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ABSTRACT 

Tree flow networks are ubiquitous in nature and abound in engineered systems. A parent tube branching into 

two daughter tubes is the main building block of these networks. These branched tubes should be designed to 

provide easier access to flow under different size constraints. Optimal tree networks follow a homothetic 

scaling where the sizes of tubes have the same ratios between successive generations.  In this study, different 

approaches aiming at optimal design of bifurcating tubes are presented and compared. The cross-sectional 

area of the tubes is obtained using two methods, based on Lagrange multipliers with a size constraint to 

respect, and including the size limitations directly into the function to optimize via chain rule. The optimal 

length of the tubes is obtained based both on the equipartition of forces/resistances and on the equal 

thermodynamic distance. These methods can be understood as a way of connecting entropy generation and 

the size of branching tubes. This study shows that applying the Lagrange Multiplier Method and applying the 

chain rule with constraint provides the same result. A similar result is obtained when the equipartition of 

forces/resistances and equal thermodynamic distance design methods are applied. These results are valid for 

different size constraints. In summary, our paper provides a comprehensive comparison of the different 

methods for a better choice, and is intended to provide insights into tree networks of tubes of any shape under 

different size constraints, for design and analysis. 

Keywords: Tree-shaped flow networks; Optimal design; Lagrange multipliers; Chain rule; Equipartition of 

forces; Equal thermodynamic distance. 

NOMENCLATURE 

A cross-sectional area  

As surface area  

Cs size constraint  

D diameter of tube  

k thermodynamic distance of each step 

K total thermodynamic  

L length of the tube  

N number of branching levels 

p pressure  

Q volumetric flow rate  

R flow resistance  

S entropy generation  

V volume  

α shape factor 

λ lagrange multiplier 

 dynamic viscosity

 shape factor

Subscripts 

d daughter tubes 

min minimum 

p parent tube 

j tube at jth branching level 

0 tube at the initial branching level

1. INTRODUCTION

Tree-shaped flow networks are omnipresent in 

nature and play an important role in technology. 

These binary branching networks of tubes 

successively bifurcates up to a terminal level, and 

constitute the best access to connect a finite-size 

volume (or area) and one point (Bejan, 2000).  This 

study presents and evaluates different 

methodologies for constraint-based design of tree-

shaped flow networks by cost function 

optimization. 
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Optimal geometry generation obeys to a 

homothetic scaling. This mean that the sizes 

between successive generations of tubes have the 

same ratios. Since the pioneering works 

performed in the early 1900s (i.e., Hess, 1917 & 

Murray, 1926), several studies were devoted to 

the optimization of bifurcated tubes. Hess-

Murray's law was derived for the vascular system 

based on principle of minimum work (Murray, 

1926). It states that for a cylindrical parent blood 

vessel that branch into daughter vessels, the 

diameter ratio of these successive vessels are 

homothetic with 2-1/3.  

By applying to the constructal law of design and 

using the resistance minimization, Bejan et al. 

(2000) confirmed the Hess-Murray law for laminar 

flow under volume constraint. The emergence of a 

tree-shaped network as the best architecture to 

connect the volume (area)-point flows can be also 

anticipated, based on the constructal law (Bejan, 

2000).  

Authors such as Horsfield and Cumming (1967), 

Kamiya and Togawa (1972), Zamir (1975), Bejan 

et al. (2000), Miguel (2015, 2019 and Miguel, 

2019) have argued that Hess-Murray law is only 

valid for an isothermal laminar flow of 

Newtonian fluids in a tubes of rigid impervious 

walls. For this reason, several authors developed 

extensions to Hess-Murray law to account for 

turbulent flows, non-Newtonian fluids, flows in 

permeable tubes, etc. (see for example, Horsfield 

and Cumming (1967), Zamir (1975), Bejan et al. 

(2000), Miguel (2015)). Other authors (e.g., 

Bejan et al., 2000; and Miguel, 2016a, 2016b) 

studied the functional relationship between tube 

lengths. In this context, they found that length 

ratio of successive tube segments obeys also to a 

homothetic scaling. A comprehensive review of 

homothetic scaling for optimal tree-shaped 

networks is given by Miguel and Rocha (2018). 

