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ABSTRACT 

In this work, we implement and examine a new flow reconstruction methodology using cubic-splines for inter-

polations in the gas kinetic method (GKM). We compare this version of GKM with the existing WENO based 

interpolation method. The comparisons are made in terms of accuracy and computational speed. We find that 

at low to intermediate range of Mach number (Mt < 0.7), cubic-splines based interpolations are superior in terms 

of reduced numerical dissipation and higher computational speed (7x faster) as compared to the WENO 
interpolation method. 

Keywords: Compressible flows; Gas kinetic method; Direct numerical simulation; Turbulence; Decaying 
isotropic flow. 

NOMENCLATURE 

tM Turbulent Mach number 

λRe Taylor Reynolds number 

μ fluid viscosity 

v kinematic viscosity 

k turbulent kinetic energy 

K boltzmann constant 

ε dissipation rate 

θ divergence 

F velocity derivative flatness (kurtosis) 

TK thermal conductivity 

V velocity of fluid 

T temperature 

ρ density 

P pressure 

τ large eddy turnover time 

q heat flux 

σnn normal Stress 

tI average iteration time 

1. INTRODUCTION

Direct numerical simulation (DNS) of turbulent flow 

has improved our understanding of many 

fundamental aspects of turbulence (Honein and Moin 

(2004), Kerimo and Girimaji (2007), Cambon et al. 

(1993), Sarkar et al. (1991)). Data from the DNS 

simulations has led to the development of better 

turbulence closure models as well (Sarkar et al. 

(1991), Girimaji and Speziale (1995)). For 

incompressible flows, there is a range of higher-

order methods that have been established for 

performing DNS of turbulent flows. However, direct 

numerical simulation of compressible turbulence 

poses greater challenges due to the appearance of 

shocks in a turbulent flow field. During the last two 

decades, various numerical schemes have been 

developed that can efficiently simulate compressible 

turbulence (Passot and Pouquet (1987), Samtaney et 

al. (2001), Sandham et al. (2002), Honein and Moin 

(2004), Martin et al. (2006), Kumar et al. (2013), 

etc.]. However, all these numerical schemes have 

been shown to simulate compressible turbulent flows 

for a limited range of operation in terms of Mach 

number and Reynolds number. 

In recent years, the gas kinetic method (GKM) 

pro-posed by Xu (2001) has evolved as a robust 

method for simulating compressible turbulent 

flows. The gas-kinetic BGK method (GKM) has 

various advantages over the conventional Navier-

Stokes (NS) based solvers due to its robustness 

over a wide range of turbulent Mach number and 

its ability to accurately capture flow physics. 

Furthermore, the GKM scheme is also capable of 
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capturing deviations from equilibrium and effect 

of extremely rarefied flow physics (Ragta et al. 

(2017b), Ragta et al. (2017a)). 

Navier-Stokes equation can be extracted from the BGK 

model (Bhatnagar et al. (1954)) by applying the 

Chapman-Enskog expansion. However, the BGK 

model constraints the Prandtl number to unity. Prandtl 

number corrections were later developed by Xu (1998) 

and May et al. (2007). The BGK gas-kinetic scheme 

was for the first time employed for simulating weakly 

compressible turbulence by Kerimo and Girimaji 

(2007) at a Mach number of 0.052. Later, Liao et al. 

(2009) and Parashar et al. (2017) employed different 

variants of the GKM scheme using continuous flow 

reconstruction to simulate compressible turbulent flows 

for turbulent Mach numbers up to 0.5. Kumar et al. 

(2013) enhanced the GKM scheme (Xu et al. (2005)) 

with weighted essentially non-oscillatory method 

(WENO, Liu et al. (1994)) for discontinuous flow 

reconstruction to simulate compressible turbulent flows 

at high turbulent Mach number of 1.75. 

While simulating compressible turbulent flows using 

GKM, a transition from continuous flow reconstruction 

at low Mach number to discontinuous reconstruction at 

high Mach number has to be made. While continuous 

flow reconstruction has been shown to accurately 

capture flow physics for turbulent Mach number up to 

0.5 (Liao et al. (2009), Parashar et al. (2017)), 

discontinuous reconstruction using WENO has been 

shown to accurately simulate highly compressible flow 

at higher Mach numbers. Liao et al. (2009), showed that 

the use of discontinuous reconstruction with limiters 

produces excessive numerical dissipation in the flow 

field. The use of WENO based methods for dis-

continuous flow reconstruction has been shown to re-

duce the numerical dissipation for turbulent flows at 

high turbulent Mach number (Mt > 1) by Kumar et al. 

