
Journal of Applied Fluid Mechanics, Vol. 12, No. 4, pp. 1333-1345, 2019. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.29252/jafm.12.04.29434 

Blood Flow in Channel Constrictions: A Lattice-Boltzmann 

Consistent Comparison between Newtonian and 

Non-Newtonian Models 

G. A. Orozco1†, C. T. Gonzalez-Hidalgo2, A. D. Mackie3, J. C. Diaz4 and D. A. Roa 

Romero1 

1 Faculty of Sciences, Physics Department, Universidad Antonio Nariño, Carrera 3 Este No 47 A–15, 110231 

Bogotá, Colombia 
2 Industrial Engineering Department, Pontificia Universidad Javeriana, Carrera 7 No 40–62, 110231 

Bogotá, Colombia 
3 Chemical Engineering Department, ETSEQ, Universitat Rovira i Virgili, Av. dels Països Catalans 26, 43007 

Tarragona, Spain 
4 GTM, Department of Planning, Carrera 46 No 91-71. 110211 Bogotá, Colombia 

†Corresponding Author Email: gustavo.orozco@uan.edu.co 

(Received July 18, 2018; accepted November 25, 2018) 

ABSTRACT 

Lattice Boltzmann simulations have been carried out in order to study the flow of blood in normal and 

constricted blood channels using Newtonian and non-Newtonian rheological models. Instead of using 

parameters from previous works as is usually done, we propose a new optimization methodology that provides 

in a consistent manner the complete set of parameters for the studied models, namely Newtonian, Carreau-

Yassuda and Kuang-Luo. The optimization was performed simultaneously using experimental data from 

several sources. Physical observables such as velocity profiles, shear rate profiles and pressure fields were 

evaluated. For the normal channel case, it was found that the Newtonian model predicts both the highest velocity 

and shear rates profiles followed by the Carreau-Yassuda and the Kuang-Luo models. For a constricted channel, 

important differences were found in the velocity profiles among the studied models. First, the Newtonian model 

was observed to predict the velocity profile maximum at different channel width positions compared to the non-

Newtonian ones. Second, the obtained recirculation region was found to be longer for the Newtonian models. 

Finally, concerning the constriction shape, the global velocity was found to be lower for a rectangular geometry 
than for a semi-circular one. 

Keywords: Blood rheology; Lattice-boltzmann; Computational fluid dynamics; Non-newtonian models; 

Simultaneous optimization. 

NOMENCLATURE 

c speed of sound 

e lattice-boltzmann (LB) canonical velocity 

vector  

f LB distribution function 

f eq LB equilibrium distribution function  

p pressure 

Re Reynolds number 

u fluid velocity

w LB weighting factor 

shear rate 

ε Knudsen number 

µ∞ viscosity at infinite shear rate 

ν kinematic viscosity 

σy yield stress 

ρ density 

τ LB relaxation time

1. INTRODUCTION

Blood plays several fundamental roles in human and 

animal organisms. For instance, it transports oxygen 

and nutrients to the tissues, carries the metabolism 

products, protects the body from infections, 

participates actively in the hemostatic process, 

among many others. From a physical point of view 

http://www.jafmonline.net/


G. A. Orozco et al. / JAFM, Vol. 12, No. 4, pp. 1333-1345, 2019.  

 

1334 

blood can be characterized through certain 

hemodynamic variables such as apparent viscosity, 

shear stress, shear rate as well as its fluid behavior 

through arteries, veins or vessels. Indeed, changes in 

these variables can produce alterations of the flow 

pattern, the way the blood components are delivered 

to an injured site and the flow conditions near the 

vessel wall. (Hathcock, 2006) Additionally, if the 

shear forces are not strong enough, blood viscosity 

can be increased due to the aggregation of 

erythrocytes and platelets. (Baskurt and Meisleman, 

2003) All these phenomena might be associated with 

certain types of vascular diseases. 

The flow behavior of blood has been studied both 

experimentally and computationally. For the first 

case, some works have reported experimental 

velocity profiles of blood flowing in a live vessel by 

way of techniques based on fluorescent markers or 

fluid nanoparticles. Such markers are inserted into 

the veins of live specimens such as rats or rabbits. 

The velocity distribution of blood can be obtained by 

recording several images and then by reconstructing 

the marker time trajectories.(Tangelder, Slaaf, 

Muijtjens, Arts, and Reneman, 1986; Ha, 2012) 

Another approach consists in studying the blood flow 

using computational algorithms through the Navier-

Stokes equations (NSE) and assuming a rheological 

model. There are several different available 

methodologies that allow to numerically study the 

NSE. One of them, based on the transport Boltzmann 

equation, is the Lattice-Boltzmann (LB) method. 

(Succi, 2001) LB is an explicit method in which the 

dynamics of a fluid is modeled using a set of 

interacting particles located in a discretized space 

and with a set of associated probability distribution 

functions that allows us to recover the macroscopic 

variables such as density, momentum and energy. 

Besides the LB method, other blood flow studies 

have been performed using more classical 

approaches such as finite elements, (Weller, 2008; 

Weller, 2010) finite volumes (Sorensen, Burgreen, 

Wagner, and Antaki, 1999a; Sorensen, Burgreen, 

Wagner, and Antaki, 1999b) and finite differences. 