The diameter ratio of successive tube segments was 

first derived from the principle of minimum work, 

and subsequently confirmed by minimizing the 

resistance, minimizing pumping power, minimizing 

entropy, etc. (Miguel and Rocha, 2018). These 

networks of tubes are also employed as flow 

distribution systems in designing heat sink (see for 

example Bahiraei et al., 2017, 2018, 2019). 

The optimal branching of fluidic networks fall 

under the category of constrained optimization. 

Because the space allocated to networks is a 

premium, size-limiting constraints such as fixed 

volume and surface area of tubes must be 

accounted (Gosselin, 2007). Another important 

feature is that complex flow systems are not only 

assemblies of circular tubes. Microfluidic 

networks are often made of non-circular tubes. 

To account for these shapes, cross-sectional area 

of tubes in finding the optimal geometry of 

bifurcated tube is desirable. 

Here the design of a tree-shaped network under 

different size constraints is optimized, by means 

of different optimization methods. For the cross-

sectional area of tubes, two methods are used, 

namely, the Lagrange Multiplier Method (as a 

constraint to respect), and applying the constraint 

directly into a global function to optimize, via 

chain rule. Two derived entropy optimization 

methods were applied for the optimal lengths of 

successive tube segments, namely, the 

equipartition of forces/resistances and the equal 

thermodynamic distance. In this study, a 

comparison between methods is provided. The 

performance of flow systems belongs to the type 

of constrained optimization problems, since 

networks are tailored to particular size-limiting 

requirements (volume and surface area). The goal 

is also to obtain analytical expressions for the 

optimum daughter–parent cross-sectional area 

and length ratios for branching networks of tubes 

of any cross-sectional shape under laminar flow. 

2. GEOMETRIC OPTIMIZATION OF 

BRANCHED TUBES 

Tree-shaped flow networks are complex branched 

distribution system. A dichotomous branching 

segment of tubes is the elementary building block 

of the network (Fig. 1). Consider a steady-state 

incompressible laminar flow of a Newtonian fluid 

with constant viscosity and density. The Hagen–

Poiseuille flow resistance for a single tube is 

(Miguel, 2015) 

2

Δp αμL
R= =

Q A
                   (1) 

where R is the flow resistance, p is the pressure, Q 

is the volumetric flow rate, L is the length of the 

tube,  is the dynamic viscosity, A is the cross-

sectional area of the tube and α is a shape factor 

(e.g., for cylindrical channels α=8). 

 

 
Fig. 1. Schematic representation of a binary-

tree-shaped flow network.  A parent tube 

branching into two daughter tubes is the main 

building block of the tree network of tubes. 

 

Let the flow resistance at the junction of parent and 

daughter tubes be very small when compared with 

the flow resistance of parent and daughter tubes 

(i.e., the svelteness factor (Wechsatol et al., 2006) 

defined by the ratio of the external to the internal 

length scales is higher than the square root of 10). 
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Let be the flow system composed by a parent tube 

that branches into two equal daughter tubes (i.e. 

symmetrical branching tubes). The resistances of 

daughter tubes are in parallel, and their overall 

resistance and the resistance of parent tube are in 

series.  The total flow resistance of assembly of 

tubes is 

p d
total p d 2 2

p d

L L
R =R +0.5R =αμ +

A 2A

 
 
 
 

                (2) 

Here the subscripts p and d mean parent and 

daughter tubes, respectively. For obtaining the 

optimal design, constraints provide a way to 

account for a variety of size limitations. A fixed 

total volume and fixed total surface area are 

considered 

total p d p p d dV =V +V =A L +2A L                (3) 

1/2 1/2
s,total s,p s,d p p d dA =A +A =θA L +2θA L          (4) 

where V is the volume, As is the surface area, and  

is a shape factor (e.g., for cylindrical channels 

=21/2). 

The geometry of the assembly of tubes has the 

following degrees of freedom that are optimized: 

cross-sectional areas and lengths of the tubes. 

The Constructal Law is about the occurrence of 

design in flow systems and states that “for a 

finite-size flow system to persist in time it must 

evolve such that it provides greater and greater 

access to the currents that flow through it” 

(Bejan, 2000). Here we seek to minimize the total 

resistance subject to the volume and surface area 

constraints. 