(2013). However, the validation of GKM with WENO 

based interpolations (against established higher order 

accurate Navier Stokes based solutions) has not been 

performed for low and moderate range of Mach 

numbers (Kumar et al., 2013). Thus there is a scope of 

development of better reconstruction methods for 

GKM, especially at low and moderate Mach numbers. 

In this work, we introduce a new interpolation 

methodology using cubic-spline based continuous flow 

reconstruction and determine its range of applicability 

for simulating compressible turbulent flows. 

The prime objective of this work is to propose a 

new flow reconstruction methodology with GKM 

which uses cubic spline based interpolation. This 

new flow reconstruction methodology is 

extensively evaluated over a range of Mach and 

Reynolds number. Comparisons of the new 

methodology are made against WENO based 

interpolations with GKM. We first per-form 

comparisons for one-dimensional normal shock 

structure. Subsequently, we make comparisons for 

three-dimensional decaying isotropic turbulence. 

Our results are also compared with high order 

accurate Navier-Stokes based results of Samtaney 

et al. (2001). 

This paper is organized into 5 sections. In section 

2, we present the governing equations and a brief 

review of the gas kinetic method (GKM). In 

section 3 we present our novel cubic-spline based 

reconstruction method. In section 4 we present our 

plan of systematically evaluating the cubic-spline 

reconstruction based GKM. Numerical results and 

discussions are shown in section 5. We conclude 

our work with a summary in section 6. 

2. GOVERNING EQUATIONS 

The governing equations of compressible flow field 

of a perfect gas are the continuity, momentum, 

energy and state equation: 
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where Vi, xi, ρ, p, T, R, σik, qk, n denote velocity, 

position, density, pressure, temperature, gas 

constant, stress tensor, heat flux and ratio of specific 

heat values, respectively. The quantities σij and qk 

obey the following constitutive relationships: 
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where δij is the Kronecker delta, KT represents the 

thermal conductivity, and µ and ( )
3

2
µ µ


      

denote the first and second coefficients of viscosity 

respectively. 

2.1   Finite Volume Gas Kinetic Scheme 

(GKM) 

Any general finite volume scheme for solving 

Navier-Stokes equation updates the conservative 

flow field, W (from nth to n+1th time step), using the 

following evolution equation: 
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where F is the flux calculated at the cell interface, 
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bounding the cell at the grid point, (i, j, k). The 

conservative macroscopic fluid variable (W) is 

defined as: 

  ρ

ρ

ρ

ρ
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x
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W V
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e
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where ρ is the macroscopic fluid density, Vx, Vy, Vz are 

the three components of the fluid velocity V and e is 

the specific internal energy. In finite volume GKM, the 

flux is evaluated using the kinetic theory, where the 

governing equation for the evolution of the particle 

distribution function is the Boltzmann equation: 

;t x y zf uf vf wf Q                     (9) 

where u, v, w are the components of internal particle 

velocity and Q is the collision term. In finite volume 

gas kinetic scheme, the Bhatnager-Gross-Krook 

(BGK) approximation for the Boltzmann equation is 

used for flux calculation. The BGK equation 

(Bhatnagar et al. 1954) in three-dimension is given 

by: 

;
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g f
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
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where f is the gas distribution function, Tc is the 

collision time scale and g is the equilibrium 

distribution function taken to be the Maxwellian: 
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where ρ is the density, N is the number of degrees of 

freedom, ξ is internal flow variable and Boltzmann 

constant (K) is related to the gas temperature (T ) and 

molecular mass (m) as, Λ = m/2KT . 

In equilibrium state: 

2 2 2 2
1 2ξ ξ ξ ... ξ .N                   (12) 

The macroscopic conservative variables are related 

to the gas distribution function as: 
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where ψ is defined as: 
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The flux in x-direction can be calculated by taking 

the moment of the distribution function: 
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Similarly, flux in other directions (y and z) can also 

be calculated. Integrating the BGK Equation (10), 

from x ∈ (xi−1/2, xi+1/2), y ∈ (yj−1/2, yj+1/2), z ∈ 

(zk−1/2,zk+1/2) & t ∈ (tn,tn+1) we get: 
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Rearranging the terms in Eq. (16), we obtain Eq. (7). 

The flux F, is calculated using the BGK model (Eq. 

