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ABSTRACT 

The vorticity dynamics of a Lamb-like dipole colliding with flat boundaries are investigated for high 

Reynolds number flows by implementation of the lattice Boltzmann method (LBM). The standard LBM 

based on the single-relaxation-time collision model suffers from numerical instabilities at high Reynolds 

numbers. Herein, a regularized collision model is employed for the LBM to preserve the stability and 

accuracy of the numerical solutions at such flow conditions. The computations are performed for the normal 

collision of the dipole with the no-slip boundary for several Reynolds numbers in the range of 4 5Re 10 10  . 

The results obtained based on the regularized lattice Boltzmann (RLB) method for the statistical flow 

characteristics like the vorticity field and enstrophy quantity of the dipole-wall collision problem are 

investigated. The present study demonstrates that the shear-layer instabilities near the wall are responsible for 

rolling-up of the boundary layer before it is detached from the surface for high Reynolds numbers. This 

detachment mechanism leads to a viscous rebound and formation of small scale vortices. The shear-layer 

vortices formed dramatically influence the flow evolution after the collision and result strong enhancement of 

the total enstrophy of the flow field. By comparing the present results with those of provided by other 

numerical solutions, it is also concluded that the RLB scheme implemented is robust and sufficiently accurate 

numerical technique in comparison with the flow solvers based on the Navier-Stokes equations for predicting 

the statistical features of separated fluid flows even at high Reynolds numbers.  

Keywords: Lattice boltzmann method; Regularized collision model; Dipole vorticity dynamics; High 

Reynolds numbers. 

NOMENCLATURE 

c lattice speed 

collision operator 

e microscopic velocity vector 

f distribution function 

t time 

t time step 

u velocity vector

x coordinate vector 

x grid space 

 vorticity

 momentum flux

 discrete directions

 density

 viscosity

 relaxation time

 weight factor

1. INTRODUCTION

The interaction between the vorticity structures and 

no-slip surfaces in fluid turbulence is known to 

have a crucial importance on the evolution of flow 

in nature and a wide range of practical interests. For 

instance, the whether dispersion into a turbulent 

atmosphere can be influenced by large-scale 

vortices colliding with coastal or mountain ridges. 

Also, in the aerospace engineering, the downwash 

vortices from aircraft wing or helicopter rotor blade 

interact with the ground in the takeoff and landing 

phases of flight which affect the air flow 

characteristics. Due to the appreciable effects of the 

vorticity dynamics in collision with the wall on the 

flow structures, studying of this phenomenon has 
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been considered by using the experimental 

observations (Wells and Afanasyev, 2004, Wells et 

al. 2007). 

To gain in-depth insight into the physics of such 

flow problem in fluid mechanics, numerical 

approaches are efficient tool because of the rapid 

increase in computing capabilities in the present era 

and improvements made for the computational 

schemes developed in terms of accuracy and 

robustness. The early numerical studied of the 

dipole vorticity dynamics colliding with a no-slip 

wall yield many important results on the flow 

structures and statistics (Orlandi 1990, Coutsias and 

Lynov, 1991, Clercx and Heijst, 2002, Clercx and 

Bruneau, 2006). These reported computations have 

been performed by flow solvers based on the 

Navier-Stokes (N-S) equations and the simulations 

are limited to Reynolds number 5000. It is obvious 

that the unsteadiness and turbulence effects at 

higher Reynolds numbers have significant influence 

on the flow patterns of this problem which is not 

clearly addressed. There are very few numerical 

works based on the N-S equations for simulation of 

dipole-wall collision problem at high Reynolds 

numbers. This deficiency could be because of 

stability restrictions or accuracy concerns of the 

numerical approaches applied for simulation of the 

flow characteristics at high Reynolds numbers. At 

such flow conditions, the chaotic and unpredictable 

motion of fluid flow with a wide range of time and 

length scales ensue a complex flowfield which 

needs more accurate techniques for computational 

studies. Kramer et al. (2007) have employed an 

accurate discretization scheme for the N-S 

equations to study this flow problem at Reynolds 

numbers up to 2×104. 

Recently, the lattice Boltzmann method (LBM) has 

become one of the most powerful alternative 

computational techniques to the traditional flow 

solvers based on the N-S equations. The LBM is 

widely used for numerical simulations of fluid flow 

problems with complex physics due to its promising 

advantages, like the simplicity of programming and 

its consistency for massively parallel computing. 

