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ABSTRACT 

Large eddy simulations of a three-dimensional (3D) compressible parallel jet flow at Mach number of 0.9 and 

Reynolds number 2000 are carried out. Four subgrid-scale (SGS) models, namely, the standard Smagorinsky 

model (SM), the selective mixed scale model (SMSM), the coherent-structure Smagorinsky model (CSM) 

and the coherent-structure kinetic-energy model (CKM) are employed, respectively, and compared. The 

purpose of the study is to compare the SGS models and to find their suitability of predicting the flow 

transition in the potential core of the jet, and so as to provide a reference for selecting SGS models in 

simulating compressible jet flows, which is a kind of proto-type flow in fluid dynamics and aeroacoustics. A 

finite difference code with fourth-order spatial and very low storage third-order explicit Runge-Kutta 

temporal schemes is introduced and employed for calculation. The code, which was previously designed for 

simulating shock/boundary-layer interactions and had been widely validated in simulating a variety of 

compressible flows, is rewritten and changed into parallelized using the OpenMP protocol so that it can be 

run on memory-shared multi-core workstations. The computational domain size and the index of LES 

resolution quality are checked to validate the simulations. Detailed comparisons of the four SGS models are 

carried out. The results of averaged flow-field including the velocity profiles and the developments of shear-

layer, the instantaneous vortical flows and the viscous dissipation, the predicted turbulence statistics and the 

balances of momentum equation are studied and compared. The results show that although the normalized 

developed velocity profiles are well predicted by the four SGS models, the length of the potential core and the 

development of the shear-layer reveal that the SM has excessive SGS viscosity and is therefore too dissipative 

to correctly predict the flow transition and shear-layer expansion. The model smears small vortical scales and 

lowers down the effective Reynolds number of the flow because of the over-predicted SGS viscosity and 

dissipation. The turbulence statistics and the balances of momentum equation have also confirmed the 

excessive dissipation of the SM. The CKM is also found to over-predict the SGS viscosity. Compared with 

these two models, the SMSM and the CSM have performed well in predicting both the averaged and the 

instantaneous flow-fields of the compressible jet. And they are localized models which are computationally 

efficient and easy for coding. Therefore, the SMSM and the CSM are recommended for the LES of the 

compressible Jet. 

Keywords: Jet flow; LES; Localized SGS model; Selective mixed scale model; Coherent-structure 
Smagorinsky model; Coherent-structure kinetic-energy model. 

1. INTRODUCTION

Compressible jet flows exhausted by engines are 

one of the main sources of noise in aircrafts, which 

has become a serious environmental problem 

(Sandham et al., 2006). According to the 

aeroacoustics theory, which is pioneered by 

Lighthill (1952) and has achieved great success in 

the past more than 60 years, jet noises are highly 

relevant to the turbulent flow structures (Tam, 1998; 

Wan et al., 2013). By so far, though it is well known 

that jet flows involve phenomena such as the 

potential core, shear layers, transition of turbulence, 

pairing of vortices, development and breakdown of 

large-scale vortices, the difficulties arise from the 

turbulence are still obstacles for understanding the 

mechanism of sound generation. 

There are well-documented experimental results 
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about jet flows in which the characteristics of 

averaged flow field and large statistical structures 

have been revealed. These include the early 

experiments of Bradbury (1965) in which the 

establishment of the self-preservation in 

downstream of the nozzle exit is studied, and the 

measurement of correlations by Everitt et al. (1978) 

which unveiled the no-similarity of large-scale 

statistical structures as a kind of ‘local flapping’ in a 

moving stream. Modern flow visualization 

techniques such as the laser induced fluorescence 

(LIF) and particle image velocimetry (PIV) have 

also been applied to study the flow details in jets by 

Hui et al. (1999) and Tinney and Jordan (2008), 

respectively. The developments of the turbulent 

structures have been well described. However, due 

to the difficulties in the measurement of dissipation 

in highly turbulent flows, the nature of the small-

scale turbulence is hard to accurately ascertain. As 

pointed by Uzun et al. (2012), although experiments 

provide useful information for understanding the jet 

flows, they are expensive and can supply a 

relatively limited flow detail. For example, the flow 

within the first or two diameters immediately 

downstream of the nozzle exit contains crucial 

information on jet shear layer initial conditions and 

has a profound effect on the complex flow 

phenomena in further downstream. However, even 

modern experimental methods have difficulty in 

measuring such flow because of the thin shear 

layers and the resultant steep velocity gradients in 

that region. Based on these backgrounds, high 

resolution numerical simulation becomes very 

attractive and necessary for revealing the flow detail 

in turbulent jet flows. 

With the fast advances in computational techniques, 

successful numerical methods for turbulence 

simulation have been developed. These methods, 

categorized according to the flow detail resolved 

and the computational costs, are the direct 

numerical simulation (DNS), the large-eddy 

simulation (LES), and the Reynolds-average 

Navier-Stokes (RANS) methods. Although DNS, in 

principle, is capable of resolving all fluid dynamics 

and acoustics scales in jet flow, it has been limited 

by available computing resources to 2D and low-

Reynolds-number cases (Stanley et al., 2002; Klein 

et al., 2003). The RANS methods for jet flows (Tam 

and Auriault, 1999), on the other hand, are generally 

applied to study the averaged flow-field and are 

often regarded as too crude for studying the 

mechanism of sound generation in the engineering 

context (Lai and Luo, 2007). In between of the DNS 

and the RANS methods, LES is a good balance for 

resolving the turbulence and the computational cost. 

Indeed, LES methods have been widely employed 

to study the jet flows in the past two decades. 

Excellent reviews on the LES investigations of jet 

flows have been provided by Bodony and Lele 

(2008) and Uzun and Hussaini (2012). Generally 

saying, for the purpose of resolving the flow detail, 

high-fidelity numerical algorithms and the sub-grid 

scale (SGS) models are the two key issues. 