The Extreme Value Theorem states that a 

continuous function f on a bounded closed 

interval has absolute maximum and minimum 

values. The first derivative test for local extrema 

gives us a method to determine the value. If f is 

differentiable at an interior point c of its domain, 

then f′(c)=0. According to the second derivative 

test for concavity, if f is twice differential and f′′> 

0 the graph of f is concave up (convex), then f 

has a minimum at c. Our goal is to find where the 

constrained total resistance has a minimum. 

3. OPTIMAL CROSS-SECTIONAL AREAS 

OF BIFURCATION SEGMENT  

3.1 Constrained Optimization Using 

Lagrange Multipliers 

The Lagrange multiplier method encompasses the 

modification of the objective function by adding 

terms that describe the constraints. The objective 

function is extended by constraint relations using 

non-negative multiplicative Lagrange multipliers. 

The resulting objective function is a function of the 

nv design variables and n Lagrange multipliers. To 

this end, we have to minimize the cost function 

R=R+Cs, where λ is the Lagrange multiplier and 

Cs is the size constraint (volume, surface area). Note 

that R and Cs have well defined physical meaning 

and this assigns a physical meaning to the Lagrange 

multiplier. 

Let be the volume the size-limiting constraint. 

Substitution of Eqs. (2) and (3) into the cost 

function R yields 

 p d
λ p p d d2 2

p d

L L
R =αμ + +λ A L +2A L

A 2A

 
 
 
 

            (5) 

We seek to optimize the ratio Ad/Ap. According to 

the first derivative test for local extrema 

(dR/dAp=0 and dR/dAd=0) and the second 

derivative test for concavity (d2R/dAp
2>0 and 

d2R/dAd
2>0), Eq. (5) has a minimum valor at 

-2/3d

p

A
=2

A
                                              (6) 

Equation (6) shows that the cross-sectional area 

ratio of successive tubes is homothetic with 2-2/3. 

This result agrees with the findings of Miguel 

(2018b). For cylindrical tubes with diameter D, Eq. 

(6) results in Dd/Dp=2-1/3 which is the ratio between 

the diameters of daughter and parent tubes 

established by the Hess-Murray law. 

Consider now an assembly of tubes with a surface 

area constraint. Substitution of Eqs. (2) and (4) into 

the cost function R yields 

 p 1/2 1/2d
λ p p d d2 2

p d

L L
R =αμ + +λ θA L +2θA L

A 2A

 
 
 
 

     (7) 

The minimization of Eq. (7) yields 

-4/5d

p

A
=2

A
                                              (8) 

This result is different than Eq. (6) for volume 

constrained systems. Note also that for cylindrical 

tubes with diameter D, Eq. (8) results in Dd/Dp=2-2/5 

which agrees with the results obtained by Gosselin 

(2007). 

3.2 Constrained Optimization Using Chain 

Rule. 

The composition or chain rule allows us to 

differentiating compositions of functions. 

Differentiation of total flow resistance (Eq. (2)) 

with respect to Ad, for example, results in 

ptotal total total

d p d d

dAdR dR dR
= +

dA dA dA dA
                          (9) 

The size-limiting constraints can be included into 

the first right-hand term of Eq. (9) by following 

Eqs. (3) and (4). For a fixed total volume 

 total d d
p

p

V -2A L
A =

L
                          (10) 

and for a fixed total surface area 



A. F. Miguel / JAFM, Vol. 12, No. 4, pp. 1223-1229, 2019.  

 

1226 

2
1/2

s,total d d
p

p

A 2θA L
A =

θL

 
 
 
 

            (11) 

In the said conditions above named, to optimize the 

ratio Ad/Ap, it is required that dRtotal/dAd=0 and 

d2Rtotal/dAd
2>0. 

Let be a system with volume constraint.  

Substituting derivatives of Eqs. (2) and (10) into (9) 

yields 

p ptotal d
3 3

d dp d

L LdR L
=4αμ -αμ

dA LA A
             (12) 

 and solving, it becomes 

-2/3d

p

A
=2

A
                                             (13) 

Consider now that the total surface area occupied 

by the tubes is fixed. Substituting derivatives of 

Eqs. (2) and (11) into (9), and the minimization of 

flow resistance yields 

-4/5d

p

A
=2

A
                                             (14) 

It is remarkable to note that Eqs. (6) and (13), 

and Eqs. (8) and (14) present the same result. 