This method is developed based on the kinetic 

theory and predicts the fluid dynamics by modeling 

the particle interactions at the mesoscopic scale. 

Accordingly, ease of considering microscopic 

interactions for modeling of additional physical 

phenomenon is the other advantage of the LBM. 

However, the standard form of the LBM based on 

the single-relaxation-time (SRT) collision model 

suffers from inherent instability at high Reynolds 

number flows, which greatly restricts its application 

to solve engineering practical problems. This 

stability problem is due to the presence of a very 

thin boundary layer at high Reynolds number flows 

and the LBM solution becomes strongly anisotropic 

to resolve such thin layers. Thus, in order to solve 

high Reynolds number flows with a sufficient 

accuracy, a large number of uniform lattices may be 

used, which requires larger computer resources. 

Another outstanding effort to overcome this 

shortcoming of the standard LBM is to implement 

more robust and efficient collision models. The 

entropic lattice Boltzmann (ELB) (Karlin et al. 

1998), multiple-relaxation-time (MRT) (Du et al. 

2006) and the regularized lattice Boltzmann (RLB) 

(Latt and Chopard 2006) methods are the most 

popular of the collision operators which have 

excellent stability characteristics for simulation of 

fluid flows at high Reynolds numbers. The 

efficiency and accuracy of these collision models 

have been studied in several works in the literature 

(Luo et al. 2011, Ezzatneshan 2018). 

Lagrava et al. (2012) have applied the LBM for 

simulation of the dipole vorticity dynamics up to 

moderate Reynolds number 5000. They have used a 

multi-block LBM to apply a fine resolution of grid 

points near the wall for preserving the stability of 

LBM. To the best of author’s knowledge, there is 

no another work in literature on the simulation of 

this flow problem by using the LBM at high 

Reynolds numbers. In the present work, the 

regularized collision model is implemented for the 

LBM to preserve the stability and accuracy of the 

numerical solution of the dipole-wall collision at 

high Reynolds numbers. A clear insight in the flow 

statistics of this problem is giving with 

concentrating on the vorticity dynamics close the 

no-slip wall. The capability and robustness of the 

implemented RLB scheme are also demonstrated 

for simulation of the active role of the dipole 

vorticity dynamics in the formation of detached 

boundary layer from the no-slip wall for a wide 

range of Reynolds numbers in comparison with the 

previous studies based on the N-S flow solvers. 

The paper is structured as follows: The governing 

equation of the RLB scheme is presented in Section 

2. Section 3 deals with discussions about the 

numerical results obtained for the dipole-wall 

collision considered. Finally, some conclusions are 

made in Section 4. 

2. GOVERNING EQUATIONS 

The governing generalized lattice Boltzmann 

equation reads:  

( , ) ( , ) ( )f t t t f t f       x e x                  (1) 

where   defines the discrete directions, f  is the 

particle (mass) distribution function, t  is the time, 

t  is the time step and e  denotes the microscopic 

velocity of particles along the  -th direction. The 

operator ( )f  defines the change in f  due to 

collisions. The collision operator ( )f  in the 

standard form of the LBM is based on the SRT 

which is expressed as 

1
( ) ( , ) ( , )eqf f t f t  


    x x                         (2) 

where   is the non-dimensional relaxation time 

parameter. eqf  defines the equilibrium distribution 

function through a Chapman-Enskog expansion 

procedure which can be written as 
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In Eq. (3),   is a weight coefficient and = (u,v)u  

and   are the macroscopic velocity vector and 

density, respectively. For a two-dimensional (2-D) 

square lattice model with nine particle velocity 

directions (D2Q9), the discrete particle velocity e  

and the weight factors   are given as 
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                                    (5) 

where /c x t    is the lattice speed and x  is the 

grid spacing which are assumed to be unity. The 

macroscopic density   and velocity u  are 

explicitly defined based on the particle distribution 

function as 

,f f  
 

   u e                                 (6) 

The kinematic viscosity   depends on the speed of 

sound / 3sc c  and continuous Bhatnagar–

Gross–Krook (BGK) relaxation time   by the 

following definition 

2( 0.5)sc                                                     (7) 

The lattice Boltzmann equation given in Eq. (1) is 

solved by a streaming-collision procedure in two 

steps. First, the particles collide on the lattice nodes, 

known as ‘collision step’ 

1
( , ) ( , ) [ ( , ) ( , )]eqf t f t f t f t   


  x x x x         (8) 

Second, propagation of the force-free particle 

distributions occurs according to their respective 

speed, known as ‘streaming step’ 

( , ) ( , )f t t t f t     x e x                           (9) 

where ( , )f t x  and ( , )f t x  denote the pre- and 

post-collision states of the distribution function, 

respectively. 