A review of all SGS models is far beyond the 

knowledge of the present authors and is not 

attempted here; readers may refer to the reviews in 

Vreman (1995) and Sagaut (2007) for some clues. 

Basically, the usage of SGS models is to account for 

the effects of sub-grid scale vortices on the resolved 

turbulent quantities (Piomelli, 1999). The early 

Smagorinsky model (SM) which has constant 

coefficient in the eddy-viscosity is known to be too 

dissipative and results in weak correlations between 

the modeled and the physical turbulent stresses. In 

order to overcome such defects, the dynamic 

Smagorinsky models (DSM) based on the Germano 

identity were introduced by researchers. By so far, 

DSM models are widely applied to study the jet 

flows (Hu et al., 2003; Wan, et al., 2013). In the 

DSM models, Lilly’s least square method is often 

employed to dynamically adjust the model 

coefficient. In such procedure, the flow field is 

theoretically required to have a homogeneous 

direction in which the filtered stresses can be 

averaged so as to find the local model coefficient. 

However, such requirement is not reasonable. 

Firstly, the three-dimensional flows occurred in 

engineering are basically impossible to have a 

homogeneous direction. Secondly, even for a flow 

in which may has a homogeneous direction, the 

average operation is only a strategy to prevent 

numerical instability; it lacks a rationale in physics. 

And thirdly, for large scale parallelized calculations, 

additional data exchanges between processors are 

unavoidable in the averaging operation, which is 

not computationally efficient. Seeing from these, 

localized SGS models are preferred, and easing the 

excessive dissipation of the SM is an expectation. 

In this paper, three localized SGS models are 

considered and compared in calculation of a parallel 

jet flow at Mach 0.9. The problem is simple in flow 

configuration but rich in flow phenomena, while 

Mach 0.9 is an approximated flow condition for jet 

engines in subsonic civil aircrafts (Bodony and 

Lele, 2008). The SGS models are the selective 

mixed-scale model (SMSM) proposed by 

Lenormand et al. (2000), the coherent-structure 

Smagorinsky model (CSM) and the coherent-

structure kinetic-energy model (CKM) both of 

which are proposed by Kobayshi (2005). For a 

sensible comparison, the SM is also included. In the 

SMSM, a selective function based on local angular 

fluctuation of the vorticity is introduced so as to 

predict the intermittent phenomena in transitional 

flows. The model has been validated in the 

simulation of the compressible wall bounded flows 

(Lenormand et al., 2000), the flow around airfoil at 

near stall condition (Mary and Sagaut, 2002), and in 

the cavity flows (Larchevêque et al., 2003). The 

CSM (Kobayshi, 2005) is based on the relationship 

between energy dissipation and coherent structures 

(Tanahashi, 1997), and its model coefficient is 

adjusted by a coherent structure function. The 

model has been tested in a series of incompressible 

turbulent flows including rotating and non-rotating 

channel flows, backward-facing step flows and 

staggered jets in crossflows; it is shown to have a 

similar accuracy to that obtained by the DSM 

(Kobayshi, 2005). The CKM is also based on a 

function of coherent structures, while the sub-grid 

scale kinetic energy is used as the velocity scale in 
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evaluating the turbulent viscosity. Together with the 

SM, all the four models are localized, so they have 

no need of any homogeneous direction or averaging 

in finding the model coefficients. The purpose of 

this comparison is to find the suitability of 

predicting the viscosity and flow transition in the 

potential core of the jet, and to provide a reference 

for selecting SGS models in simulating 

compressible jet flows. 

The remaining contents of the present paper are 

arranged in four sections. Section 2 describes the 

governing equations for LES, the SGS models for 

comparison, the discretization and solution 

approach for the equations. Section 3 presents the 

preparations of simulating the jet. These include the 

setting up of the computational domain, the grids, 

boundary and initial conditions. And a check of the 

settings including the domain size and the grid 

sensitivity of the LES is provided. In section 4, the 

predicted results of both the averaged and the 

instantaneous jet flow fields are carefully studied, 

and the four SGS models are compared. Finally, 

conclusions of the comparison are summarized in 

Section 5. 

2. NUMERICAL MODELS AND 

METHODOLOGY 

2.1   Governing Equations 

In large eddy simulation, the filtered compressible 

Navier-Stokes equations consist of the conservation 

laws of mass, momentum and energy. The 

governing equations can be written in a 

dimensionless form as follows (Vreman, 1995): 
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where the summation convention for repeated 

indices is used. Top scripts ‘-’ and ‘~’ denote grid-

filtered and mass-weighted (Favre) filtered 

variables, respectively. The filtered velocity vector 

is denoted by u , with iu  as its Cartesian 

components.   and p  are the density and 

pressure, respectively. The total energy is calculated 

by 

21

1 2
T i

p
E u


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
, (4) 

where   is the ratio of specific heats. The filtered 

prefect gas law is 

2p M T  , (5) 

where T  is temperature while M  is Mach number. 

The viscous stress 

    ij ijT Re S  u , (6) 

where  
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is the strain rate, ij  is the Kronecker delta which 

has 1ij   if i j  and 0ij   if i j .   is the 

viscosity and is calculated by the Sutherland law, 

 T T   ( 0.76  for air). (8) 

The heat flux jq  in Eq. (3) is given by Fourier’s 

law for heat conduction, 

 

  21
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In the above equations, Re  is the Reynolds number 

while the Prandtl number 0.72Pr = , the ratio of 

specific heats 1.4   for air. 