10). The instantaneous distribution function f at the 

cell interface (xi+1/2, yj, zk) is obtained using the 

general solution of the BGK model at a cell interface 

(xi+1/2, yj, zk) and time t: 
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where x´ = xi+1/2− u(t − t´), y´ = yj − v(t − t´), z´ = zk 

−w(t −t´) represents the trajectory of a particle mo-

tion and f0 is the initial gas distribution function at 

the beginning of each time step (t = 0). The reader is 

referred to Xu et al. (2005) for the full description of 

the gas kinetic method. 

2.2   Cubic-spline based reconstruction 

method 

In finite volume method, the flow field is updated at 

each time step at the computational nodes, which are the 

centres of computational cells in the discretized flow-

field. In order to find the flux at the cell inter-face using 

any finite volume method based numerical scheme, the 

flow variables need to be approximated at the cell 

interface. For this, the flow information at the 

computational nodes is used to reconstruct the flow 

field at the cell interface using a suitable interpolation 

methodology. Kumar et al. (2013) have earlier used 

WENO based interpolation scheme−especially for high 

Mach number flows. The reader is referred to Kumar et 

al. (2013) for further details on the WENO-based 

reconstruction scheme. In this work, we introduce a new 

flow reconstruction methodology with GKM using 

cubic-splines for flow reconstruction. The details of 

cubic spline based interpolation are presented in the 

following sub-section. 

3 CUBIC-SPLINE BASED FLOW 

RECONSTRUCTION 

Splines are piecewise polynomial functions of the 

form: 
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where x is the position of the node, n is the total 

number of nodes in the domain and fi is a cubic 

polynomial defined as: 

 2 3( ) ( ) ( ) ( ) .i i i i i i i if x a b x x c x x d x x      

(19) 

For finding these four coefficients per piecewise 

function, we need four equations: 

1. The function value at the node is known: fi (xi) 

= yi. 

2. F(x) should be continuous: fi (xi+1) = fi +1(xi). 

3. First derivative of F(x) should be continuous: 
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4. Second derivative of F(x) should be 

continuous: 
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For the first and the last spline, the derivative 

information is not available. Hence, certain 

boundary conditions need to be imposed at the 

ends to close the 4(n − 1) set of algebraic 

equations. In this work, we have used natural 

boundary condition for one-dimensional normal 

shock problem, setting the second derivative to 

zero at the boundary. For three-dimensional 

isotropic turbulence simulations we have used 

periodic boundary conditions wherein the first and 

second derivative at the opposite boundary ends 

are kept equal. The interpolation methodology for 

one-dimensional cubic-splines is extended for 

multi-dimensions as well. The reader is referred to 

Habermann and Kindermann (2007) for further 

details on the multi-dimensional cubic-spline 

interpolation method. 

The open source library Einspline (Esler, 2007) has 

been used for finding cubic splines in the present 

work. We use such cubic-spline based flow 

reconstructions to find flow variables and their 

derivatives at the cell interface using Eq. (17). 

4. PLAN OF STUDY 

We first test cubic splines based reconstruction 

with GKM for one-dimensional normal shock 

problem in section 5.1. In viscous flow, shock has 

a viscosity and Mach number dependent structure 

(Xu, 2001). We incorporate cubic splines with 

GKM to capture this shock structure and compare 

our findings against Navier-Stokes based solution. 

While doing so we also compare our results 

against WENO based interpolations. These 

comparisons are performed for Mach numbers of 

1.5, 5 and 7. Comparisons are performed in terms 

of flow variables: velocity (U) and Temperature 

(T); and the derived non-dimensional quantities: 

heat flux (q ̣̇) and normal stress (σnn), which are 

defined as: 

5 2
;   ;

4 3
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 
                 (20) 

where p is pressure, µ is the kinematic viscosity, Pr 

is the Prandtl number and c is the acoustic speed. The 

initial state of the shock problem are: 

1. Upstream state −∞ < x ≤ 0: ρl = 1, Ul = 1 

2. Downstream state 0 < x < ∞:  
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
 

where γ = 5/3 is the specific heat ratio, fluid Prandtl 

number Pr = 1, viscosity µ = 0.0005. The 

computational domain is −1.0 ≤ x ≤ 1.0, grid size dx 

= 0.0013 and number of computational nodes n = 

1500. Natural boundary condition is applied at the 

end points. 

