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ABSTRACT 

New hybrid Eulerian/Lagrangian model is presented accounting for the two-way coupling between the 

pulsating blood flow and the artery deformability. The Streamline-Upwind/Petrove--Galerkin (SUPG) finite 

element technique is used to treat for the convective nature of the momentum equation. The deformability of 

the artery walls is accounted for by treating the wall as an elastic beam under transverse unsteady distributed 

load, namely the fluid pressure. The results of the present contribution compare well against the available 

published data. 

Keywords: Fluid structure interaction; Incompressible viscous flows; Pulsating flows; Deformable 

boundaries. 

NOMENCLATURE 

ALE arbitrary Lagrangian-Eulerian 

D inlet diameter 

E  modulus of elasticity 

G gradient operator 

I moment of area 

IFSI index of Fluid-Structure Interaction 

k artificial diffusivity coefficient 

V velocity vector 

M mass matrix 

N weighting function 

P pressure 

p discontinuous streamline upwind contribution 

q vertical load 

Re Reynold’s number 

t time   

U potential Energy 

w vertical deflection 

x longitudinal direction 

 Womersley number

 blood density

 blood viscosity

 pressure stabilization controlling Parameter

 slope of the deflection

 frequency

1. INTRODUCTION AND LITERATURE

SURVEY

Modeling and simulation of fluid-structure 

interaction is one of the most challenging problems. 

Survey of literature reveals that treating the 

boundary deformability could be divided into three 

approaches depending on the utilized computational 

framework. The simplest one is linearized 

kinematics approach, in which the Eulerian frame is 

used for both fluid and wall equations (Deparis et 

al., 2003; Fernández and Tallec, 2003; Figueroa et 

al., 2006; Mao et al., 2017; Sugiyama et al., 2017). 

In this framework, the interface between the fluid 

and the tube walls is fixed but the nodes have non-

zero velocities. Deparis et al. (2003) proposed a 

modified fixed-point algorithm with a transpiration 

formulation to reduce the computational time. 

Fernández and Tallec (2003) also used the 

linearization principle with a reduced linear 

structure to solve problems of fluid-structure 

interaction. Figueroa et al. (2006) developed the 

coupled momentum method by adopting the 

linearized kinematics formulation for the tube walls. 

This method couples the elastodynamic equations 

of the tube walls to the Navier--Stokes equations 

using a shear-enhanced membrane model for the 
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vessel walls. The second computational framework 

is the immersed boundary method (Peskin, 1977; 

Hart et al., 2003; Enriquez-Remigio and Roma, 

2005). This computational approach is implemented 

in the areas where the mass of the solid is 

insignificant compared to the mass of the fluid and 

can be ignored. This approach is used in modeling 

of the flow across heart valves and inside the heart 

itself. The third computational framework is the 

Arbitrary Lagrangian-Eulerian (ALE) formulation 

for fluid-solid interaction problems (Hughes and 

Zimmermann, 1981; Donea et al., 1982; Kelidis and 

Konstantinidis, 2018). In this framework, the flow 

domain is no longer fixed. The wall deformation 

problem is solved in Lagrangian formulation, and 

the grid is updated each time step. ALE formulation 

is computationally expensive when considering 

large models of the vasculature and less robust than 

linearized kinematics methods since they 

necessitate the continual updating of the grid. 

Recently, new direction for bubbly flows has been 

introduced using direct numerical simulations (Ma 

et al., 2015; Ma et al., 2016; Tryggvason et al., 

2016) in which closure terms for a simple model of 

the average flow are found, using Neural Networks. 

Popine and Zaleski (1999) focused on obtaining an 

accurate description of the surface tension terms by 

considering a front tracking algorithm for 

incompressible flows while Bo et al. (2011) 

presented a robust front tracking method for 

compressible flows in which they combined the best 

features of a front tracking method and a ghost fluid 

method. In the present work, the deformability of 

the boundary is accounted for by considering the 

boundary as a simply supported beam under 

transverse unsteady distributed load, namely the 

fluid pressure. The principal of minimum potential 

energy in elasticity in the case of bending in the 

regime of small deflections is used to model the 

boundary deflection. The proposed approach is 

explained in detail in section 2 and is tested by 

simulating a typical pulsatile blood flow in a 

deformable artery. Which shall provide better 

understanding and guidance for the medical 

decisions that depend on the values of the pressure 

as well as the wall shear stresses. Another potential 

application is the study of the effect of the 

substratum deformability on the growth rate of the 

biofilm (Kelly et al., 2013; Boraey et al., 2015). 