In the conservation laws of momentum and energy, 

Eqs. (2) and (3), respectively, sub-grid scale terms 

ij  and 
sgs

jq  are the unresolved terms and need to 

be modelled. In the widely used eddy-viscosity 

models, ij  and 
sgs

jq  are often modelled as follow: 

 
1

3
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where sgs  is sub-grid viscosity, 1tPr   is turbulent 

Prandtl number (Hu et al., 2003).  

2.2  Sub-Grid Scale Models 

In the Smagorinsky model (SM), 

   
2

1sgs C S   u  (12) 

where the model coefficient 1C  depends on the 

particular flow and several values have been 

proposed; here 1 0.17C   is selected according to 

Schumann (1991) ’s suggestion. The characteristic 

length scale is commonly chosen to be 

 
1/3

x y z     , Where x , y  and z  are mesh 

sizes in the x, y and z directions, respectively. 

It is noticeable that the SM is originally proposed 

for incompressible flows, where the isotropic part 

kk  is not modeled, but considered by modifying 

the pressure which appears in the momentum 

equation only. For compressible flows, the pressure 

appears in the equations of momentum, energy and 

the state simultaneously. Modifying the pressure to 

account the contributions of kk  in all these 

equations is undesirable. As a remedy, Vreman 
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(1995) suggested modelling kk  explicitly as 

follows: 

   
22

14kk C S   u . (13) 

The characteristic length scale of the SM depends 

on grid scales only, and the model coefficient 1C  is 

constant. The model is quite simple and easy to 

implement in CFD codes. But it is also known to be 

too dissipative, especially in predicting transitional 

flows. 

The excessive dissipation of the SM can be 

overcome if the model constant is replaced by a 

coefficient depending on both grid scales and small 

scales of turbulence. The SMSM (Lenormand, et 

al., 2000) is a model of such kind. Its eddy-

viscosity is given by: 

 
   1 2 12

2sgs cC S q
 


 

   (14) 

where 0.5   and 2 0.06C   is deduced from a 

isotropic turbulence. 
2

cq  is the kinetic energy of the 

small scales representing the multi-scales of 

turbulence and is evaluated as follows: 

2 1

2
c i iq u u   (15) 

where iu  is fluctuating velocity extracted from the 

resolved velocity field: ˆ
i i iu u u   , the caret 

denotes a test filter, 1 1
ˆ 4 2 4i i i iu u u u    , 

which can be interpreted as a second-order 

approximation of either a Gaussian filter or a top-

hat filter. More explanation of evaluating 
2

cq  was 

given by Lenormand et al. (2000). 

In the same way of filtering the velocity, one can 

obtain filtered vorticity vector   from resolved 

vorticity vector  . In order to improve the 

prediction of intermittent phenomena, a selective 

function based on the local angular   between the 

vorticity vectors   and   is proposed. The   

represents local fluctuation of the flow. The flow is 

turbulent when the local angular fluctuation is 

greater than a given threshold angle 0 . And the 

selective function is then given as following 

(Lenormand et al., 2000): 

 
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where the value of 0  corresponding to the 

observed peak of the density probability function 

for the angular variation of an isotropic 

homogeneous turbulence (Lenormand et al., 2000), 

0 20  . 0   means the directions of two 

vorticity vectors change dramatically so flow is 

fully turbulent. While for 0  , it indicates the 

flow is weakly turbulent, and the eddy-viscosity 

decrease with  , until the molecular viscosity is 

recovered at 0   when the flow is laminar. Based 

on the formulations in above, the final eddy-

viscosity of the SMSM in Eq. (14) is further 

modified and calculated as: 

 
0

( )s
sgs sgs f    . (17) 

Another way to ease the excessive dissipation of the 

SM is to replace the constant eddy-viscosity 

coefficient, 1C , with an adjustable number C , 

according to the local flow dissipation. Considering 

the relationship between the coherent-structure and 

the energy dissipation, a new local sub-grid scale 

model was proposed by Kobayashi (2005). Such 

model is the aforementioned coherent-structure 

Smagorinsky model (CSM), in which the eddy-

viscosity is given by: 

 2
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where 
3/2

3 CSC C F . The constant 3 0.05C  , 

which is the optimized value from a priori test in a 

homogeneous isotropic turbulence (Kobayashi, 

2005). CSF  is the coherent structure function 

defined as the second invariant of a velocity 

gradient tensor Q  normalized by the magnitude of 

a velocity gradient tensor E , namely, CSF Q E , 

where 
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As mentioned by Kobayashi (2005), Q  is related to 

the energy dissipation of turbulence. The 3/2 power 

of CSF  is according to the fact 3C y  with 
2Q y  and constE   for incompressible flows (y 

is the normal direction in a wall-bounded flow). 

With the eddy-viscosity in Eq. (18), CSM is a 

closure for the sub-grid stresses. 

With the idea of adjusting eddy-viscosity by the 

coherent-structure function, and using sub-grid 

scale kinetic energy as the velocity scale, Kobayashi 

(2005) also proposed a kinetic-energy model which 

was abbreviated as CKM above. The eddy-viscosity 

is calculated as: 

sgs sgsC k     (19) 

where 4 CSC C F . CSF  is the coherent-structure 

function defined in the CSM. 4C  is found to be 

0.15. sgsk  is the sub-grid scale kinetic energy, 

which can be calculated in a simple way, 

 
2

isgs ik u u  , where the test-filtered velocity 

component is estimated using the Simpson rule, 

 1 14 6i i i iu u u u    . More details of the CSM 
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and CKM are provided by Kobayashi (2005). 

2.3  Discretization and Solution Approach 

Finite difference method (FDM) is employed for 

discretization of the governing equations. For the 

convenience of description, Eqs. (1) to (3) are 

rewritten in vectors as follows: 

t x y z x y z

      
      

      

v v v
Q F G H F G H

,(20) 

where  , , , ,
T

Tu v w E   Q , while F , G , and 

H  are convection terms in x-, y-, and z- directions 

of the Cartesian coordinates system, respectively. 
vF , vG , and v

H  are the viscous terms which can 

be easily deduced from Eqs. (1) to (3), and the 

superscripts ‘-’ and ‘~’ are omitted for 

simplicity of description.  

