strength, span of time, pipe radius, etc., the 

circumstances may change. Later, from Fig. 9, it has 

partially realized, though at the present moment we 

can predict that at long times the effect of the 

reversible reaction is more noticeable than that of the 

irreversible reaction. 
 

 

 

 

Fig. 5. Time variation of dispersion coefficient

( )cD for different values of   when 1Da  in a 

two-fluid, three-layer Casson-Newtonian 

continuum ( 0.04, 0.03).y    (a) For small 

times, and (b) for large times. 

 
At low shear rate, the impact of yield stress is 

essentially significant while blood flows through 

small vessels or micro vessels. This aspect of a 

physiological context of the reliance of the 

dispersion coefficient on finite yield stress as well as 

peripheral layer thickness has been indicated in Figs. 

6 and 7. Figs. 6 (a, b) show that with an increase in 

the value of yield stress a significant decrease in   

cD follows at all times. This finding was also 

reported by Nagarani and Sebastian (2013), and 

Rana and Murthy (2016) they reasoned this to be due 

to the large velocity gradient at the boundary of pipe 

compared to that in the central region. We also 

obtained that the increase of peripheral layer 

thickness ( )  is to increase the magnitude of cD  

(Figs. 7(a, b)). This happens because large values of 

 signify larger Newtonian fluid region surrounding 

the central core Casson region, resulting in a larger 

value of .cD   
 

 
 

 
 

Fig. 6. Time variation of dispersion coefficient 

( )cD for different values of yield stress ( )y

when 0.03, 0.1,Da    and 0.3  . 

 

 The difference between the results of single-layer 

Newtonian fluid (i.e., τy = 0 and γ = 0), two-layer 

Casson fluid (i.e., 0.04y   and 0  ) and two-

fluid, three-layer Casson-Newtonian continuum (i.e., 

0.04y  and 0.1  ) is delineated in Fig. 8. 

Results of Figs. 8(a, b) reveal that the dispersion 

coefficient in the case of a single-layer Newtonian 

fluid is larger than that of the two-layer Casson 

model, a result that is in agreement with Dash, 

Jayaraman, and Mehta (2000). Further, the value of 

cD  of the two-fluid, three-layer Casson-Newtonian 

continuum is in between that of the single-layer 

Newtonian fluid and the two-layer Casson model, a 

physically meaningful result. The reason for the 

augmentation of the value of cD  due to the presence 

of the peripheral layer is that the Newtonian layer 

near the boundary has a larger velocity compared to 

that of the Casson layer and carries the effect of the 

chemical reaction at the boundary much faster in the 
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flow compared to that in the Casson fluid and thereby 

leading to a significant increase in the value of cD . 

 

 

 
 

Fig. 7. Time variation of dispersion coefficient 

( )cD  for different values of peripheral layer 

thickness ( )  when 0.04,y  0.1Da  and 

0.3  . 
 

 

 

 

Fig. 8. Time variation of dispersion coefficient 

( )cD  for different fluid flow situations when 

0.1Da   and 0.3  . 

 

 When the flow is steady (i.e., 0e  ), dispersion 

coefficient as a function of  , for a static time (

0.5t  ), is shown in Fig. 9(a) for the three chosen 

fluid models. It has seen, for small values of Γ 

(approximately 0.22 for the Newtonian fluid, 0.13 

for Casson fluid and 0.12 for two-fluid, three-layer 

Casson-Newtonian continuum), dispersion 

coefficient increases and after a critical value of the 

dispersion coefficient it shows a steep decrease with 

absorption rate  . It is observed that for a three-

layer fluid when 100  , cD  decreases by 3.65 times 

of the value corresponding to 0.01  , but for 

Casson and Newtonian fluids the decrements are 

3.58 and 3.29 times respectively. 

Sankarasubramanian and Gill (1973) has already 

discussed this kind of result on cD  and we do not 

repeat this again here. At a fixed time 5t  , Fig. 

9(b) points out a large increment to the value of cD  

corresponding to small values of the retention 

parameter (  ), but after a particular value of the 

parameter, it is monotonically decreasing. A Similar 

result was found and reasoned by Ng and Rudraiah 

(2008) which is true for this case also. 

 

 

 
 

Fig. 9. Variation of dispersion coefficient with 

 (a)   when 0Da   at a fixed instant of time 

0.5,t  and (b)   when 0   at a fixed instant 

of time 5t  . 

 

The mean concentration distribution across the axial 

distance has been depicted in Figs. 10(a, c) and Figs. 

10(b, d) at different instants of time, 0.15t   and 0.5  

respectively. It is found that peak of the mean 

concentration distribution translates significantly 

along the flow as reaction rates increase and also 

more importantly as time increases peaks get flat for 

large values of both the reaction parameter. 

Consequently, when the reaction rate is large 

enough, the long-time limit of the dispersion 

coefficient might not have a feasible implication. 

CONCLUSION 

The general conclusions that can be constructed from 

the present study are as follows: 
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Fig. 10. Variation of mean concentration distribution ( ),cmS at a given instant 0.15t    and 0.5t  .  

(a, b) For Da  when 0.04, 0.03,y   1;  and (c, d) for  when 0.04, 0.03, 1.y Da     

 

 

(a) Increasing the value of the reversible reaction 

rate results in a decrease of cD  at the small 

time though cD  increases for the large time. 

(b) An increase of irreversible reaction rate, 

dispersion coefficient decreases at small times. 

(c) Due to high retention rate as of low absorption 

rate, an inconsistent nature of cD  is found for 

the large time. 

(d) As yield stress increases the value of cD  

decrease for all time. 

(e) Larger the peripheral layer thickness, larger 

will be the cD  value. 

(f) Because of peripheral layer presence, cD  in 

the three-layer Casson-Newtonian continuum 

to be larger than that in the two-layer Casson 

model but smaller than that of the single-layer 

Newtonian model. 

(g) Dispersion coefficient is initially found to 

increase with small  , though as   increases 

the value of cD  decreases monotonically and 

ultimately reaches to its steady-state situation. 

(h) For larger values of either   or Da  lead to 

falling in the peak of the mean concentration 

profile and tends to become flat. 

(i) The results obtained from this study has 

successfully satisfied with those of the existing 

works. 

(j) The study in its present form has a significant 

impact on physiological blood flow analysis in 

comparison to various other work.  
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