(Fogelson and Guy, 2004; Anand, Rajagopal and 

Rajagopal, 2005; Lobanov and Staroszhilova, 2005) 

Some attempts towards including explicitly the red 

blood cells have also been proposed using, for 

instance, smoothed particle dynamics, (Wootton, 

Popel, and Alevriadou, 2002) multiscale simulations, 

(Xu, Chen, M., Rosen, and Alber, 2008) mean field 

theory (Pivkin and Karniadakis, 2008) and the 

cellular automata approach. (Ouared and Chopard, 

2005) 

From a rheological point of view, blood viscosity 

presents interesting features such as shear thinning 

where viscosity can drastically change from an 

almost constant value at high shear rates to a 

significantly higher value at low ones. During a 

cardiac cycle the shear rate can change from 0 to 

1000 s−1, (Cho and Kensey, 1991) and so viscosity 

variations should be accounted for by using a 

constitutive equation. Different works have focused 

on studying the flow of blood using different models. 

For instance, Ashrafizaadeh and Bakhshaei (2009) 

studied the flow of blood using two dimensional LB 

simulations and three non-Newtonian rheological 

models obtaining velocity profiles deviations 

between the Newtonian and non-Newtonian models. 

Boyd et al. (2007). studied the flow of blood in 

steady and oscillatory flows using two different non-

Newtonian models. (Boyd, Buick, and Green, 2007) 

They found that the largest deviation from a 

Newtonian behavior is given by the Casson model. 

Bodnár et al. performed numerical simulations to 

compare the shear-thinning and the viscoelastic 

behavior of blood as a function of the flow rate, using 

the Carreau-Yasuda and Oldroyd-B models. They 

found that the shear-thinning effects are more 

pronounced than the viscoelastic ones. (Bodnár, 

Sequeira, and Prosi, 2011) Sorensen et al. (1999a) 

considered platelet deposition and thrombus 

formation over a collagen surface assuming a 

Newtonian fluid and neglecting the effect of an 

obstacle on the flow field. (Sorensen, Burgreen, 

Wagner, and Antaki, 1999a) Other studies have 

found relationships between the blood cell 

concentration (hematocrit), the wall shear rate, and 

the wall shear stress. (Box, van der Geest, Rutten, 

and Reiber, 2005) 

Despite the fact that the Casson model has been 

widely studied, there is no agreement with respect to 

its range of validity. While some studies (Milnor, 

1982) state that it is only valid at shear rates ≤ 10s−1 

other studies (Bate, 1977) have reported ranges 

between 15 to 6400 s−1 or hematocrit concentrations 

≤ 40%. (Wang, 2011) Indeed, as will be shown in 

section 3.2, the Casson model does not provide a 

satisfactory fit of the experimental data when the 

whole range of shear rates is considered. 

As mentioned above, previous works have studied 

the flow behavior of blood using different 

rheological models. For instance, Ashrafizaadeh et 

al. compared the C-Y, K-L and Casson models using 

experimental measurements of a thiocyanate 

solution (blood-mimicking fluid) for the C-Y model 

(Gijsen, van de Vosse, and Jansenn, 1999; Gijsen, 

Allanic, van de Vosse, and Jansenn, 1999) and 

human blood for the K-L and Casson models (Luo 

and Kuang, 1992) This comparison is in principle not 

consistent because of the different nature of the data. 

On the other hand, Boyd et al. (2007) made 

comparisons between the Casson and the C-Y 

models performing independent fits on the same 

sample. Nevertheless, we consider this procedure to 

be also flawed, since the viscosity at infinite shear 

rate is a parameter that couples all model equations. 

Such a coupling is clearly unaccounted for when fits 

are performed independently. Consequently, these 

procedures might not provide reliable conclusions 

and thus, for the sake of a consistent comparison, we 

propose to determine the parameters for all models 

using a simultaneous fit given a unique set of 

experimental data. To our knowledge, this issue has 

not yet been considered and therefore deserves a 

detailed study. 

In this work several features will be addressed, 

namely: i) a new set of parameters are needed for the 

Carreau-Yassuda (C-Y) and the Kuang-Luo (K-L) 

models. To do so, a simultaneous fit for the two 

models is performed using the same set of  
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Table 1 Rheological models equations and numerical values of the parameters 

 

 

experimental samples, ii) a comparison between 

the rheological models is established using this 

new set of parameters, iii) a physical obstacle is 

placed on the vessel wall in order to find out its 

effect on the velocity and shear rate profiles for 

each rheological model, and finally iv) the length 

of the re-circulation region is studied as a function 

of the obstacle size. 

This paper has been divided as follows. In the second 

section, the computational details of the simulations 

are given. In the third section, the results are 

discussed beginning with the parameters obtained 

after our fitting procedure. Afterwards, a comparison 

of the rheological models in a vessel with and 

without a semi-circular obstacle is given. Then, the 

effect of the semi-circular obstacle for different sizes 

on the velocity profiles, shear rates and the length of 

the re-circulation region, is studied. Finally, for the 

Newtonian case, a comparison between two different 

obstacle geometries is also established. 

2. COMPUTATIONAL FEATURES 

AND NUMERICAL PARAMETERS 

Figure 1 shows an schematic representation on the 

studied geometry. The flow of blood was 

computationally studied by simulating a channel 

section of width 4 mm and 60 mm length, (Glaser, 

2012) using two dimensional LB simulations. 