Equation (20) is discretized using compatible 

spatial difference operators for interior points and 

boundary nodes. For interior points, the five-point 

fourth-order central schemes in the follows are 

employed for the first and second derivatives, 

respectively, 
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where   is a general function, h  is grid-space. In 

the present paper, Jacobian transformation is 

applied to Eq. (20) so that uniform grids can be 

used in the transformed coordinates system. For 

boundary points, spatial discretization is treated 

using a stable high-order method based on the 

summation by parts (SBP) (Carpenter et al., 1999). 

The overall spatial accuracy is fourth-order. For 

temporal discretization, the very low storage third-

order explicit Runge-Kutta algorithm (Spalart et al., 

1991) is employed. This time-advancement scheme 

use two storage locations for three marching sub-

steps, 
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, 

RHS  denotes the right hand side terms of Eq. (20), 

the superscripts n  and +1n  are the time levels. 

In order to stabilize the solution, an entropy -

splitting approach (Sandham et al., 2002) is 

employed, in which the inviscid flux is separated 

into conservative and non-conservative parts. The 

code used was previously designed for simulating 

shock/boundary-layer interactions (SBLI) 

(Sandham et al., 2003), and the numerical method 

has been widely validated in the simulations of a 

variety of compressible flows (Hu et al., 2003; Lai 

and Luo, 2007; Tullio et al., 2010). General good 

computational efficiency and high fidelity of the 

numerical method have been shown in these 

simulations. In the present study, the code 

parallelized using the message-passing-interface 

(MPI) protocol is rewritten and changed into 

parallelized using the OpenMP method so that it can 

also be run on the memory-shared multi-core 

workstations. 

3. PREPARATIONS OF THE 

SIMULATION 

3.1  The Parallel Jet 

The compressible parallel jet studied by Hu et al. 

(2003) is selected as the testing case for the present 

comparison of SGS models. The jet is at a Mach 0.9 

and a Reynolds number of 2000, based on the jet 

velocity jU  and the jet slot width jD . Namely, 

Re 2000j j jD U    , 0.9j jM U c  , 

where  ,  , c  are the referential values of 

density, dynamic viscosity and sound speed in the 

far field, respectively. 

The computational domain is shown in Fig. 1. The 

dimensionless size (normalized by jD ) in the 

streamwise, lateral and spanwise directions 

(depicted as x-, y-, and z-) are 24xL  , 15yL  , 

and 3zL  , respectively. The grid points in the x-, 

y- and z- are 181×181×16, with the stretched mesh 

in the x-y plane shown in Fig. 1. The grid nodes in 

the z-direction are uniformly spaced. For grid 

sensitivity check, another mesh with 181×181×32 

grid nodes is also employed for LES. 

 

    

(a) Computational domain       (b) The Mesh 

Fig. 1. Computational domain and the Mesh 

(One in every three lines is shown in each 

direction). 

 
For convenience of calculating the statistics, the 

simulations are marching in time with a fixed 

dimensionless time step of  0.003075 j jt D U  , 



Q. Liu et al. / JAFM, Vol. 12, No. 5, pp. 1599-1614, 2019.  

 

1604 

which can satisfy CFL < 1 on both meshes. 

The initial shear thickness is known to have a 

considerable influence on the development of the 

jet. As shown in Fig. 1, the computational domain 

starts from the parallel nozzle exit, so a laminar 

streamwise velocity profile is imposed according to 

Hu et al. (2003) ’s  suggestion as follows: 

    

  
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
  


    





  






, (23) 

where two hyperbolic tangent profiles are used and 

the shear thickness is set to 0.1 jh D . Clearly, the 

inflow velocity profile is a top-hat with a co-flow 

velocity of 0.1co jU U , with a three-dimensional 

disturbance applied to the streamwise and cross-

flow velocities ( pu , pv ) at a single frequency and a 

single spanwise wavenumber. The parameters in 

Eqs. (23) are carefully chosen based on linear 

instability analysis so as to trigger the symmetric 

mode of the parallel jet and minimize the spurious 

inflow waves which may generate. These inflow 

perturbations are shown to be sufficient for trigger 

the turbulence (Hu et al., 2003). In addition to the 

inflow velocity, the temperature is initialized 

according to Crocco-Busemann temperature-

velocity relationship, written as: 

   2 21 0.5 1 1jT M u    . (24) 

Except the velocity and the temperature profiles, the 

pressure at the inflow boundary is assumed to be 

uniform and equals to the referential background 

pressure; these result in the inflow conditions as 

follows: 

 21 jp M , 1 T  . (25) 

With all these inflow conditions, the flow field is 

initialized. The non-reflection conditions introduced 

by Thompson (1987) are used to allow all outgoing 

waves propagate smoothly out of the computational 

domain and to minimize the numerical reflection. 

Concisely, the outgoing characteristics are 

explicitly calculated and allowed to move out of the 

domain from the bounds in the x- and y- directions. 

In the spanwise direction (z-), periodic boundary 

conditions are applied as generally done for three 

dimensional spatially evolving jet flows. 

3.2  Tests of the Settings 

As mentioned in above, the algorithm has been 

validated over a variety of problems, so only two 

issues are checked in the present calculation. These 

are the specified spanwise length zL  and the grid 

sensitivity of the LES results. 