Industrial flow regulator (Raju et al., 2017) could 

be considered as another important application. 

Solving the Navier--Stokes equations is a real 

challenge due to the convective nature of the 

equations which necessitates the use of stabilization 

techniques. Several techniques have been proposed 

to stabilize the classical finite element method for 

convection–diffusion problems. As one of the 

earliest efforts in this field, one can mention the 

least-squares (LS) technique presented by Lynn and 

Arya (1973). The main advantage of the LS 

technique is that it produces a symmetric and 

positive definite coefficient matrix when applied to 

first order partial differential equations (Guaily and 

Epstein, 2010). The main drawback of the LS 

technique is that it produces excessive artificial 

diffusion in all directions as explained by 

Taghaddosi et al. (1999). To obtain satisfactory 

results with the LS method one can adapt the grid to 

the flow regions with high gradients (Ait-Ali-Yahia 

et al., 1996; Guaily and Megahed, 2010). As a 

remedy for this flaw, the streamline-upwind 

Petrov/Galerkin (SUPG) method was developed by 

Brooks and Hughes (1982) which produces 

diffusion in a specific direction namely, the 

streamline direction. Then Hughes and Franca 

(1989) presented the Galerkin/least-squares (GLS) 

technique which represents a conceptual 

simplification of SUPG. It is worth mentioning that 

both the SUPG and the GLS coincide in the pure 

hyperbolic case, or for piecewise linear elements as 

discussed in the same work. The SUPG and the 

GLS methods have been related to the process of 

addition and elimination of suitable bubble 

functions (Brezzi, 1992; Baiocchi and Brezzi, 

1993). Then, Brezzi and Russo (1994) started the 

residual-free bubble (RFB) approach, which is 

further developed by Franca and Russo ( 6991) . In 

the present work, the SUPG technique is used to 

solve the flow equations to treat the convective 

nature of the momentum equations while the 

standard Galerkin technique is used to solve the 

modified continuity equation since it is of an elliptic 

type. The wall deformation problem is modeled 

using the variational approach. The hybrid 

technique is used to model and simulate the 

pulsatile blood flow problem in a deformable artery. 

2. THE MATHEMATICAL MODEL 

For non-polar Newtonian, incompressible fluids, 

with no heat or mass addition; the continuity and 

momentum equations in non-dimensional form 

read: 

0 V ,                                                            (1) 

2
/ 1 /d dt P Re   V V ,                                  (2) 

Where V is the velocity vector, t is time, P is the 

pressure, Re is the Reynold’s number.   

2.1 The Incompressibility Constraint 

A well-known problem in the numerical treatment 

of incompressible formulation is how to treat the 

incompressibility constraint as the continuity 

equation becomes a constraint equation for the 

velocity field rather than being an evolution 

equation for the density field. The algorithm 

developed by Habashi and Baruzzi (1989) to 

approximately satisfy the incompressibility 

constraint is adopted in the present study. The 

continuity equation is modified to: 

2
P  V ,                                                     (3) 

where  is the pressure stabilization controlling 

parameter. The main gain of this modification is 

that equal order shape functions could be safely 

used for all variables as well as the same integration 

scheme. 
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2.2 The elastic Boundary Model 

The deformation of the boundary is accounted for 

by considering the boundary as a simply supported 

beam under transverse unsteady distributed load 

namely, the fluid pressure. Applying the principle 

of Minimum Potential Energy (MPE) (Arthur et al., 

2011) to the case of bending of a symmetric beam 

in a regime of small deflection, the functional of the 

total Potential Energy U in the dimensionless form 

is (Boraey et al., 2015): 

 

2
2

( ) ;
2 4 220

L
D EI w

U t q x t w dx
u D x

 
         

 

,                (4) 

where L is the artery length, D is the artery inlet 

diameter, E is is the modulus of elasticity, I is the 

moment of area,  is the blood density, u


is the 

maximum of the inlet velocity, w is the artery wall 

deflection, q is the fluid pressure at the artery wall. 