Specifically, velocity profiles, shear rates, shear 

stresses and pressure fields were determined along 

the section. The non-Newtonian behavior of blood 

was accounted for by using two non-rheological 

models which will be described in the next section 

and whose constitutive equations can be found in 

Table 1. LB is an explicit method in which the 

dynamics of a given fluid is obtained from a set of 

particles located in cells defining a lattice geometry. 

Particles can either remain in a given cell or migrate 

to neighbor lattice sites following Q possible 

directions, according to a probability function. For 

the present study, the D2Q9 model was used, where 

Q indicates the nine possible spatial directions and D 

the number of spatial dimensions, which for our case 

is two. 

It is then possible to define fi as the streaming 

probability distribution in the i-th direction. fi 

evolves through time for every cell in the lattice 

according to Eq. (1): 

( , ) ( , )

1
( ( , ) ( , ))

i i i

eq
i i

f e t t t f X t

f X t f X t


     

 

x

                                (1) 

 

 
Fig. 1. Sketch of the channel geometry and 

coordinates system. 
 

where τ represents a relaxation parameter usually 

considered to be in the range 1/2 < τ ≤ 1, ei is a 

velocity vector pointing to the i − th direction and  

f^{eq} is the equilibrium probability distribution.  

Eq. (1) represents two processes: collision and 

streaming. The r.h.s represents the collision operator 

that considers the difference between the current 

distribution and the equilibrium one in a time interval 

τ. The l.h.s represents the streaming of the particles 

to the neighbor cells. The equilibrium distribution 

function f eq is defined by Eq. (2) 

2 2

2 4 2

( . )9 3
1 3

2 2

eq i i
ii

u
f w

c c c

 

    
 
 

e u e u
                (2) 

where c corresponds to the speed of sound, wi is a 

weighting factor, ρ the fluid density and u the 

average particle velocity in each cell. Eq. (1) 

involves an iterative process where the distribution 

function is updated every time step until the 

equilibrium is satisfied, i.e., the l.h.s of Eq. (1)  is 

equated to zero. Due to the fact that zero cannot be 

numerically reached, in this study simulations are 

considered finished as long as the criterion given by 

Eq. (3) is satisfied, 

9( ) ( )
10

( )

k k

kk

u t t u t

u t t

  


 
                                       (3) 

where uk corresponds to the velocity in the lattice site 

k and the summation is performed over the whole 

lattice. Lattice size effects were checked with bigger 

lattices obtaining similar results within the statistical 

uncertainties. Longer simulations were also 

performed to obtain 10^-10in the criterion value, and 
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similar results were obtained. 

Bounce back boundary conditions were used to 

reproduce the channel walls that were considered to 

be rigid regardless of the blood pressure. For these 

conditions, the components of the incoming velocity 

on the wall are propagated in the opposite direction 

defining a non-slip condition. At the inlet-outlet of 

the channel, pressure boundary conditions were used 

as proposed by Zou and He (1997) Density and 

pressure are related through
2

3

c
p   and the 

Reynolds number is defined by eq-4 

2 3

236

c H
Re

Lv






                                                              (4) 

where H and L are the channel width and length and 

ν = µ∞/ρ is the kinematic viscosity. Eq. (4)  allows a 

pressure gradient to be imposed once the Reynolds 

number is fixed. For non-Newtonian models, 

viscosity is not a constant value and so in order to 

determine Re the ν value is considered as the limiting 

viscosity at infinite shear rate, µ∞, which is the 

coupling parameter for all the constitutive equations 

and can be obtained from a simultaneous fit of the 

experimental data. Based on reported values for 

channels of 4 mm, (Glaser, 2012) for all simulations 

a Reynolds number of 500 was chosen. According to 

Eq. (4)  this Reynolds number defines a pressure 

difference of 1.19 × 10−3 in LB units. The relaxation 

parameter τ is a function of the kinematic viscosity ν 

defined by Eq. (5):   

1
3

2
v                                                                           (5) 

As already known, when considering a non-

Newtonian behavior, ν and τ become a function of 

the shear rate ˙γ. Therefore, new constitutive models 

that relate them must be used. Following Krüger et 

al. γ˙ is calculated through Eq. (6)  . (Krüger, Varnik, 

and Raabe, 2009) 

(1)3





                                                                      (6) 

where Π(1) is defined as
(1) (1)
    and 

(1)
  is a 

second rank tensor related to the momentum flux at 

the macroscopic level defined by Eq. (7)  
(1) (1)

i i i
i

c c f                                                    (7) 

where fi
(1) refers to the second term in the expansion 

of the distribution function around the equilibrium, 

defined in Eq. (8) :  

(0) (1) (2)2 2( )i i i if f f f O                                  (8) 

From this expression, 
(0) eq

i if f and the 

distribution function out of equilibrium is 
(1)neq eq

ii i if f f f    being ε the Knudsen 

number. Eq. (6), along with the constitutive 

equations, are needed to obtain ˙γ and to calculate ν 

and τ. The obtained system of equations given by γ˙ 

and ν can be solved either analytically or numerically 

depending on the rheological model that for this 

work corresponds to the C-Y (Robertson, Sequeira, 

and Owens, 2009) and the K-L (Luo and Kuang, 

1992) models. In particular, the K-L model allows an 

analytical solution to be found while the C-Y model 

requires the solution of a non-linear system of 

equations that was solved using the Newton-

Raphson method. 