The periodic conditions applied at spanwise 

boundaries are a compromise to simulating the 

parallel jet, because of the computational cost. The 

larger spanwise length zL  for the computational 

domain is used, the closer approach to the parallel 

jet can be achieved. However, the mesh for 

mapping the computational domain increases 

linearly with zL . In order to save computational 

resource, the periodic conditions in the spanwise 

boundaries are employed as a remedy, subjecting to 

the fact that the spanwise size needs to be large 

enough to avoid non-physical flow interference in 

this direction. In order to check the spanwise size of 

the computational domain, the correlation of 

velocity components in spanwise direction is 

defined as follows: 

 
   

   

0 0

2 2
0 0

i i

i i
u u

i i

u z u z z
R z

u z u z z

   
 

   
 (26) 

where iu  represents a fluctuating velocity 

component,   denotes the time-averaged, z0 is the 

z- location of spanwise boundary while Δz is the 

space gap from z0. Temporal range of averaging is t 

= 72~240 corresponding to 3 ~ 10 flow-through of 

the computational domain, and the sampling 

interval is the marching step Δt. There are 54640 

samples in total for the averaging.  

Figure 2 shows the correlations of velocity 

components at a monitoring point (x,y,z0)=(16,-1,0). 

It can be observed that the correlation lines decay to 

approximately zero within half of the specific 

spanwise length zL , indicating the spanwise size of 

the computational domain is large enough while 

possible non-physical flow interference in this 

direction is successfully cancelled. 

 

 

Fig. 2. Spanwise correlation of velocity 

components between (16,-1,0) to (16,-1,1.5). 

 
The resolution quality is an important issue for 

LES. For a practical way to measure the resolution 

quality is to make use of the resolved turbulent 

kinetic energy resk  on a grid and the extrapolated 
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total turbulent kinetic energy totk  based on two 

grids (Pope, 2004). The index of LES resolution 

quality is a ratio of these turbulent kinetic energy, 

_ res totLES IQ k k , as proposed by Celik et al. 

(2005). The procedure is briefed as following: 

As only a part of the turbulent kinetic energy in the 

physical flow can be resolved by LES, Celik et al. 

(2005) suggested that the difference between totk  

and resk , termed as the effective sub-grid scale 

kinetic energy and denoted as _eff sgs
k , can be 

approximated by:  

_tot res eff sgs p
kk k k a    , (27) 

where the superscript p  is the order of accuracy of 

the numerical scheme, ka  is a coefficient to be 

determined. To determine the ka , Eq. (27) is 

supposed to be applicable to the same flow depicted 

by both a coarser mesh and a finer one, then we 

have: 

tot res p
c k c

ptot res
f k f

k k a

k k a

   


  

, (28) 

where subscripts ‘c’ and ‘f’ denote quantities 

obtained on the coarser and finer meshes, 

respectively. Because 
res

ck  and 
res

fk  are results from 

LES, the equation group (28) can be solved to find 
totk  and ka . Then we can have: 

   1
pres res p

k f c fa k k     
  

,  

where 1c f      is the grid-size ratio. Celik et 

al. (2005) then gave the quality indices of LES for 

fine and coarse grids, denoted by _ fLES IQ  and 

_ cLES IQ  respectively, as: 

 1 1 1_ 1 res res p
f c fLES IQ k k     

  
, (29) 

 1 1 1_ 1res res p p
c f cLES IQ k k      

  
.(30) 

In order to carry out this check, the aforementioned 

two meshes of 181×181×16 and 181×181×32 are 

considered. The dimensionless time range for 

finding the Reynolds averaged variables 
res

ck  and 

res

fk , is t = 48 ~ 72, with 7804 samples. Fig. 3 

shows the turbulent kinetic energy along lip-line, 

calculated with CSM on two meshes. The turbulent 

kinetic energy is weak at the beginning of the jet, 

and then increases rapidly to reach a peak. After 

that, the curves fall down along the streamwise 

direction. The curves obtained using the two meshes 

have a similar shape, and the coarse-grid result is 

slightly higher than that of the fine-grid. The 

calculated quality index is shown in Fig. 4. 

_ cLES IQ  is approximately 75% while _ fLES IQ  is 

about 85% in the most range of the spanwise 

locations in the jet, both of which are fairly good for 

an acceptable LES. Considering the computational 

cost, the coarser mesh is used in the followed 

simulations. 

 

 

Fig. 3. The turbulent kinetic energy along lip-line 

resolved with CSM on coarse-grid shown in 

dashed line and fine-grid shown in solid line. 

 

 

Fig. 4. Large eddy simulation index of quality 

(LES_IQ) along the lip-line for coarser-grid 

shown in dashed line and fine-grid shown in 

solid line. 
 

4. RESULTS AND DISCUSSIONS 

4.1  Averaged Flow-Field 

The profiles of the averaged streamwise velocity 

u  obtained with the four SGS models are 

presented and compared in Fig. 5. The experimental 

data of Bradbury (1965), Gutmark (1976) and 

Rampaprian (1985) are also shown. Similarity 

coordinates are used, with the abscissa axis 

normalized by the local jet half-width 0.5  (explain 

later), while the vertical ordinate is normalized by 

the difference of centerline velocity and co-flow 

velocity, cU . The self-similarity appears in the 

turbulence region where the flow reaches 

equilibrium between the generated turbulent kinetic 

energy from the main flow and the dissipated 

energy by viscosity at the small scales (Hussein et 

al., 1994). Consequently, all the flat hat profiles at 

the inflow develop in the streamwise direction, and 

the normalized velocity profiles at various 

streamwise locations finally collapse to one curve 

till x > 8. The comparison shows the results from 

large eddy simulation using the four SGS models 

are in good agreement with the experiments data, 
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indicating that all the four models are capable of 

predicting the averaged streamwise velocity. 

 

 

(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

 x = 0;  x = 4;  x = 8;  x = 20; 

 x = 22;  Bradbury (1965); 

  Gutmark (1976);  Ramaprian (1985) 

Fig. 5. The averaged velocity profiles at different 

streamwise locations. 
 