This means that the constrained optimization 

using Lagrange multipliers and using 

composition or chain rule delivers the same 

optimization rules. 

There is another method in which the constraint 

is inserted into the resistance to get a new 

(constrained) equation, as presented by Bejan et 

al. (2000). For a volume constrained in 

cylindrical bifurcated tubes, these authors found 

the optimal diameter ratio between parent and 

daughter tubes by solving the first derivative of 

the new equation. The well-known Hess-Murray 

law was obtained. 

4. OPTIMAL LENGTHS OF 

BIFURCATION SEGMENT 

The aim is now to obtain the optimal lengths of the 

assembly of tubes for both constrained total volume 

and constrained total surface area. 

4.1 Design by Equipartition of 

Resistance Method 

The principle of equipartition of entropy generation 

states that the generation of entropy is minimal 

when entropy production is uniformly distributed 

(Tondeur and Kvaalen, 1987; Bejan and Tondeur, 

1998).  

For isothermal flows through branching tubes, the 

entropy generation is (Bejan, 2006) 

g i i
i

1
S = Q Δp

T
                                       (15) 

where Sg is the entropy generation. To hold 

continuity equation the total fluid flow rate Q at 

each branching level is a constant, and 

1 2 n

1 2 n

Δp Δp Δp
Q= ; Q= ;... Q=

R R R
                    (16) 

The minimum entropy generation (Eq. (15)) can be 

found by using the Lagrange method for all 

branching levels. The derivatives can be recognized 

from Eq. (16) and solving, results in 

1 2 n

1 1 1
-Q=λ ; -Q=λ ;... -Q=λ

R R R
                (17) 

This means that 

1 2 n

λ λ λ
=-R ; =-R ; ... =-R

Q Q Q
                     (18) 

and 

1 2 nλ=-Δp ; λ=-Δp ; ...λ=-Δp                       (19) 

Equations (18) and (19) show that the minimum 

entropy generation is obtained by equipartition of 

driving forces (pressures) or by equipartition of 

resistances 

2
1 1

g,min

QNΔp Q NR
S = =

T T
                          (20) 

where N is the number of branching levels. 

In summary, Eq. (20) states that the driving forces 

(pressures) or flow resistances should be a constant 

(in space and time) to obtain a minimum total 

entropy generation. In other words, 

p1=p2=…=pn or R1=R2=…=Rn.  

In our study, the optimal design is obtained when 

Rp=Rd, i.e., flow resistances must be equally 

distributed (equipartitioned) along the system  

p d
2 2
p d

L L
αμ αμ

A 2A
                                     (21) 

and 

2

d d

p p

L A
2

L A

 
 
 
 

                                       (22) 

According to Eq. (22), for optimal design of 

bifurcating tubes to emerge, it is necessary to 

include the optimal cross-sectional area ratio under 

a certain size constraint.  

For a flow system with a fixed total volume, 
insertion of Eq. (6) into Eq. (22) gives 

1/3d

p

L
2

L

                                      (23) 

Equation (23) represents optimal lengths of the 

assembly of tubes with volume constraint, and 

agrees with the result obtained by Bejan et al. 

(2000), where the size limitations are introduced 
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directly into the cost function to be minimized. 

For a system with surface area constraint, the 

combination of Eqs. (8) and (22) results in 

3/5d

p

L
2

L

                                      (24) 

This equation represents the optimal daughter– 

parent diameter ratio for a system with fixed surface 

area. 

4.2 Design by Equal Thermodynamic 

Distance 

The equal thermodynamic distance principle states 

that a system, which is allowed to exchange fluid 

and heat with its surroundings, must go from one 

thermodynamic state to another in equally long 

steps in order to minimize the total generation of 

entropy (Salamon and Berry, 1983; Nulton et al., 

1985; Andresen and Gordon, 1994). 