As mentioned, the SRT collision model 

unfortunately suffers from severe disruptive 

numerical instabilities at relatively high Reynolds 

numbers, unless a high resolution lattice nodes is 

employed. It makes the SRT model to be 

computationally expensive for simulation of such 

flow conditions. Herein, the regularized lattice 

Boltzmann (RLB) scheme is employed to eliminate 

instabilities with suppressing the influence of higher 

order moments, which may oscillate rapidly. The 

employed RLB collision model is based upon the 

idea that the hydrodynamic limits of the SRT model 

are not dependent on the details of the particle 

distributions, but only on the value of the first three 

moments, including density, velocity and stress 

tensor. These macroscopic variables can be defined 

through a multiscale Chapman-Enskog analysis of 

the LBM with BGK approximation which obeys the 

Navier-Stokes equations for weakly compressible 

flows. In this analysis, a power-law series with 

respect to a small parameter 1  is used to 

separate the physical phenomena happening at 

different scales as 

0

k k

k
f f 




                                               (10) 

To asymptotically recover the dynamics of the N-S 

equations, the two first terms of order 0( )O   and 

order 1( )O   are sufficient (Latt and Chopard, 

2006), 

(0) (1) 2( )f f f O                                        (11) 

The component (0)f   of the particle populations is 

equal to the equilibrium distribution, 
(0) ( , )eqf f   u . The component (1)f  reads 

 




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                (12) 

where contains a dominating term proportional to 

u  and two terms scaling as the square of u  which 

can be canceled in the RLB scheme for symmetry 

reasons (Latt et al. 2008). With this approach, the 

RLB model enhances stability by eliminating higher 

order, non-hydrodynamic terms from the particle 

populations. Recently, the stability and convergence 

properties of this collision model have been 

thoroughly studied by Montessori et al. (2014). 

In the present paper, the RLB method is 

implemented with the approximation of the first-

order multi-scale Chapman-Enskog expansion term 

as follows (Latt et al. 2008) 

(1)

4
:

2

non eq
ij ij

s

f Q
c


 

 
                                  (13) 

where, 2e eij i j s ijQ c      is a tensor and 

2 ( )
non eq

s i j j iij c u u  
       is the non-

equilibrium momentum flux tensor. Then, the non-

equilibrium distribution function 
(1)non eq eqf f f f   

     is used to approximate 

the collision operator in Eq. (2). Finally, the 

collision in Eq. (8) is applied to (1)eqf f f    , 

which gives the regularized collision step as 

(1)1
( , ) ( , ) (1 ) ( , )eqf t t t f t f t   


      x e x x 
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(14) 

The regularization of the distribution function and 

executing the collision consecutively have the effect 

of a diagonalizable linear operation on the non-

equilibrium part of the particle populations. 

Therefore, the relaxation parameters in the RLB 

scheme is determined from a physical argument 

based on the Chapman-Enskog expansion, not only 

on the numerical stability analysis. 

Note that the regularized operation in this approach 

needs to implement at the boundaries similar to the 

flow field. Defining proper boundary conditions is 

then necessary in the RLB scheme for 

reconstruction of the unknown distribution 

functions at the domain boundaries. The following 

approach proposed by Latt et al. (2008) is used to 

model (1)f  for implementation of the “regularized 

boundary condition”:  

First, all unknown distribution functions f  are 

assumed to obtain by a bounce-back of non-

equilibrium parts, as 

(opp) (opp)
eqeqf f f f                                   (15) 

where (opp)f  and (opp)
eq

f  are the known particle 

populations in the opposite lattice directions of the 

unknown ones. The distribution functions 

calculated by means of Eq. (15) are used to evaluate 

the value of 
non eq
ij


  at the domain boundaries. 