The power spectra density Ef of the streamwise 

velocity fluctuations at five streamwise locations 

along the lip-line are shown in Fig. 6 for SM. The 

instantaneous velocity signals are sampled in the 

time range of t = 48~216, with 54640 samples. 

Figure 6 shows the Ef at x = 2 is relatively weak. 

From x = 2 to x = 6, the energy scales in Ef are 

increased, corresponding to the development of 

Kelvin- Helmholtz instabilities. Between x = 8~20, 

the spectra exhibits an energy cascade which is 

quite similar to the -5/3 slope for fully developed 

turbulence. In addition, the inertial stage is observed 

in these spectra, indicating the grid is capable of 

resolving the wide range of scales in the energy 

cascade. 

 

 

Fig. 6. Dimensionless power spectra of the 

velocity signals along the jet lip line at five 

locations for SM. 

 
The normalized jet centerline streamwise velocity 

cU  (normalized by jU ), averaged from time t = 

72~240, is shown in Fig. 7. Basically the cU  

predicted by these four models keeps equal to 1 in 

the beginning of the jet, representing the potential 

core in this range. Then cU  starts to decrease at the 

end of the potential core. The distance from the 

nozzle exit to the point where 0.99cU   is often 

mentioned as the length of the potential core. 

Seeing from Fig. 7, the predicted length of the 

potential is 6.93, 6.35, 5.84 and 5.8, for the SM, 

CSM, SMSM and CKM,, respectively. The longest 

potential core length predicted by the SM means the 

latest flow transition. In downstream of the 

potential core, cU  decreases gradually. 

Experiments and analysis results on plane jets have 

shown that cU  deceases at a -1/2 power, 

1.2 0.724c jU x D   (Tollmien, 1926). The 

results in Fig. 7 show that the SMSM, the CSM and 

the CKM model have well predicted the decrease of 

cU , while the profile predicted by the SM 

decreases faster than the experimental equation. 

Flow mixing is significant within the shear layer. To 

discuss the development of shear layer, the half-

width or the center of shear layer of the jet, 0.5 , 

defined as the lateral position where 

   0.5 0.5 c cou U U   , is shown in Fig. 8(a). The 

result shows that 0.5  has a two-staged growth, i.e., 

the early stage of slower linear growth in the 

potential-core region and the stage of faster linear 

growth immediately after the potential core. The 

four SGS models predict a similar growth rate, but 
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the SM gives a higher value at the downstream. The 

vorticity thickness of shear layer is defined as 

 c co
max

U U u y      (Sandhu and Sandham 

1994); its results of the present jet are shown in Fig. 

8(b). Comparison shows that the SM predicts the 

smallest thickness within most of x region, while 

the other three localized models give a similar 

result. Considering that the averaged velocity 

profiles are well predicted and have good 

agreements between the four SGS models, the 

velocity difference between the both sides of the 

shear-layer maybe regarded as constant when 

different SGS models are employed. Therefore, the 

thicker shear-layer thickness means the stronger 

flow mixing and weaker gradient of velocity across 

the shear-layer. The result of thinner shear-layer in 

the result of the SM model, on the other hand, 

indicates a stronger gradient of velocity in the 

lateral direction, which needs generally a higher 

viscosity to smooth it. Such results may be 

explained by the well known excessive dissipation 

of the SM. 

 

 

Fig. 7. The averaged jet centerline velocity cU . 

 

4.2   Instantaneous Flow 

The contours of instantaneous vorticity magnitude 

snapped at t = 82 are shown in Fig. 9, where the 

DNS result of Hu et al. (2003) at the same time is 

also included for comparison. The potential core, 

paring of vortices, formation of large vortical 

structures and their fragmentation into smaller sized 

eddies during the flow transition are observable. 

The extent of lateral developments predicted by the 

SM, the SMSM, the CSM and the CKM are shown 

in Fig. 9(b ~ e), respectively. It can be seen that, the 

result of the SM has the smallest lateral 

development. The CKM has a wider lateral size of 

the vortical distribution than the SM. For the 

SMSM and the CSM, their predicted distributions 

of vortices in the lateral range are comparable to the 

DNS results. The resolved vortical scales in the 

result of SM are quite limited. The CKM gives a 

relatively better result than the SM, but the resolved 

scales are still not rich. For the SMSM and the 

CSM, again, their resolved vortical scales are quite 

similar. In an early paper of the authors (Liu et al., 

2018), the SMSM was compared with the DSM, it 

was shown the DSM obtained a worse agreement 

with the DNS results, seeing from the scales 

resolved in the vortical structures, so further 

comparison with the DSM is not included in this 

paper. As pointed by Lai and Luo (2007), the over-

predicted turbulent viscosity by the SM may have 

lowered down the effective Reynolds number of the 

flow, which smears the small vortical scales. 

 

 

(a) Evolution of 0.5δ  along jet centerline. 

 

 

(b) Evolution of   along jet centerline. 

Fig. 8. Comparison of the predicted shear layer 

developments. 

 

The three-dimensional distribution of turbulence 

eddies represented by the Q- criterion is shown in 

Fig. 10, where the shown instantaneous iso-surface 

is Q=0.1 and is snapped at time t = 207 without 

losing generality for a qualitative comparison. The 

positive Q value means the rotation of flow is in 

domination and strain is relatively weak, thus the 

location of a vortex is separated from shearing flow 

(Jeong, 1995). For the SM and the CKM, shown in 

Figs. 10(a) and (d), respectively, some small-scale 

longitudinal vortices are observable even near the 

outflow boundary where the flow is assumed to be 

fully developed. It means that both the SM and the 

CKM are too dissipative, so the small-scale eddies 

are expected to disappear quickly and large ones are 

remained. While for the SMSM and the CSM, the 

fully developed turbulence with plenty of small -

scale eddies are shown in Figs.10 (b) and (c), 

respectively. More turbulent small scale eddies are 

resolved in the results of SMSM and the CSM, as 

compared with those of the SM and the CKM. 