The momentum flux tensor 
(1)
 was used to obtain 

the physical quantities for every lattice cell such as 

the strain and shear rate magnitudes. Alternatively, 

shear rates were also calculated through a second 

order finite difference scheme over the velocity 

profiles. Although locality is lost using this 

methodology, comparable results can be also 

obtained. However, the lattice resolution should be 

modified for the majority of cases through the 

parameters ∆x and ∆t. 

The pressure field along the studied channel was 

calculated using the LB distribution given by Eq. (9)   

(Kürger, Varnik, and Raabe 2009) 

2 (0)p u                                                                  (9) 

with Π(0) defined similarly as Π(1) in Eq. (7) . 

A lattice of 200×3000 square cells was used for all 

simulations, with ∆x= 2× 10−5 m and ∆t=2 × 10−6 s. 

This has been tuned by comparing the theoretical 

velocity profiles for non-obstacle cases with those 

obtained by simulation, except for the case of the C-

Y model where there is no analytical solution. 

In order to study the behavior of the blood flow 

around a blood clot, an obstacle was introduced at the 

bottom wall of the channel centered at ∼ 27% the 

channel length (16mm). Subsequently, the obstacle 

size was changed in order to establish its effect over 

the different profiles. The obstacle geometry was 

also considered including both semi-circular and 

rectangular geometries. The obstacle cells do not 

perform neither collision nor streaming steps and 

bounce back boundary conditions were assumed. 

Four different semicircular sizes of radius 40, 80, 

120 and 160 ∆x were studied, which corresponds to 

20, 40, 60 and 80% of the channel width. A 

rectangular obstacle of 80 ∆x length was also 

considered in order to establish possible differences 

between the geometries. 

Numerical simulations were performed using our 

in-house code developed from scratch in the C++ 

language and parallelized using the OpenMP 

libraries. Computing time can be significantly 

affected depending on the lattice size and the 

rheological model. For instance, a simulation in a 

lattice of 200 × 3000 using a Newtonian model 

without an obstacle takes around 60 hours using 4 

intel Xeon processors at 2.5 GHz, while for a non-

Newtonian model simulations require about 20% 

more time. The computing time was found to 

increase by approximately three when introducing 

a semi-circular obstacle of 80% the channel width. 
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3. RESULTS 

3.1   Simultaneous Optimization of the 

Rheological Parameters 

The use of different parameters sets can cause a bias 

in the analysis when comparing more than one 

rheological model. This inconsistency makes it 

difficult to conclude that any difference found 

between the models is due to the blood behavior. 

Thus, as mentioned in the Introduction, in this work 

all the parameters were fitted using the same 

experimental samples. The only requirement to do so 

is to include a coupled parameter between the models 

which, as can be seen in Table 1, corresponds here to 

the viscosity at infinite shear rate (µ∞). Note that both 

the K-L and the C-Y models reproduce this value in 

the high shear rate limit. To the best of our 

knowledge no previous works have considered this 

issue. 

The optimization procedure we propose requires the 

minimization of an objective function defined by Eq. 

(10):   

     

exp exp2 2

2 2
1

( ) ( )1
est KL est CYn
i ii i

i i i

F
n s s

    



  
  

  


(10) 

where n is the total number of experimental data used 

for the fitting procedure (a total of 33 data were used 

(Brooks, Goodwin, and Seaman 1970; Chien, Usami, 

M., L., and Gregersen, 1966; Chien, 1970; Skalak, 

Keller, and Secomb 1981)), 
est
i  corresponds to the 

estimation of viscosity obtained using the 

rheological models, mu_i^{exp} represents the 

experimental viscosity and 
2
is  is the associated 

uncertainty of the experimental data. F is an implicit 

function of  jy  that represents the set of 

rheological parameters to be fitted which 

corresponds to the C-Y and K-L models given by 

   0, , , ,C Y
jy n a  

 and

   , ,K L
j yy   

  respectively. 

The idea is to minimize F with respect to every 

parameter  jy  . Thus, from the differentiation of 

eq-10, it is possible to find Eq. (11)  : 

(11)                      

exp

2
1

exp

2

2( )1

2( )

  

  

 



 






 




 





j

est KL est KLn
i i i

ji i

est CY est CY
i i i

ji

F

y

n ys

ys

 

Since the initial values are unknown for both models, 

it is necessary to make a first order Taylor expansion 

of 
est
i  around the initial guess  0

jy  obtaining  

Eq. (12)   

0 0

1

( ) ( )
p est

est est i
i j j i j j

jj

y y y y
y


 




    




1,...,i n                                                               (12) 

where 
0

j j jy y y    and p is the number of 

parameters to be fitted that depends on the 

rheological model to be used. For instance, in the C-

Y model, four parameters need to be considered, 

namely λ ,n ,a ,µ∞. Derivatives 
k

F

y




can be 

explicitly calculated from the rheological equations 

given in Table 1. 

Replacing Eq. (12)  into Eq. (11)  it is finally 

obtained that 
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
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 


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   
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 


   

 
 

  






(13) 

Eq. (13)  represents a square linear system of the 

form A∆yj = B with 7 unknowns that represent the 

parameters to be simultaneously estimated 

(y1,y2,...y7). Since the minimization requires several 

trials, the matrix construction and solution were 

implemented in our in-house code using the lower-

upper (LU) decomposition method. The optimized 

parameters obtained after an iterative procedure are 

presented in Table 1. 