Then, Eq. (13) is employed to determine the (1)f  

and it therefore is used to construct all particle 

populations on the boundary nodes,  

(1)eqf f f                                                  (16) 

It should be noted that the macroscopic parameters 

  and u  are recovered appropriately by this 

boundary condition (Latt et al. 2008).  

3. RESULTS AND DISCUSSIONS 

This section contains the numerical results obtained 

for the dipole vorticity dynamics colliding a no-slip 

wall in a bounded flow by employing the RLB 

scheme implemented with different Reynolds 

numbers. An investigation is considered for 

studying the structure of separated boundary layer 

near the wall after interaction of the dipole vorticity. 

The results obtained by applying the present RLB 

method are compared with the available numerical 

results to demonstrate the accuracy of the 

computation technique applied. 

3.1 Problem Setup 

The dipole vorticity dynamics is studied in a square 

bounded domain 1 , 1x y    with the no-slip 

boundary conditions implemented on the all sides. 

To define two counter-rotating monopolar vortices, 

the velocity field is initialized as 

2 2
1 2

0 0

2 2
1 2

0 0

0 1 2

0 1 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

r r

r r
e e

r r

r r
e e

u y y e y y e

v x x e x x e

 

 

   
    
   

   
    
   

    

   

                                                                             (17) 

where ( , )i ix y  indicates the position of the 

positive and negative core vorticities by 1i   and 

2 , respectively, and 2 2
i i ir x y  . The 

parameter 0r  is the core radius and e  labels core 

vorticity. In the present work, the flow parameters 

are set as 0 0.1r  , 300e  , 1 1( , ) (0,0.1)x y   

and 2 2( , ) (0, 0.1)x y   . Figure 1 shows the 

geometric parameters and initial dipole vortices in 

the middle of the computational domain that is 

indicated by the vorticity   contours. In the all 

figures, the blue and red colors denote contours of 

negative and positive values, respectively, 

0.01min  , 0.2max   and 0.01  . 

The computations are carried out for values of 

Reynolds numbers in the range of 4 5Re 10 10   

and the results obtained for the unsteady flow 

structures and statistics are addressed. Note that the 

Reynolds number for this flow problem is defined 

as Re rmsU N  , where rmsU  is the initial root 

mean square (rms) velocity and N  is the number of 

lattice nodes along the half-side of square 

computational domain. Herein, the initial root mean 

square (rms) velocity is set to be 0.001rmsU   in 

lattice unit and consequently, the Mach number of 

the present solutions is of order 
3(10 )rms sM U c O   . 

 

 
Fig. 1. Geometry and initial condition shown by 

vorticity field   for studying the dipole vorticity 

dynamics colliding with the wall. 
 

3.2 Simulation of Dipole-Wall Collision 

To obtain sufficiently accurate results and also to  
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Fig. 2. Sequence of computed flowfield near the bottom wall shown by vorticity contours for dipole 

vorticity dynamics colliding with no-slip wall at 4Re 10 . 

 

Table 1 Comparison of the results obtained for primary vortex position of dipole vorticity dynamics 

colliding with no-slip wall at 
4Re 10  

 
Kramer et al. 

(2007) 
Present Solution 

t  
mvx  

mvy  grid size mvx  
mvy  

0.6  0.2562  0.0961  

(200 200)  0.2913  0.1184  

(400 400)  0.2724  0.0940  

(800 800)  0.2708  0.0937  

1.0  0.6439  0.2738  

(200 200)  0.7921  0.2985  

(400 400)  0.6582  0.2719  

(800 800)  0.6518  0.2701  

 

have stable numerical solutions at high Reynolds 

numbers, a special effort on grid resolution is 

required. In the present work, 400  lattice points are 

used along the side wall of the square flow domain 

for 4Re 10  (see Table 1). Subsequently, the grid 

resolution for higher Reynolds numbers 
4Re 2 10  , 45 10  and 510  are increased by 

800 , 1200  and 1600  grid points, respectively.  

Figure 2 shows the instantaneous vorticity field   

for the dipole colliding the no-slip wall at 

4Re 10 . As seen in this figure, the dipole vortices 

separate after colliding and move along the no-slip 

wall in opposite directions at the dimensionless 

times 0.3, 0.4t  . The flow advection and 

detachment from the wall are obvious at 0.4t  . 