Development of small scale eddies can be 

influenced by viscosity. The instantaneous contour 

of the sub-grid dynamic viscosity sgs sgs   is 

shown in Fig. 11. It can be seen that μsgs predicted  
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(a) DNS, in Hu et al. (2003). 

 

 

(b) Present LES using SM. 

 

 

(c) Present LES using SMSM. 

 

 

(d) Present LES using CSM. 

 

 

(e) Present LES using CKM. 

Fig. 9. Comparison of instantaneous vorticity 

magnitudes on mid-span plane at t = 82. 9 

Contour levels are shown in the range of 0.5~5. 

 

 

(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

Fig. 10. Comparison of iso-surface of Q = 0.1 in 

the present LES, at t = 207. 
 

 

by the SM has noticeable value even in the potential 

core region (in Fig. 11(a)), and is like two long 

parallel ribbons from the inflow boundary to the 

flow transition zone. In Fig. 11(d), μsgs predicted by 

the CKM has spurious values even in the inflow 

boundary, which indicates the SGS viscosity is 

over-predicted. These over-predicted μsgs may lead 

to the exceed dissipation of small scale eddies, 

which is consistent with the results in Figs. 9(b) and 

(e). The μsgs predicted by both the SMSM and the 

CSM are nearly zero value within the potential core. 

Only till the end of potential core where flow 
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transition starts, the value of μsgs rises up gradually 

and forms a laterally expending distribution, as 

shown in Figs. 11(b) and (c). 

 

 

(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

 

Fig. 11. Distributions of sgsμ  on mid-span 

plane at t = 82 for four SGS models. 

 
The instantaneous molecular dissipation 

 ij i jS u x     (Vreman, 1995) is compared in 

Fig. 12, where the distributions at t = 82 are shown. 

It can be seen that within the potential core, where 

the flow is supposed to be laminar, the distributions 

of   predicted by these models all appear in a 

shape of two parallel ribbons, their length in the 

streamwise direction vary, as discussed in Fig. 7. 

The instantaneous sub-grid-scale dissipation 

 sgs ij i ju x     at t = 82 as well, and also refer 

to Vreman (1995) for the definition, is shown in 

Fig. 13. Comparison between Figs. 12 and 13 

reveals that the distributions of sgs  and   

predicted by the SM are quite similar, and their 

contour values are of the same order. But on the 

contrary, the sgs  in Figs. 13(b) to (d) and predicted 

by the SMSM, CSM, and CKM respectively, have 

values of nearly zero within the potential core. Such 

differences in the predicted sgs  indicate that the 

SM cannot predict the change of effective viscosity 

during transition, while the methods of locally 

adjusting model coefficients work well when the 

flow regimes is changed between the laminar and 

turbulent states.  

 

 

(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

 

Fig. 12. Contours of με  on mid-span plane at 

t = 82 predicted by four SGS models. 
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(a) SM 

 

 

(b) SMSM 

 

 

(c) CSM 

 

 

(d) CKM 

 

Fig. 13. Contours of sgsε  on mid-span plane at 

t = 82 predicted using four SGS models. 

 

Figures 14 are contours of the   and  
0

f  . It can 

be seen that in the potential core, the   is nearly 

zero while the corresponding  
0

f   obtained from 

Eq. (16) is also almost zero. As aforementioned,   

is the angular between two vorticity vectors on grid 

scale and test grid scale respectively, the zero values 

of   indicate the laminar flow region. The selective 

function  
0

f   reflects flow transition correctly; 

its distribution is consistent with the predicted sgsμ  

in Fig. 11(b) and the sgs  in Fig. 13(b). 

 

(a)   

 

 

(b) 
0

f  

Fig. 14. Contours of   and 
0θ

f  in mid-span 

plane at t = 82. 

 
4.3  Turbulence Statistics 

The statistics of fluctuating velocity products, 

u u  , in the mid-span plane are shown in Fig. 

15. In the potential core, the flow is laminar 

while values of the statistic are zero. At the end 

of potential core, turbulent fluctuations set on, 

representing the transition of flow. As shown in 

Fig. 15, the peak value of u u   might be as high 

as above 0.03. The high fluctuation regions 

appear just at the end of the potential core, and 

set to weakening along the streamwise direction 

with the development of the jet, as predicted by 

the SMSM and the CSM and shown in Figs. 

15(b) and (c), respectively. In the result of the 

SM, shown in Fig. 15(a), the fluctuation strength 

weakens along the jet as well, but the weakening 

is at a slower rate. This slower weakening rate is 

consistent with the longitudinal vortices predicted 

by the SM in Fig. 10(a), which appear in a wide 

streamwise range from the potential core to 

almost the outflow bound of the computational 

domain. Such longitudinal vortices are of 

moderate size which can cause strong 

fluctuations. For the result of u u   predicted by 

the CKM and shown in Fig. 15(d), however, the 

fluctuation strength is relatively weaker than 

those predicted by the other three models. Such 

result is not surprising if the vortical structures in 

Fig. 10 are considered. As shown in Fig. 10(d), 

the vortices predicted by the CKM are clearly 

less than those of the counterparts in Fig. 10. 

Especially, although longitudinal vortices also 

appear in a wide streamwise range in Fig. 10(d), 

the small scale vortices in the map are clearly less 

than those predicted by the SMSM and CSM, and 

even clearly less than the results of SM. The 

weaker vortical flow in the result of CKM is 
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reasonable and consistent with its lower 

fluctuations. 

 

 

(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

 

Fig. 15. Predicted distributions of  u u  in the 

mid-span plane using four SGS models. 