As a first approach, independent fits of every model 

can be performed keeping the coupling parameter 

µ∞ as a fixed value. Nonetheless, when following 

this procedure the obtained parameters are different 

from the simultaneous fit. Moreover, the value of the 

objective function for the total set of data is also 

greater indicating that this procedure does not give 

the optimal solution. The reason for these different 

results is related to the fact that using such an 

approach, the system degrees of freedom are 

reduced. However, the parameters obtained from the 

independent fits can be used as initial guesses for the 

simultaneous fit. 

3.2   Rheological Model Parameters 

As mentioned before, we considered several 

rheological models, namely, Newtonian, C-Y and K-

L. Parameters of every model were simultaneously 

obtained from a fit of experimental viscosities 

reported from different works. Namely, Brooks  

et al. reported viscosity data using suspensions of 

erythrocytes (RBC) in saline and plasma. (Brooks, 

Goodwin, and Seaman 1970) Chien et al. (1966) 

reported measurements using blood and suspensions 

of RBC in plasma (Chien, Usami, and Gregersen, 

1966) as well as in Ringer solutions with albumin at 

45% of RBC concentration (Chien, 1970) and finally 
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the reported values by Skalak et al. (1981) which are 

also 45%of RBC concentration. There are more 

available experimental samples but the RBC 

concentration is out of the range of the above-

mentioned studies, for instance Zydney, Oliver III, 

and Colton (1991) and Biro (1982) reported 

measurements using RBC concentrations of around 

98% and 18-22% respectively. 

Table 1 shows the constitutive equations 

corresponding to each rheological model, the 

parameters reported by previous computational 

studies as well as our proposed set of new parameters 

obtained from the simultaneous fit. The observed 

numerical differences between the parameters might 

be attributed to the use of different experimental 

samples, experimental set up or experimental 

conditions. 

 

 
Fig. 2. Viscosity as a function of γ˙. Symbols 

represent experimental data, violet line the C-Y 

fit and continuous blue line the K-L fit. 

 

Figure 2 shows the viscosity behavior as a function 

of the shear rate for each rheological model obtained 

after the fit. Experimental data are also shown and 

correspond to experimental samples. 

It is important to mention that the Casson model was 

initially considered in this study. This model was 

originally developed for characterizing inks and is 

generally used to describe certain types of food. 

(Casson, 1959) Two parameters are involved: the 

limit viscosity at high shear rates µ∞ and the shear 

yield σy. Although this model is able to fit the 

experimental data proposed by Biro, (1982) when 

more data samples are included (specially γ˙ ≤ 2s−1) 

it was not possible to obtain a reasonable adjustment 

for the whole ˙γ range. A possible reason of the poor 

fit could be related to the fact that the Casson model 

only has two adjustable parameters which 

additionally are not independent. 

Unlike the Casson model where a discontinuity 

exists at ˙γ → 0, the C-Y model describes blood for 

the whole ˙γ range. This model defines two limit 

viscosities at low and high ˙γ which correspond to µ0 

and µ∞ respectively. Figure 2 shows the viscosity 

behavior of blood as a function of ˙γ. The violet line 

corresponds to the C-Y model; as shown, this model 

presents both a plateau (low γ˙ ) and an asymptotic 

behavior (high ̇ γ). Besides the limit viscosities, three 

additional parameters (λ, a, n) that govern the plot 

shape are required (see Table 1). λ can be associated 

with the relaxation time, i.e., the time needed for a 

set of red blood cells to form an aggregate or roleau. 

(Fedosov, Wenxiao, Caswell, Gompper, and 

Karnidiakis, 2011; Liu and Liu, 2006; Zhang and 

Neu, 2009) The greater the λ the lower the tendency 

to form a roleau. In terms of parameter sensitivity, an 

increase in λ implies a reduction in the plateau length 

indicating that it is more difficult to create a roleau 

and therefore the viscosity tends to be lower. With 

regards to a and n, they are able to change both the 

slope and the smoothness in the transition region 

defined between the low and the high viscosity limit 

values. The blue line corresponds to the K-L model 

which is a modification of the Casson equation. The 

K-L model introduces a new parameter η that helps 

to provide a better description of the shear thinning 

behavior at low ˙γ values where, as mentioned 

before, the Casson model fails. 

3.3   Comparison between the Rheological 

Models. Non-Obstacle case 

Figures 3-a and 3-b show the velocity and shear rate 

profiles for every rheological model, both profiles 

are normalized with respect to the maximum velocity 

of the Newtonian model. Channel width is also 

shown in normalized units. Continuous black, red 

and blue lines correspond to the Newtonian, C-Y and 

K-L models respectively. As expected, for all 

velocity profiles maxima are located at the channel 

center. From highest to lowest, velocity predictions 

were given by the Newtonian, the C-Y and the K-L 

model respectively. Quantitatively, C-Y and K-L 

predict ∼ 30% and ∼ 37% lower values than the 

Newtonian model. Concerning the peak shapes, it is 

possible to observe that the non-Newtonian models 

present flatter profiles around the maximum being 

slightly more pronounced for the K-L model. This 

result is consistent with the shear rate profiles 

provided in Figure 3-b where non-Newtonian models 

have a concave-up and smoother behavior around the 

channel center, contrary to the Newtonian shear rate 

profile where a non-smooth curve can be identified. 