The non-dimensional parameters are: the inlet 

diameter D, the blood density   and u


 . The 

resulting nondimensional numbers are the 

Reynold’s number given by 
u D

Re



 and a new 

number which we called Index of Fluid-Structure 

Interaction (ISFI) given by: 

2 4
EIISFI

u D



,                                   (5) 

Which is the ratio of boundary flexural rigidity to 

the fluid momentum flux. ISFI  equals infinity for a 

rigid boundary. 

3. NUMERICAL TECHNIQUE AND 

DISCRETIZATION 

The finite element method is used to solve the fluid 

model as well as the structural model. The 

variational approach is used in modeling the 

structural problem while the Galerkin technique is 

used for the continuity equation. But due to the 

convective nature of the momentum equation, the 

SUPG technique is adopted to stabilize the solution. 

3.1 Finite Element Model of the Fluid Flow 

The weak form of the modified continuity equation 

using the standard Galerkin technique is: 

    0PN P N dA N di i i
A A

           


V s
n , (6) 

Where Ni are the shape functions and n is the 

outward unit normal to the boundary. The weak 

form of the momentum equation using the SUPG 

formulation is:  

   1/

1/ 0

R P dAi i e i i
tA

R de i
A

 
          

  


V
W W V V V N N

VN s
n

      (7) 

In which 
i iNN I , and 

i iWW I  with I being the 

identity matrix. A discontinuous term is added to 

the Galerkin standard weighting function, for 

stabilization purposes, as follows (Brooks and 

Hughes, 1982): 

W N pi i i  ,                         (8) 

where pi is the discontinuous streamline upwind 

contribution defined as: 

 
k

p N ii  V
V

,              (9) 

where k is an artificial diffusivity controlling 

parameter and V is calculated at the element center. 

3.2 Finite Element Model of the Boundary 

Deformation 

The variational approach is used to reach the 

element equations for the boundary deformation 

problem. The nodal unknowns in vector form are: 

1 1 2 2w w    w ,           (10) 

where w
x    is the slop of the deflection. 

Introducing the finite element approximation for the 

nodal unknowns: 

Si iw w ,                 (11) 

where Si are the cubic shape functions (Boraey et 

al., 2015). Minimization of the functional given in 

equation Eq. (4) after introducing the finite element 

approximation, Eq. (4) yields the element matrix 

form: 

    k w r ,            (12) 

where the matrices in Eq. (12) are: 

 

12 6 12 6

2 26 4 6 2

3 12 6 12 6

2 26 2 6 4

l le e

l l l lIFSI e e e e
k

l le ele

l l l le e e e

 
 
 
 
   
 

  

,                  (13) 

and  

 
 

 
;

1 /6 1 /6
2

q x t l Te
r l le e   ,             (14) 

All the integrations are carried out numerically 

using 3-ponits Gauss-Legendre quadrature. 

3.3 Time Marching Scheme 

Let [0, tf] be the time zone over which the behavior 

of the artery is observed, and 0=t0<t1<…<tN = tf be a 

partition of [0, tf], where t  = tn - tn-1 is the 

amplitude of the time interval [tn-1, tn]  [0, tf], for 

n = 6,…N, and N is the total number of these 

subintervals. Since we are interested in a time 

accurate solution and consequently a small time-

step is used, a forward Euler first order scheme is 

used to overcome the nonlinearity due to the 

convective terms in the momentum equation as well 

as to decouple the system of equations resulting in 

less computer memory requirements. Brooks and 
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Hughes (1982) show that the mass matrix M, the 

matrix multiplied by the velocity time derivative, in 

Eq. (7) is affected by the time marching scheme and 

consequently its definition is determined according 

to which part of the system of equations is treated 

implicitly or explicitly. Hence for the case at hand, 

in which we treat everything explicitly, this matrix 

is replaced by its diagonal form as explained by 

Brooks and Hughes (1982). 

4. RESULTS AND DISCUSSION 

Pulsating blood flow problem is solved considering 

two cases namely a rigid artery and an elastic artery. 

The results of the current contribution compare well 

compared to the available published data. Before we 

present the results of the main problem in the 

current contribution, a mesh independent test is 

performed to make sure of the behavior of the 

developed in-house code with mesh refinement. The 

well-known benchmark problem lid-driven cavity is 

used for the code testing. Figure 1 shows the axial 

velocity compared to the experimental work of 

Pakdel et al. (2001). The figure shows that the finer 

the mesh the closer the resulting numerical solution 

to the experimental work. 