 
4.4  Balances of Momentum Equation 

In order to evaluate the contributions of 

fluctuation to the transport of momentum, and to 

compare the predictions of these four SGS 

models, the balance of the momentum equation is 

considered. The Favre’s mass weighted filtered 

momentum Eq. (2) can be further averaged in 

time and in the z-direction, which results: 
 

21 3 4 5

|

i j ji i j ji

j i j j j

u u u up

x x x x x

       
    

    

(31) 

where all the variables are resolved on the grid 

scale, and   denotes the time-averaged 

variables. As the jet is statistically stable, the 

temporal derivative disappears in the averaged 

Eq. (31). For convective term, mass-weighted 

velocity is considered, so 0iu   , and the 

resolved turbulent stress 

is = -i j i j i ju u uu u u    . The other terms 

are obtained only by averaging in time. The time 

range for averaging is t = 48~216 corresponding 

to 2~9 flow-through times of the computational 

domain, with an interval of sampling equal to 100 

marching steps (100Δt). Totally, 540 

instantaneous results are sampled for averaging. 

Then the averaged 3D flow-field is further 

averaged in the z-direction to obtain the picture in 

the x-y plane. While the terms 1~5 represent 

mean convection, the pressure gradient, the 

molecular viscous stress, the resolved turbulent 

stress, and the sub-grid stress, respectively. In 

these terms, the resolved turbulent stress i ju u    

associates with the product of resolved 

fluctuating velocity, while the sub-grid stress 

ji  is the modeled part of the sub-grid scale 

fluctuations. In Eq. (31), terms with i = 1, j for 

dummy index give a balance of the mean 

streamwise momentum, 1u . Figure 16 

shows the balance at x = 8. The dominant balance 

is between the mean convection and the gradient 

of the resolved turbulent stress 1 j ju u x     (Le 

Ribault, 1999). All the four models predict a peak 

value of the mean convection, and the resolved 

turbulent stress term with an opposite peak at the 

same lateral location is shown. The peak values 

of the localized models are similar; however, 

their values are nearly three times higher than 

that of the SM. Therefore, the convection and 

turbulent fluctuations predicted by the localized 

models are stronger than those predicted by the 

SM. In the meantime, the lower peak values of 

the mean convection and turbulent fluctuations in 

the results of SM mean that the SGS stress term 

has contributed more percentages in the total 

balance, as compared with the other three 

models. As a result, the flow predicted by the SM 

is more dependent on the model itself than the 

other models. 
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(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

 term (1);  term (2);  term (3); 

  term (4);  term (5) 

Fig. 16. Balance of the streamwise momentum 

equation at x = 8. (terms in Eq. (31), i = 1 and j is 

dummy index). 
 

The distribution of sub-grid stress term in 

streamwise 1j jx   is shown in Fig. 17. This 

term, modeled by the SGS model, represents the 

averaged momentum on the sub-grid scale. 

1j jx   behaves as the source term for the 

averaged transport equation of momentum. A 

negative value of 1j jx   means removing 

momentum from resolved flow, while a positive 

value means adding momentum to the resolved 

flow. It can be seen that the SM predicts strong sub-

grid stresses along the shear layer within the 

potential core region and gives negative values from 

the beginning of the jet. This is consistent with its 

defect of lowering down the effective Reynolds 

number. In addition, the CKM also gives excessive 

negative values around the transition region and 

positive values along the centerline in the 

downstream. Such strong momentum exchanges 

between the resolved grid-scale and unresolved sub-

grid scale in the transition region may explain the 

good prediction of fluctuations by the CKM, 

although the μsgs is already over-predicted as shown 

in Fig. 11(d). 

 

 

(a) SM. 

 

 

(b) SMSM. 

 

 

(c) CSM. 

 

 

(d) CKM. 

 

Fig. 17. Distribution of the SGS stress term 

 1j jρτ x  in the mid-span plane. 

 

Finally, the computational efficiency of the four 

models is compared by showing the CPU time 

records in Table 1. Slight differences between these 

four models exist. Ratio of CPU time respect to the 

SM for SMSM, CKM and CSM is 1.3, 1.2 and 

CSM=1, respectively. 

 

Table 1 CPU time per grid point per time step 

SGS model SM SMSM CSM CKM 

CPU time µs 1064 1371 1065 1300 
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5. CONCLUSIONS 

Large eddy simulations of a three dimensional 

parallel jet at a Reynolds number 2000 and Mach 

number 0.9 have been carried out. The 

computational domain size and the grid sensitivity 

of the LES are checked. Four SGS models the SM, 

the SMSM, the CSM and the CKM are compared. 

Both the predicted averaged and instantaneous 

flow-fields are analyzed and carefully compared. 

The main conclusions are summarized as follows: 

1. The SMSM and the CSM are capable of 

predicting the multi-scaled vortical structures in the 

turbulent jet, while the CKM and the SM over-

predict the SGS viscosity and dissipation in the 

potential core flow region. The CKM and SM have 

smeared small scale vortical motions by lowering 

down the effective Reynolds number of the jet. 

Such defect is more serious for the SM. 

2. Examinations of the mean momentum balances 

show that the SMSM, the CSM and the CKM are 

capable to resolve the strong mean convection and 

the turbulent energy during the flow transition. It 

may partially explain that the CKM gives similar 

averaged results as the other localized models 

though the instantaneous dissipation is over-

predicted by the CKM. The SM over-predicted the 

percentage of the SGS energy in the total balance, 

so the flow is more dependent on the model itself. 

3. The SMSM and the CSM have performed well in 

predicting both the averaged and the instantaneous 

flow-fields of the compressible jet. The two 

localized models which are computationally 

efficient and easy for coding are recommended for 

the LES of the compressible jet. 
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