The highest shear rates are located at the channel walls 

and, in terms of percentages, the C-Y and K-L models 

are respectively ∼ 20% and ∼ 35% lower than the 

Newtonian model. Note that, although the viscosity 

behavior as a function of ˙γ (see Figure 2) is relatively 

close for both models, and the velocity profiles are also 

close to each other, the C-Y model predicts shear rates 

∼ 20% higher than the K-L model. Considering the 

fact that all models have the same µ∞ value, these 

results indicate that a Newtonian assumption might 

lead to overestimate these results. In fact, according to 

the experimental work carried out by Tangelder et al. 

(1986) a parabolic profile tends to overestimate the 

velocities at the center of the channel. (Tangelder, 

Slaaf, Muijtjens, Arts, and Reneman, 1986) 

Concerning the non-Newtonian models, the obtained 

results indicate that experimental data of viscosity are 

not enough to determine the model that best describes 

the flow of blood and therefore additional 

experimental measurements of other physical 

observables are needed. 
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Despite the fact our velocity profiles follow the same 

trend reported by Ashrafizaadeh et al., in all cases 

our simulations predict numerically higher velocity 

values. Also, our obtained differences between the 

non-Newtonian models are far lower, especially for 

the K-L model where our region around the channel 

center is much less flat. This disagreement is related 

to the fact that in the work of Ashrafizaadeh et al., 

the C-Y and K-L models have different µ∞ values 

and therefore a direct comparison cannot be 

established since they correspond to two different 

blood samples. 

 

 
Fig. 3. Comparison of velocity and shear rate 

profiles for the different rheological models. 

Channel width is shown in normalized units (a) 

normalized velocity profiles (b) normalized shear 

rate profiles. Normalization is based on the 

Newtonian values. 

 
3.4   Comparison between the Rheological 

Models. Obstacle Case 

For the majority of arteries, if there are no 

obstructions or abrupt walls and the shear rate is high 

enough, blood can behave as a Newtonian fluid. 

However, around stents and thrombi in the channel 

non-Newtonian behavior of blood can be found. 

Some authors have studied the flow of blood 

considering the thrombus formation through a 

complex set of chemical reactions. For instance, 

Sorensen et al. (Sorensen, Burgreen, Wagner, and 

Antaki 1999a) assumed a Newtonian behavior 

neglecting the thrombus effect on the flow. Our 

interest is precisely to quantify the obstacle effect on 

the velocity profiles and the re-circulation region. 

Chemical reactions will not be accounted for, and 

hence the obstacle effect will be only treated from a 

physical point of view. To do so, a semi-circular 

obstacle will be placed on the bottom wall of the 

channel and its size will be subsequently increased in 

order to create a dynamical channel constriction. 

Figure 4 shows the obstacle effect on different 

variables using a Newtonian model. Namely, the 

velocity profiles Fig.4-(a), the shear rates profiles 

Fig. 4-(b) and the pressure field Fig. 4-(c) are 

presented. For this particular Figure, the obstacle 

radius corresponds to 40% of the channel width. For 

visualization purposes only part the normalized 

channel length is shown. From Fig. 4-(a) it is 

possible to see a vertical displacement of the 

maximum velocity region (red color) as well as a 

recirculation region just after the obstacle (dark blue 

color). As shown in Fig. 4-(b) most parts of the 

channel are governed by low shear rate regions. 

However, high shear rate regions can be identified 

over the obstacle as well as at the top wall of the 

channel, being higher above the obstacle. Fig. 4-(c) 

shows the pressure field inside the channel. As can 

be appreciated, there is a minimum of pressure just 

above the obstacle whose magnitude is even lower 

than the one obtained at the channel outlet. This 

global minimum is defined by two pressure 

gradients, one of them located in the region before 

the obstacle and related to the channel constriction 

that makes the fluid speed up, and another one in the 

region after it and related to the velocity reduction. 

The effect of the rheological model was also studied, 

however differences are difficult to establish from a 

color map and therefore profiles as a function of the 

channel width were considered. Fig. 5-a, Fig. 5-b and 

Fig. 5-c show the normalized velocity profiles for all 

rheological models using an obstacle of radius 40% 

of the channel width. Velocity profiles were 

evaluated for different channel lengths in normalized 

units, namely, 0.2, 0.3, 0.5 and 1.0. Compared to the 

non-obstacle case, the velocity profiles have a 

similar trend, i.e., the Newtonian model predicts the 

highest velocity values followed by the C-Y and the 

K-L models. Nevertheless, velocity magnitudes are 

∼ 12% lower compared to the non-obstacle case. 

Negative velocities as well as a displacement of the 

velocity profiles maxima can also be observed for all 

models at a length of 0.3 represented by the red lines. 

On the contrary, profiles after the obstacle (green and 

black lines) show the maximum velocity located at 

the center of the channel width. At lengths of 0.2 and 

1.0 (blue and black lines) profiles are qualitatively 

similar but they are shifted slightly. Although a shift 

is expected, since the constriction reduces the cross-

sectional area of flow, it is interesting to note that for 

the case without obstacle maxima are located at the 

same position independently of the rheological 

model. However, when an obstacle is considered, the 

Newtonian model predicts the maxima at different 

channel width positions than the non-Newtonian 

ones. This particular issue will be discussed later. 