Consequently, two secondary asymmetric dipole 

vortices are formed and lead to secondary collision 

with the no-slip wall at 0.5, 0.6t  . It is observed 

that another small scale dipole is formed at the 

center line of the flow domain at 0x   which 

translates away from the wall along the 
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y  direction (see 0.7t  ). After secondary dipole 

vortices roll up and collide with the wall, even more 

flow detaches from the boundary layer at 

0.8 1.0t    which leads to formation of multiple 

small vortices. It should be noted that the flow field 

is left-right symmetry, but top-bottom asymmetry. 

A sequence of vorticity contour plots in Fig. 3 

shows the production of vorticity patches near the 

top wall due to colliding of small scale dipole 

formed at the center line of the flow domain. These 

dipole vortices collide the top wall and form 

another small scale dipole vorticity dynamics near 

the top wall which its structure is different than that 

of formed near the bottom wall. 

 
 

 
 

 
Fig. 3. Sequence of computed top-bottom 

asymmetry flowfield shown by vorticity contours 

for dipole vorticity dynamics colliding with no-

slip wall at 
4Re 10 . 

To verify the accuracy of the present numerical 

simulations based on the RLB scheme, the results 

obtained for position of the maximum vorticity in 

the dipole-wall colliding flow domain at 4Re 10  

are compared to the available benchmark results 

reported by Kramer et al. (2007). In Table 1 the 

locations of the maximum vorticity in the flow 

field, ( , )mv mvx y , are given for the positive half of 

the dipole. Note that the location is measured 

relative to the point where the central axis of the 

dipole crosses the bottom no-slip wall. A grid 

refinement study is conducted to present the mesh 

convergence of the primary vortex position for the 

dipole vorticity dynamics colliding with no-slip 

wall at 4Re 10 . The computational grids used for 

the study of mesh convergence are uniform 

throughout with (200 200) , (400 400)  and 

(800 800)  lattice points. It is shown that the grid 

(400 400)  is appropriate for an accurate solution 

of this problem at the given flow condition by 

implementing the RLB scheme employed and 

further grid refinement does not significantly 

improve the accuracy of the results. As seen in this 

table, there is a good agreement for the positions 

obtained by the present numerical scheme based on 

the RLB method in comparison with those of 

reported in literature based on the N-S flow solver 

which confirms the accuracy of the present 

simulations. It should be noted that a second order 

polynomial is used by Kramer et al (2007). to fit the 

vorticity field for determining the positions. 

However, the data reported in the present work are 

based on the grid resolutions used which may cause 

a slight difference between the results reported in 

Table 1. 

The flow pattern of the dipole colliding with the 

wall is more interesting for higher Reynolds 

numbers. Figure 4 demonstrates the time 

evaluations of the dipole dynamics after first 

collision with the no-slip wall at 4Re 2 10  , 
45 10  and 510 . Since this flow problem has a left-

right symmetry pattern, the vorticity contours are 

presented for the right part of the domain for the 

sake of summarizing. In these cases, the flow 

separation near the boundary layer at 0.4t   and 

its movement along the wall after the first dipole 

collision are obviously similar to the flow pattern 

observed for 4Re 10 . However, the differences 

between these cases are visible after rolling up of 

the secondary dipole vortices for the next encounter 

with the wall. The flow fields presented at 0.6t   

and 0.8  show that the vorticity filaments near the 

wall are thinner but stronger in amplitude for higher 

Reynolds numbers. Due to the higher vorticity 

amplitude of induced boundary-layer for higher 

Reynolds numbers, some vortices detached from the 

wall around the secondary vortex are advected in 

form of multiple small vortices. In Fig. 4, this 

phenomenon can be observed after 0.8t   for the 

considered cases, which is different from the 

detached mechanism of the secondary vortices 

captured for 4Re 10 . The present numerical  
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(a) (b) (c) 
 

Fig. 4. Sequence of computed flowfield shown by vorticity contours for dipole vorticity dynamics 

colliding with no-slip wall at (a) 
4Re 2 10  , (b) 

4Re 5 10  , and (c) 
5Re 10 . 

 

 

results obtained based on the RLB scheme shows 

that the primary and secondary vortices have almost 

similar structures for 4Re 5 10   and 510 . 

