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ABSTRACT 

The performance characterization of a liquid metal magnetohydrodynamic alternate generator is numerically 

investigated via its electric isotropic efficiency. The model consists of a harmonically driven liquid metal 

oscillatory flow confined to a thin-walled closed rectangular duct interacting with a uniform magnetic field 

transverse to its motion and attached to a load resistance. Spectral collocation method is used to solve the properly 

boundary-conditioned Navier-Stokes equation under inductionless approximation for the magnetic field with 

implementation of gradient formulation for the electric field. Flow is considered fully developed in the direction 

perpendicular to the applied uniform magnetic field (i.e., motion direction), incompressible, viscous, and laminar 

in regime. Currently, there are neither purely analytical or experimental results on this problem, but ours were 

cross-referenced with those from a one-dimensional analytical model as close as possible to it, finding reasonable 

correspondence. Dimensional estimates on the power production of prospective mesoscale devices having in mind 

household application are provided for different liquid metals as well. 

Keywords: Magnetohydrodynamics; Oscillatory liquid metal flow; Laminar fully developed regime; 

Inductionless approximation; Navier-Stokes equation; Spectral collocation method; Alternative power 
generation. 

 

 

1. INTRODUCTION 

Flow features and/or performance of liquid metal 

magnetohydrodynamic (LM-MHD) generators is an 

important subject to both pure and applied physics. 

Over time, it has been approached experimentally 

Ishikawa et al. (1996), Nomura (1988), Intani et al. 

(2010), Kobayashi et al. (2011), Liu et al. (2011), 

Shionoya et al. (2011), Liu et al. (2014), Niu et al. 

(2014), numerically for the steady situation Yamada 

et al. (2007), Yamada et al. (2006), analytically 

Jackson (1963), Ibáñez et al. (2002), Vogin et al. 

(2007), and in combinations of the previous 

Satyamurthy et al. (1999), Danilyan et al. (2005), 

Yamaguchi et al. (2011). Analytical approaches for 

the LM-MHD generator are generally difficult. But 

that hasn’t prevented development of approximations, 

mainly based on Faraday and Hartmann generator 

models. Accounts on the former and Hartmann flow 

(with its own feasibility to be implemented as a 

generator model too) can be found in Davidson 

(2001), Müller et al. (2001). Some authors further 

simplify modeling by not using energy and/or Navier-

Stokes Hu et al. (2015). Studies using Faraday’s 

model can be found in Koslover et al. (2007) for a 

device patent, Jackson (1963) for the DC case, and 

Ibáñez et al, (2002) using Hartmann’s flow model 

under inductionless approximation to view the setup 

as a one-dimensional (1 −D) Faraday alternate 

generator. An application of the Hartmann generator 

model can be found in Vogin et al. (2007). In this 

paper, a physical/numerical formulation having as 

antecedents the studies of steady and oscillatory LM-

MHD flows respectively by Cuevas (1994), Cuevas et 

al. (1997) and Rizzo-Sierra (2017), Rizzo-Sierra et al. 

(2016), is developed to characterize the performance 

of a LM-MHD alternate generator. Flow is considered 

completely developed, incompressible, viscous, 

laminar and inductionless. Considerations on the 

harmonic pressure gradient driving the system are 

outside its scope. The harmonic pressure gradient can 

be obtained by the thermoacoustic effect Migliori et 

al. (1988), Swift (1988). For the parametric ranges 

explored on section 7, these systems could need a 

frequency coupling stage, intermediate between the 

thermo-acoustic machine and the LM-MHD 

transducer/generator. Paper distribution: some 

remarks on the physical formulation of the problem 
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are made in section 2 below. In section 3, summaries 

on the thin wall approximation, Hartmann layer 

contribution to the electric current within the fluid, 

and load resistance attachment model are given. In 

section 4, a summary on the spectral collocation 

numerical formulation is introduced. In section 5, a 

comparison between our numerically obtained 

efficiencies and results of a one-dimensional (1 − D) 

LM-MHD inductionless generator analytical model is 

conducted. In section 6, results are presented and 

discussed in terms of dimensionless parameters 

defining the problem. Concluding remarks with 

dimensional estimates on the power of prospective 

devices for household application with different liquid 

metals are shown in section 7. Finally, Appendix A 

provides details on the analytical expressions used in 

section 5. 