 

 
Fig. 1. Mesh-independent test using the x-

component velocity at x=0.5 for Re ≈ 0. 

 

4.1 Pulsating Blood Flow 

The pulsating blood flow problem (PBF) in a rigid 

and elastic artery is considered. A pulsatile flow is 

one of the most important types of unsteady flows in 

which the inlet and/or outlet flow boundary 

conditions are modeled as a wave propagating in or 

out of the domain of interest. The most crucial 

application to this type of flows is the study of the 

dynamics of blood flow in elastic arteries. Flow in an 

artery is best described by cylindrical coordinates. 

However, as a first approximation, in the current 

study the flow in elastic tube is approximated by two-

dimensional planar flow. The constitutive equation 

describing the response of blood to external stimuli 

depends on many factors, the most important of 

which are: i) the relative size of the domain, in which 

the blood is flowing, to the size of blood constituents 

e.g. platelets, white blood cells, …etc. ii) the physical 

phenomena we need to include in the simulation e.g. 

shear-thinning behavior, clotting, fluid fading 

memoryetc. In general, blood is considered as a 

thixotropic viscoelastic incompressible fluid (Zamir, 

2005). The size of the arteries is varying considerably 

and consequently affects the choice of the blood 

constitutive model. In the case of large arteries e.g. 

carotid, the blood is exposed to high shear rates and 

so could be considered as a Newtonian fluid (Zamir, 

2005; Kim, 2009; Nichols et al., 2011). It is believed 

that blood could be considered as a Newtonian fluid 

at shear rates above 100 s-1 (Marrero et al., 2014). 

On the other hand, in small arteries and tissues other 

models should be considered. The scope of the 

current work is the study of the hemodynamics in the 

carotid artery in which the Newtonian assumption 

could be safely adopted. 

4.2  Problem Description 

The physical domain of interest which is a carotid 

artery is modeled with the following data: 0.3 cm 

radius, 12.6 cm length and 0.03 thickness. The 

artery wall properties are: Young’s Modulus of 

0.407 MPa and density of 1000 kg/m3 (Figueroa et 

al., 2006). While the Newtonian properties of the 

blood are: density of 1060 kg/m3 and dynamic 

viscosity of 4E-3 Pa.s (Figueroa et al., 2006). The 

computational domain and the grid used in the 

simulation are presented in Fig. 2 in which 25 x 75 

bilinear quadrilateral elements are used for the 

geometry as well as for all the flow variables with a 

total number of nodes of 1976. The inlet pulsating 

flow rate is calculated by an analytical formula 

provided by Nichols et al. (2011) in which the 

pressure gradient is assumed as a harmonic function 

resulting in the following analytical form for the 

blood volumetric flow rate: 

 
2

sin
21 4

on D A Ai iQ ti i i
i

i

  


  


,                          (15) 

where Q is the volume flow rate, n is the number of 

harmonics,  is the frequency, (
i
 , 

i
 , A) are 

constants depending on the nondimensional number 

 known as Womersley number. This number is 

the main parameter affecting pulsatile flows and is 

defined as (Nichols et al., 2011):  

0.5 /D ii
     ,               (16) 

The resulting volumetric flow rate has a periodic 

time T=1.37 sec and maximum volumetric flow rate 

of 12.18 cc/sec. The Re= 685 based on the 

maximum inlet velocity as the characteristic 

velocity. 

 

 
Fig. 2. Finite element mesh of the Carotid artery 

model. 

 

4.3 Boundary and Initial Conditions  

The no-slip condition is imposed on the upper and 

lower walls. The pulsating flow rate wave used as 

the inlet boundary condition and for the outlet the 
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pressure is set to 85 mmHg. The initial conditions 

are zero for the velocity boundary nodes. In the 

following two subsections, two cases are 

considered; the first is the blood flow in rigid artery 

while in the second case the artery elasticity is 

considered. 