In section 5b we perform the direct numerical 

simulation of decaying isotropic turbulence using 

the new cubic-spline based flow reconstruction 

method-ology. The DNS results obtained using 

cubic-spline flow reconstruction (with GKM) are 

compared with established Navier-Stokes based 

DNS results of Samtaney et al. (2001). DNS 

results using GKM with WENO based flow 

reconstruction are also shown in this section. 

Direct numerical simulations of decaying 

isotropic turbulence are performed over a cubic 

do-main with 2π as the edge length. The boundary 

conditions are periodic and the initial velocity 

field is con-strained to have zero mean and the 

following energy spectrum: 

4 2 2
0(κ) κ exp( 2κ / κ );E A                (21) 

where, A is a spectrum constant and κ represents 

wavenumber, with κ0 being the value of κ 

corresponding to the peak of the energy spectrum. 

The initial thermodynamic properties are kept 

constant and fluctuation free. Mt is the turbulent 

Mach number defined as: 

2
;

γ
t

k
M

RT
                 (22) 

where T̄ is the mean temperature, R is the gas 

constant, γ is specific heat ratio and k is the turbulent 

kinetic energy (k =
1

2
i iV V  ) with iV   being the 

fluctuating velocity field. Note that an overbar 

indicates mean value. The relevant Reynolds number 

is the Taylor’s Reynolds number defined as: 
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Table 1 Initial parameters of DNS simulations 

 
 

 

 
Fig. 1. Results for normal shock structure M = 1.5. 

 

 
Fig. 2. Results for normal shock structure M = 5. 

 

 

λ

20
;

3εν
Re k                 (23) 

where ε, ν are dissipation-rate and kinematic 

viscosity respectively and λ is the Taylor microscale. 

Fluid Prandtl number Pr = 0.7 and specific heat ratio 

γ = 1.4 (for air) is chosen for all the simulations. In 

total six simulations of decaying isotropic turbulence 

are performed for this study as mentioned in Table 1. 

Comparisons are made in terms of turbulent kinetic 

energy (k) and divergence 
2

1

3

i

i

V

x


 
       

 

. 

The time has been normalized using τ, which 

represents the eddy turnover time (Yeung and Pope 

(1989), Elghobashi and Truesdell (1992), Samtaney 

et al. (2001), Martín et al. (2006)): 

0

rms

L

V
                                 (24) 

where Vrms is the root mean square (rms) velocity and 

L0 is the integral-length-scale of the initial flow field 

(at time, t = 0). Extensive comparison between cubic-

spline and WENO for a range of Mach number and 

Reynolds number (Table 1) are presented in sections 
5.2.1−5.2.4. 

In section 5c, we investigate the computational speed 

of GKM with spline-based reconstruction. 

Computational speed of spline-based reconstructions 

is compared with WENO based reconstruction. This 

comparison is made in terms of total time for the 

completion of simulation from t = 0 to t = 8τ. 

5. RESULTS 

In this section, we show results of one-dimensional 

shock structure followed by direct numerical 

simulation of decaying compressible isotropic 

turbulence using GKM with cubic-spline based 

interpolation methodology. In section 5a we show 

the performance of cubic-spline based interpolations 

in capturing the shock structure. In section 5.2, we 

show DNS results of decaying isotropic turbulence 

using GKM with cubic-spline based flow 

reconstruction against WENO based flow 

reconstruction and benchmark results of Samtaney et 

al. (2001). We, further evaluate the computational 

accuracy of cubic-spline based flow reconstruction 

over a range of turbulent Mach and Reynolds number 

(Table 1) in sections (5.2.1−5.2.6). Finally in section 

5.3, we compare the computational speed of GKM 

with cubic-spline based flow reconstruction against 

WENO based flow reconstruction method. 

5.1   Normal shock structure 

In Figs. 1(a), 2(a) and 3(a) we show velocity profiles 

for three Mach number of 1.5, 5 and 7 respectively. 

Similarly Figs 1−3(b) temperature profile is plotted. 

It can be observed that cubic-spline based flow 

reconstruction perfectly captures the velocity and 

temperature profile. The deviations  
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Fig. 3. Results for normal shock structure M = 7. 

 

 

Table 2 Maximum error (L∞ norm) in flow variables for normal shock problem 

 

 

 
Fig. 4. Comparison of DNS results for Simulation A. 

 

 

from accurate Navier-Stokes based solution (Xu, 

2001) are found to be negligible. Further, we find 

that cubic-spline based interpolation performs better 

than WENO based interpolations, especially in the 

upstream region (x ≈ −0.01). 