However, for 5Re 10 , the small-scale vortices 

formed near the wall and also around the symmetry 

line of the flow domain reach a very high vorticity, 

which create very chaotic and strong vortices. This 

phenomenon of symmetry breaking of dipole 

vorticity and then spontaneous spin-up due to 

interaction with no-slip wall at very high Reynolds 

numbers turns out to be crucial for the production of 

angular momentum. Keetels et al. (2010) have 

thoroughly studied this phenomenon as a decaying 

turbulent flow in square containers.  

Figure 5 shows the vorticity   distribution on the 

bottom wall after the dipole collision at 0.4t   for 

three Reynolds numbers 4Re 2 10  , 45 10  and 
510 . In this figure, the vortex and boundary layer 

vorticity visualized by the light gray contours which 

the solid and dashed lines indicate positive and 

negative values, respectively. As seen in Fig. 5, the 

vorticity changes sign (
0y 

 ) in some points on 

the wall. These points are dynamically very 

important to define the start and end positions of the 

streamlines which indicate the flow separates from, 

or attaches to the wall, respectively. Therefore, the 

small regions between the two points with 
0y 

  

indicate the presence of recirculation in the 

boundary layer. From the intense picks in these 

plots for higher Reynolds numbers, it can be 

inferred that strong shear-layer instabilities near the 

wall at higher Reynolds numbers lead to intensive 

eruptions of boundary-generated vorticity which 

cause the roll-up and formation of a number of 

small-scale vortices. 

The dipole collision with the no-slip wall studied in 

the present work is characterized by a 2-D turbulent 

dynamics where the wall acts as a source of small 

scale vortices originated from the detached 

boundary-layer. To quantify the decay rate of the 

total energy in this bounded viscous flow field, the 

average enstrophy   is computed based on the 

squared vorticity in the domain: 

1 1
2

1 1

1
( , )

2
x y dx dy

 

                         (18) 

Figure 6 indicates the instantaneous average 

enstrophy   evaluated for the flow conditions 

considered. This figure shows distinct peaks of 

  for the all Reynolds numbers studied which 

coincide with the first and second collisions of the 

dipole with the wall. It can be concluded that the 

boundary-layer near the wall builds-up a large 

amount of vorticity at the moment of dipole-wall 

collision which has the main contribution to the 

average enstrophy (Kramer et al., 2007). Note that 

the maximum value of the average enstrophy 

increases with increment of the Reynolds number 
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due to the strong amplitude of the vorticity 

filaments near the wall at such flow condition. 

Some smaller peaks in the enstrophy curve of the 

dipole-wall collision with 4Re 5 10   and 510  

indicate rebounds of the small-scale vortices 

generated in the boundary layer at such flow 

conditions.  

 

 
(a) 
 

 
(b) 
 

 
(c) 
 

Fig. 5. Vorticity distribution on the bottom wall 

after dipole collision at 0.4t   for (a) 

4Re 2 10  , (b) 
4Re 5 10  , and (c) 

5Re 10 . 
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Fig. 6. Comparison of instantaneous averaged 

enstrophy in the flow domain for dipole vorticity 

dynamics colliding with no-slip wall. 

4. CONCLUSIONS 

In the present work, the dipole-wall collision is 

considered as a model problem to investigate vortex 

interactions with the wall at high Reynolds 

numbers. The lattice Boltzmann method with the 

regularized collision model is implemented for 

studying the separated fluid flow characteristics and 

statistics. It is demonstrated that the shear instability 

occurred in the boundary layer at high Reynolds 

numbers makes strong vorticity eruptions in the 

secondary vortices formed and creates multiple 

small-scale vortices between the dipole half and the 

no-slip boundary. The time evaluation of the 

average enstrophy for this problem confirms that 

although the vortices injected into the flow after 

collision become smaller for higher Reynolds 

number, but they have a higher vorticity amplitude. 

Also, the results computed based on the present 

RLB scheme show that the simulations account well 

the flow characteristics and essential features of the 

separating shear-layers at high Reynolds numbers 

with stable numerical solutions. Development of the 

present numerical approach as a DNS solver in 3-D 

framework will be considered in the future work for 

simulation of three-dimensional turbulent flows. 
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