As we know, entropy is generated when fluid flows 

through the tubes. The minimum entropy generation 

during the process is (Nulton et al., 1985; Andresen 

and Gordon, 1994) 

2

min

K
S =

2N
                                            (25) 

where Smin is the minimum entropy production, and  

K is  total thermodynamic distance from inlet to 

outlet given by 

N

i

i=1

K= k                                               (26) 

Here k is the thermodynamic distance of each step 

(e.g., at each tube branching). Nulton et al. (1985) 
pointed out that this equality is obtained only when 

all k are equal. In other words, the thermodynamic 

distance of each step must be equally distributed 

along the system. 

Different extensive and intensive properties may be 

involved in the process. In our study, the focus is an 

isothermal flow through bifurcating tubes, and 

k=(Qp/T)1/2.  

The optimal design is obtained when parent and 

daughter tubes are equally long in the 

thermodynamic state space (kp=kd), to minimize the 

total entropy production. As the volumetric flow 

rate at each branching level is a constant 

1/2 1/22 2
p d

2 2
p d

αμQ L αμQ L
=

TA 2TA

   
   

  
  

                     (27) 

and 

2

d d

p p

L A
2

L A

 
 
 
 

                            (28) 

It is important to note that Eq. (28) is equal to Eq. 

(22). This means that, although having different 

starting points, both methods of equipartition of 

forces or resistances and equal thermodynamic 

distance aim to minimize the total entropy 

generation in the system, by distributing it evenly 

among the bifurcating levels and producing the 

same result.  

Substituting Eqs. (6) and (8) into Eq. (28), Eqs. (23) 

and (24) are recovered, as expected.  

5.  HOMOTHETIC RELATIONS FOR 

OPTIMAL DESIGN OF A TREE-

SHAPED FLOW NETWORK 

According to Eqs. (6), (8), (23) and (24), the 

optimal size ratio between tube segments follows 

the homothetic relations 

d
A

p

A
=ω

A
                                     (29) 

d
L

p

L
=ω

L
                                     (30) 

where scale factors A and L are constants. For 

volume-limiting and surface area-limiting 

constraints are A=2-2/3 and L=2-1/3, and A=2-4/5 

and L=2-3/5, respectively. 

Consider a tree-shaped network (Fig. 1) formed 

by j branches of tubes between level 0 to N. 

Homothetic scalings can be expressed in terms of 

size of tube at the initial branching level and at j-

branching level 

j j
A

0

A
=ω

A
                                     (31) 

j j
L

0

L
=ω

L
                                    (32) 

where the subscripts 0 and j mean tubes at level 0 

(i.e., the tube at the initial branching level) and at 

level j, respectively.  

6. CONCLUSIONS 

An important step in the optimization process is 

the choice of the methodology. In this study, a 

comparison between methods is provided. By 

means of the total resistance minimization 

argument, the cross-sectional area ratio was 

obtained applying both the Lagrange multiplier 

that is used in constrained variational problems  

(as a constraint to respect), and including the 

size-constraint requirement directly in function to 

optimize via chain rule. The homothetic scaling 

result obtained with both methods is the same. 

This shows that both methods are equivalent. 

Using thermodynamics arguments (i.e., 

minimization of entropy generation), the 

equipartition of forces/resistances and equal 

thermodynamic distance design methods were 

applied to obtain the length ratio of successive 

tubes segments. Although different methods, it 

was found that the homothetic ratio for lengths 
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obtained were the same, indicating that the 

methods are equivalent. While these 

methodologies require the homothetic ratio for 

the cross-sectional areas, they are straightforward 

to use and to interpret, constituting excellent 

alternatives to obtain the length ratios of 

successive tubes. 

It is also important to note that the size-limiting 

constraints affects the homothetic ratios for cross-

sectional area and length of successive tubes. Both 

homothetic ratios for cross-sectional area and length 

are larger when the volume is fixed than when the 

surface are is constrained.  

Another important conclusion is that the resistance 

of an optimal tree-shaped flow formed by N 

branches can be simply written as 

0
0 2

0

αμL
R=NR =N

A
  

where R0 is the flow resistance of tube at the initial 

branching level.   

In summary, here some guidance to help with the 

choices of optimization methods is provided. The 

results obtained may also contribute to a deeper 

understanding of tree networks indispensable for 

the design of flow systems with tubes of any 

shape. In a future study, constraint-based design 

under non-isothermal conditions and asymmetric 

branching should be addressed. 
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