4.4 Pulsating Blood Flow in a Rigid Artery 

The numerical values for the artificial viscosity are 

0.0005 and a time step of 0.0004. The following 

results are for a total time of two periods which 

corresponds to 6900 time-steps. The evolution of 

pressure and volumetric flow rate is traced in two 

cross-sections namely; S1 and S2 where S1 is just 

one spatial step away from the inlet boundary at the 

centerline and S2 is located one spatial step ahead 

of the exit section. Figure 3 shows the pressure as 

well as the volumetric flow rate distribution. The 

time delay between the leading pressure wave and 

the volumetric flow rate wave is approximately 

0.15tlead  sec. The flow rate wave is presented 

in Fig. 4 at both locations S1 and S2 as well as the 

pressure in Fig. 5. The results show that the mean 

flow value at S2 is less than the mean flow at S1. 

The velocity profiles at different axial locations (A, 

B, C, D, E and F) for different time points over the 

flow wave period is presented in Fig. 6. These 

results are consistent with the conclusion reached 

by Kim (2009) in that the backflow occurs around 

point D shown in Fig. 6. 

 

 
Fig. 3. Pulsating inlet flow rate and pressure. 

 

 
Fig. 4. Volumetric flow rate at both S1 and S2. 

 
Fig. 5. Pressure distribution at both locations S1. 

And S2. 

 

 
Fig. 6. Velocity profiles at different axial 

locations for different time stations. 

 

4.5  Pulsating Blood Flow in an Elastic 

Artery 

In this section the deformability of the boundary is 

considered. The elastic boundary model is used 

considering the fluid pressure as the external load. 

Due to the problem symmetry, the deflection of the 

upper boundary is calculated only. Using the same 

numerical values for the time step as well as for the 

pressure stabilization parameter. the presented 

solution is obtained after 6900 time-steps. In Fig. 7, 

the deflection variation and the pressure wave are 

plotted at five sections along the artery (B1, B2, B3, 

B4 and B5). B1 and B5 are at the same axial 

location of S1 and S2 respectively but on the upper 

wall. The other three axial locations B2, B3 and B4 

are at x=3.36, x=6.3, x=8.36 cm respectively. For  
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Fig. 7. Pressure and deflection of the artery wall at different spatial locations B1 through B5. 

 

 
further details the deflection of the whole boundary 

is shown in Fig. 8 at different time points (B and C) 

over the inlet pressure wave period and the 

deflection flooded by the pressure field. These 

results are consistent with the conclusion reached 

by Figueroa et al. (2006) in that the pressure and 

deflection waves are in-phase. Also, the leading 

time of the pressure wave is 0.15tlead  sec while 

it for Figueroa et al. (2006) 0.13tlead  sec. The 

maximum deflection is found to be 

0.003maxw  cm compared to 0.005maxw  cm for 

Figueroa et al. (2006). To show the importance of 

taking the wall elasticity into account; the pressure 

fluctuation at B1 and the wall shear stress at B3 is 

plotted in Fig. 9 and Fig. 10 respectively for the 

case of rigid wall and deformable wall at two IFSI 

numbers. The results show that decreasing the IFSI 

number is highly affecting the pressure distribution 

as well as the wall shear stress. 

5. SUMMARY AND CONCLUSIONS 

A new model for simulating pulsatile 

incompressible viscous flow in elastic tubes is 

successfully developed and implemented. The 

incompressibility constraint problem is treated by 

the artificial viscosity technique developed by 

Habashi and Baruzzi (1989). The Newtonian 

assumption is shown to be accurate enough to 

represent the blood behavior in large arteries. The 

streamline/upwind Petrove-Galerkin finite element 

technique is shown to be effective and robust in 

treating the convective nature of the equations. The 

two-way coupling between the flow field and the 

boundary elasticity is accounted for by considering 

the wall as a simply supported beam under unsteady 

distributed load. The main results of this 

contribution are: (1) The artery wall pressure is 

overestimated when assuming a rigid artery while 

(2) The wall shear stress is underestimated, (3) The 
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importance of the wall deformability is found to be 

dependent on the IFSI non-dimensional number 

which is the ratio of boundary flexural rigidity to 

the fluid momentum flux. As a future work, 

extending the model to be three-dimensional would 

greatly enhance the results. As well as different 

types of boundary condition on the artery exit are to 

be considered e.g. impedance and resistance 

boundary condition. 

 

 
 

 
 

 
Fig. 8. Shape of the artery wall at different time 

stations (B and C) flooded by the pressure field 

 

 
Fig. 9. Pressure wave at B1 for rigid and 

deformable wall. 
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Fig. 10. Wall shear stress at B3 for rigid and 

deformable wall at different IFSI numbers. 
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