Figure 6 shows the effect of the obstacle size on the 

velocity profiles. Four different obstacle sizes were 

studied and correspond to radii of 20%, 40%, 

60%and 80% the channel width. As previously done, 

the velocity values were normalized with respect to 

the maximum Newtonian velocity. For this particular 

case, simulations were required to satisfy the stricter 

condition of 10^{-10} in the equilibrium criterion 

given by Eq. (3) . The profiles shown are evaluated 

at 0.3 of the channel length. Although numerical 

differences were observed evaluating the profile at 

different lengths, a similar qualitative trend was 

found (not shown). 

As the size increases, it is possible to see a reduction 

of the velocity that is more pronounced for the 

Newtonian model followed by the C-Y and the K-L 

models. Also, for all models, maxima are displaced 

as a function of the obstacle size, and negative  
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Fig. 4. Velocity, shear rates and pressure behavior for the Newtonian model in the presence of a semi-

circular obstacle. Plots were coded in the ROOT data analysis framework. All values are shown in 

normalized units. 

 

 
Fig. 5. Velocity profiles for the different rheological models using an obstacle of radius 40% of the 

channel width. (a) Newtonian model (b) C-Y model (c) K-L model. The profiles were taken at different 

normalized channel lengths before and after the obstacle. 

 
 

 

velocities can be observed to be higher in magnitude 

for the Newtonian model. The origin of negative 

velocities is related to the existence of a recirculation 

region, which is produced by the contact between the 

fluid and the obstacle surface. This interaction 

reduces the fluid kinetic energy and avoids part of it 

to overcome the adverse pressure gradient. 

Figure 7 quantifies some of the above-mentioned 

effects. Figure 7-a shows how the velocity maximum 

is reduced as a function of the obstacle size. All 

rheological models exhibit a similar trend with 

different slopes. All curves are bounded between two 

limits, namely, the upper limit for a system without 

an obstacle and the lower one for a complete 

obstruction. As can be observed, the Newtonian 

model has the steepest slopes for nearly all obstacles 

sizes. This result can be explained due to the fact that 

the highest velocity values are predicted by the 

Newtonian model and for a complete constriction all 

models should converge to zero. Non-Newtonian 

models show a much less pronounced effect for the 

first two sizes. However, as the obstacle size 

increases, slopes start to be numerically closer. 

Differences between Newtonian and C-Y models are 

on average ∼ 25% while for K-L and the Newtonian 

model difference are on average ∼ 32%. 

Figure 7-b, shows the position dependence of the 

velocity profiles maxima relative to the obstacle size 

at 0.3 of the channel length. The first point refers to 

the non-obstacle case where all maxima are located 

at the channel center. Contrary to Fig. 7-a, 

differences among the Newtonian and non- 
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Fig. 6. Normalized velocity profiles as a function of the obstacle size, profiles were obtained at 0.3 the 

channel length.(a) Newtonian (b) C-Y (c) K-L. 

 

 
Fig. 7. Obstacle size effects at 0.3 the normalized channel length (a) Maximum velocity. The velocity 

reduction percentages are relative to the Newtonian model (b) Position of the maximum velocity (c) 

Size of the recirculation region (right scale) and vmaxR (left scale). 
 

 

Newtonian models begin to be more noticeable for 

the second obstacle size and are slightly higher after 

this point. Note that differences between the C-Y and 

the K-L models are not significant. Figure 7-c shows 

a plot of the obstacle size and the length of the 

recirculation region. The recirculation region length 

is quantified by looking for the most distant cell from 

the right hand side of the obstacle having a negative 

horizontal component of the velocity. Results 

indicate that the Newtonian model predicts a region 

length ∼ 30 % longer compared with the non-

Newtonian models. Additionally, a non-monotonic 

behavior defining a maximum between the 60% and 

80% obstacle sizes can be also identified. In order to 

understand this behavior, Fig. 7-a can be considered 

again. Despite the fact that the bigger the obstacle the 

larger the velocity reduction (between two 

consecutive obstacles), there is no linear relation 

between them. Therefore, the product between vmax 

and R which is actually proportional to the Reynolds 

number is not a constant and follows the non-

monotonic behavior shown by the dashed black line 

in Fig. 7-c. Note that R corresponds to the semi-

circular obstacle size and vmax to the maximum of the 

velocity profile. The fact that the trend of the other 

curves in Fig. 7-c is similar to the vmax × R trend is 

totally consistent since the recirculation length is 

intimately related to the Reynolds number. 

Another studied effect corresponds to the shear rate. 

As is already known, the largest shear rates are 

expected to be at the wall channels as well as around 

the obstacle. Figure 8 shows the average shear rates 

values as a function of the obstacle size evaluated at 

four different lengths, namely: i) just before the 

obstacle (8-a) ii) over the center of the obstacle (8-b) 

and iii) just after the obstacle (8-c). Averages were 

obtained by taking into account the shear rate values 

across the channel width. 

As the obstacle size increases, the average fluid 

velocity decreases in the whole channel which also 

implies a reduction in the fluid velocity maxima.  
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Fig. 8. Average shear rates around the obstacle region. (a) just before the obstacle (b) over the obstacle 

(c) just after the obstacle (d) qualitative shear rate profiles across the channel width. 

 

 

Since the velocity remains zero at the channel walls 

and over the obstacle, both velocity changes and 

shear rates are lower as well. Fig. 8-a and Fig. 8-c 

show how the average shear rates decrease as a 

function of the obstacle size for regions away from 

the constriction. On the other hand, the largest 

velocities are located over the obstacle and define a 

velocity profile which drastically changes from the 

obstacle wall to the constriction center. As a 

consequence, the average shear rate is larger around 

the obstacle region and increases as a function of the 

obstacle size as shown in Fig. 8-b. 