In Table 2 we show maximum error in each flow 

variable for both spline and WENO based 

reconstruction methods. It is evident from Table 2 

that spline based flow reconstruction method has 

better accuracy as compared to WENO at all Mach 

numbers. Further, we plot derived flow quantities 

viz. heat flux q̇ and normal stress σnn with velocity in 

Figs. 1−3(c) and 1−3(d) respectively. In can be seen 

in Figs. 1−3(c) and 1−3(d) that while cubic-spline 

shows an almost perfect match with the Navier 

Stokes solution, WENO based interpolations 

overestimates the heat-flux and normal stress. 

Hence, we conclude that cubic-spline based flow 

reconstruction with GKM is capable of accurately 

capturing discontinuities and is in fact found to be 
more accurate compared to WENO. 

5.2   DNS of decaying isotropic turbulence 

In this section, we show DNS results of GKM using 

cubic-spline based flow reconstruction. DNS results 

of GKM with cubic spline based reconstruction are 

com-pared against WENO based reconstruction 

method. Navier Stokes based DNS results of 

Samtaney et al. (2001) are used as a benchmark for 

comparing the two interpolation schemes. 

5.2.1   Low Mt , low Reλ 

In this section, we show the turbulence statistics 

obtained from DNS of decaying isotropic turbulence 

using GKM with cubic-spline based reconstruction 

for low turbulent Mach number and low Reynolds 

number (Simulation A, Table 1). The results are 

compared against GKM with WENO based flow 

reconstruction. In Figs. 4(a) and 4(b), we show 

evolution of turbulent kinetic energy (k) and 

divergence (θ) respectively for Simulation A. Results 

of Samtaney et al. (2001) are also shown in these 

figures (Figs. 4(a−b)). It can be observed that cubic  
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Fig. 5. Comparison of DNS results for Simulation B. 

 

 

 
Fig. 6. Comparison of DNS results for Simulation C. 

 

 

spline based reconstruction method shows good 

agreement with results of Samtaney et al. (2001) 

(Figs 4a and 4b). On the other hand WENO based 

flow reconstruction are found to yield numerically 

dissipative results as compared to cubic-spline based 

reconstruction. 

At low turbulent Mach number, the flow field is 

relatively smooth and hence the usage of 

discontinuous flow reconstruction will yield higher 

numerical dissipation. Due to this reason WENO 

based flow reconstruction is showing numerically 

dissipative solution as compared to non-

discontinuous spline based flow reconstruction. 

However, the performance of discontinuous flow 

reconstruction using WENO is expected to improve 

with increasing Mt. Based on these results, we 

conclude that at low Reynolds and Mach numbers, 

the cubic-spline based flow-reconstruction scheme 

should be the preferred flow reconstruction 

methodology compared to the WENO based flow re-

construction method. 

5.2.2   Low Mt, high Reλ 

There is no benchmark solution available in this 

regime (low Mt and high Reλ, Simulation B). Hence, 

our comparisons are made directly with the DNS 

results of GKM using WENO based flow 

reconstruction method. In Fig 6, we show evolution 

of the same turbulent statistics (viz. (a) turbulent 

kinetic energy, and (b) divergence) as discussed in 

section 5.2.1. Results from the two schemes seem 

almost identical in terms of turbulent kinetic energy 

and divergence. 

5.2.3   Moderate Mt , low Reλ 

In Fig. 6 we perform our comparisons at moderate 

turbulent Mach number and low Reynolds number 

(Simulation C). Benchmark simulation result of 

Samtaney et al. (2001) are available in this regime 

and are also shown in Fig. 6. It can be observed that 

cubic spline based reconstruction method shows 

good agreement with results of Samtaney et al. 

(2001). WENO based interpolations are found to 

yield dissipative results as compared to cubic-spline 

based reconstruction while comparing these 

turbulent statistics (Fig. 6). 

5.2.4   Moderate Mt , high Reλ 

In Fig. 7, we show the different turbulent statistics at 

moderate turbulent Mach number and high Reynolds 

number (Simulation D). Benchmark simulation 

result of Samtaney et al. (2001) are also shown in 

Fig. 7. We observe that both the cubic spline and the 

WENO based reconstruction methods show good 

agreement with results of Samtaney et al.  
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Fig. 7. Comparison of DNS results for Simulation D. 

 

 
Fig. 8. Comparison of DNS results for Simulation E. 

 

 

(2001) while comparing k and θ (Figs. 7(a) and 7(b)). 