No major differences can be appreciated between the 

average shear rate inside and outside the constriction 

region for the smallest obstacle. Numerical values 

range between 100-180 s−1. However, for the largest 

obstacle, at the constriction the average shear rates 

increase up to ∼ 400 s−1 while away from it they are 

always lower than 80 s−1, depending on the 

rheological model. High shear rates, where blood is 

supposed to behave as a Newtonian fluid, can be 

found at the channel walls and can be even higher in 

the constriction region due to the presence of the 

obstacle. Figure 8-d qualitatively shows the shear 

rates across the channel width for the three regions. 

As can be observed, the shear rate is maximum 

around the obstacle and significantly reduces after it. 

Away from the constriction region, where higher 

viscosity values are expected, Newtonian models 

will tend to over-predict the results, which is in 

agreement with previous computational works 

carried out on intracranial aneurysm. (Xiang, 

Tremmel, Kolega, Levy, Natarajan, and Meng, 

2012) Furthermore, overpredictions of these results 

might lead to incorrect estimations when studying 

thrombus generation or growth. (Lee, Chiu, and Jen, 

1997) 

Changes in the position of the maximum velocity 

also depends on the shear rate distribution. As 

mentioned before, for the non-obstacle case maxima 

are expected to be at the channel center, because 

shear rates are equal at both channel walls. However, 

for the obstacle case, as can be appreciated in Fig. 4-

b and Fig. 8-d (yellow line), shear rates at the 

obstacle and on the channel walls are different in 

magnitude producing a shift of the maximum 

position towards the surface of higher shear rates. 

Due to the fact that blood clots, stents or thrombus 

might have different shapes. We consequently 

wanted to find out about the effect of the obstacle 

geometry on the flow. Thus, in addition to the semi-

circular obstacle case, a rectangular shape with a 

height side equal to the semi-circle radius and a base 

equal to the semi-circle diameter was also 

considered. Figure 9 shows a comparison between 

the two geometries for the velocity profiles and an 

obstacle size of 40% of the channel width. Although 

a similar qualitative trend was found between the 

geometries, the velocity profiles for the semi-circular 

obstacle were ∼ 15% higher. 

Higher velocities are expected to be found for the 

semi-circular case since over this geometry the flow 

has an easier circulation and a lower reduction in the 

flow velocity. This behavior is found at all lengths 

and it is clearer at the channel outlet profile (blue 

line). The obtained differences show that the 

geometry has an effect, not only on the velocity 

magnitudes, but also on the location of the maximum 

velocity. Maximum velocities are closer to the top 

wall for the rectangular obstacle. 

4. CONCLUSIONS AND PROSPECTS 

In this work a quantitative comparison has been 

performed of blood flow using several rheological 

models in a normal blood channel as well as in the 

presence of an obstacle. A new methodology has  
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Fig. 9. Comparison of the Newtonian velocity profiles using a circular and rectangular geometry. 

 

 

been proposed in order to simultaneously fit the 

parameters belonging to all the studied rheological 

models. Following this approach, a new set of 

parameters for the C-Y and the K-L models were 

determined based on several experimental samples 

for a wide range of shear rates. Additionally, it was 

found that the Casson model was unable to provide a 

good fit when a wide range of shear rates was 

included. This indicates that the C-Y and the K-L 

models should be considered as better alternatives. 

In our opinion any study needs to take into account a 

simultaneous fit of the parameters, otherwise, any 

comparison will be inconsistent. 

Several physical observables have been studied, 

namely: velocity profiles, shear rate profiles and the 

length of the recirculation region. Among the studied 

rheological models, and regardless of the obstacle, 

the Newtonian model tends to predict higher 

numerical values for all the physical magnitudes. 

Although the C-Y and the K-L models show similar 

numerical results, the C-Y predictions were always 

larger than the K-L ones. 

The presence of an obstacle produces for the studied 

Reynolds number: a reduction of the fluid velocities 

in the whole channel, a loss of symmetry with respect 

to the channel center, displacement of the velocity 

maxima and the appearance of a re-circulation region 

just after the obstacle. The location of the maximum 

velocity was found to be different between non-

Newtonian and Newtonian models. The recirculation 

region length was found to be non-monotonically 

related to the obstacle size and the Newtonian 

models predicted the longest lengths. As a 

consequence, using Newtonian models might lead to 

predictions of higher probabilities of platelet 

adhesion to the wall channels and therefore higher 

probabilities of a thrombus growth. 

The highest shear rate values were found over the 

obstacle region and were on average higher for the 

Newtonian model. Furthermore, once the obstacle 

was placed inside the channel there was a significant 

effect on the shear rate distribution. In fact, its 

behavior was found to be considerably different 

inside and outside the constriction region. For that 

reason, a model with a constant viscosity might not 

be sufficient to provide a good system description 

and hence more detailed models should be used. 

Despite the fact that the obstacle effect was included, 

it is known that a thrombus implies a complex set of 

chemical reactions that account for its formation and 

consequent growth. For that reason, a future study 

that considers these variables is needed. 

Additionally, the variables studied in this work are 

not enough to determine the best rheological model 

choice. Thus, in order to clarify this issue, more 

experimental information such as velocities or shear 

rates need to be also included. 
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