5.2.5   High Mt , low Reλ 

In Fig. 8, we show evolution of different turbulent 

statistics in high Mt , low Reλ regime. We observe that 

both the cubic spline and the WENO based 

reconstruction methods show almost perfect 

agreement with each other while comparing both 

turbulent kinetic energy and divergence (Fig. 8). The 

results of cubic-spline and WENO based flow 

reconstruction be-comes identical at this high Mt. 

Observing the trends of previous simulation results 

(Simulation A−D), we expect that for Mt ≥ 0.7, the 

excess numerical dissipation encountered with 

WENO based discontinuous flow reconstruction 

(especially at low Reynolds number) would almost 

cease to exist. 

5.2.6   High Mt , high Reλ 

Cubic-spline based flow reconstruction with GKM is 

found to be numerically unstable while simulating 

turbulence at high Mt and high Reλ. As seen in the 

previous section (5b6), for high Mt WENO based 

flow reconstruction yields numerically non-

dissipative solutions. Further, we have also shown 

that while increasing Mt and Reλ the numerical 

dissipation of WENO based reconstruction reduce 

significantly. Hence, beyond this range of Mach 

number (Mt ≥ 0.7) WENO should be the preferred 

choice for simulating compressible turbulence. 

We finally conclude the most efficient interpolation 

methodology (in terms of accuracy) with GKM for 

performing DNS of decaying compressible 

turbulence (between WENO and cubic-spline). In 

Table 3 we show most suitable interpolation 

methodology for different combinations of Mt and 

Reλ. For low to moderate Mach number (Mt ≤ 0.5) 

cubic-spline flow reconstruction is found to yield 

higher accuracy than WENO based flow 

reconstruction. 

5.3   Computational speed of GKM with 

cubic spline flow reconstruction 

In this section, we present the comparison of 

computational speed od GKM with cubic-spline 

based reconstruction method with WENO based 

reconstruction method. We consider two grids with 

sizes of 1283 and 2563 respectively. Intel processor 

E5-2680v3 (2.5GHz) is used for finding the 

simulation time. We also show the computational 

speeds by performing our tests on two different 

choices of the number of processors: a) 8 

processors and b) 64 processors. 
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Table 3 Superior choice between cubic-spline and WENO in different flow regimes 

 
 

Table 4 Speed-up shown by the two schemes 

 
 

 

In Table 3, we show the total time for completing of 

simulation using cubic-spline (Tspline) and WENO 

based reconstruction methods (Tweno). It can be 

observed that cubic-spline based reconstruction is 

approximately 7x faster than WENO based flow 

reconstruction on both the grids as well as both 8 and 

64 processors setups. In WENO based flow 

reconstruction with GKM, two different 

discontinuous flow states and correspondingly two 

different distribution functions are generated 

numerically at the cell interface at each time step. 

These different flow states makes the flux 

computation extremely complex. While, in spline 

reconstruction, only one flow state and distribution 

function is constructed at the cell interface leading to 

simpler flux calculations and reduced computational 

cost. This gives an advantage to cubic-spline over 

WENO based flow reconstruction in low and 

moderate Mach number regimes (Mt ≤ 0.5), where 

GKM-spline is not only computationally more 

accurate but computationally cheaper as well (Table 

3 and 4). Further, we observe that the computational 

speed of cubic-spline method shows good scalability 

with the number of processors. 

6. CONCLUSIONS 

In this work, we introduce a new interpolation 

methodology for GKM using cubic-spline for flow-

reconstruction/interpolation at the cell interface. 

Comparison of the cubic-spline based flow 

reconstruction is made against WENO based flow 

reconstruction method. We find that cubic-spline 

based interpolations are capable of accurately 

capturing the normal shock structure for M ≤ 7. The 

performance of cubic-spline flow reconstruction is 

found to be superior as compared to the WENO 

reconstruction method in capturing the normal shock 

structure. Further, we perform the direct numerical 

simulation of decaying isotropic compressible 

turbulence over a range of Mach number (0.3 ≤ Mt ≤ 

0.7) and two different Reynolds number (72 and 

175). We find that for low and moderate values of 

Mach number and Reynolds numbers the newly 

introduced cubic-spline interpolation scheme 

performs superior as compared to WENO in terms of 

numerical accuracy. We also find that, as Mach 

number and Reynolds number increase, results from 

both cubic-spline and WENO based flow 

reconstructions show close agreement with each 

other. Further, the cubic-spline based flow 

reconstruction method is found to be approximately 

7x faster than WENO based flow reconstruction 

method with GKM. 
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