 

 
Fig. 1. Schematic of the generator setup. 

 
 

 
Fig. 2. Generator dimensionless cross-section. 

 
 

2. PHYSICAL FORMULATION 

It deals with the functioning of a LM-MHD electric 

generator by attaching a load resistance to a 

rectangular duct holding an electrically conducting 

oscillatory flow interacting with a magnetic field in 

the inductionless approximation. This problem is 

along the lines of Rizzo-Sierra (2017), Rizzo-Sierra 

et al. (2016). They deal with similar systems from 

the magnetohydrodynamics standpoint, without a 

load resistance attachment and other particularities 

an electrical generator requires. These imply 

solving the Navier-Stokes equation with a 

harmonically driven, incompressible, electrically 

conducting, laminar, completely developed, and 

viscous flow through a thin-walled duct of 

rectangular cross-section —Figs. 1, 2—. Flow 

interacts with a uniform magnetic field traverse to 

it, and is connected to a load resistance (RK). Duct 

conductivities are considered null and tending to 

infinite for Hartmann (perpendicular to applied 

magnetic field) and lateral walls (parallel to it) 

respectively. That way, functional dependence in 

the Cartesian coördinate system of all variables lies 

in y, z, while t denotes time. u = ux (y, z, t) ˆ
xe  

defines velocity, and ˆ
xe  is x direction unit vector. 

Readers are encouraged to consult those references 

for details on the basic physical magneto-

hydrodynamic formulation. Then they can continue 

reviewing the load resistance attachment 

component of it within this paper’s section 3. 

Previous considerations conduce to equations and 

boundary conditions in terms of F and Fw, fluid and 

wall regions electric stream current functions, 

respectively. Before de-coupling them, the 

formulation results: a) Equations 

2 2 2
2 10 0

02 2 2

 
   

    
    

u u F
M iN u G

y z y
                (1) 

Within the fluid region (0 < y < a ∧ 0 < z < 1): 

2 2

0 2 2

 
 
 

F F
u

y z
                                                               (2) 

At the duct walls (a < y < a + d ∧ 0 < z < 1 + d; 0 < 

y < a + d ∧ 1 < z < 1 + d): 

2 2

2 2
0

 
 

 

w wF F

y z
                                                              (3) 

b) Boundary conditions: At z = 0: 

2 2

2 2
0,  0,  0

     
    

     

wFF F F

z z zy z
                 (4) 

At y = 0: 

2 2

2 2
0,  0,  0

     
    

     

wFF F F

y y yy z
                 (5) 

At z = 1: 

2 2

2 2

σ
0,  ,  

σ

   
     

   

w L
w

FF F F
F F

z zy z
            (6) 

At y = a: 

2 2

2 2
0,       

    
   

     

wFF F F

y yy z
       

σ

σ

  
  

  

w HF F

z z
                                                              (7) 

At z = 1 + d: 

0wF                                                                              (8) 

At y = a + d: 

0





wF

y
                                                                           (9) 
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3. THIN WALL APPROXIMATION, 

HARTMANN LAYER 

CONTRIBUTION TO THE FLUID 

ELECTRIC CURRENT AND LOAD 

RESISTANCE ATTACHMENT 

(1)-(9) define the problem in terms of F (y, z) and Fw 

(y, z). To be in terms of a single variable, fluid and 

wall regions must be decoupled. That’s the thin wall 

approximation: regarding d  1 and the medium 

around the duct as isolating. Details on Rizzo-Sierra 

(2017). (7) results: 

2

2

( , ) ( , )


 


 

F a z F a z

y z
                                              (10) 

(10) is valid within the thin wall approximation 

(M−1   1), but it needs modification since 

it does not give the correct limit when  → 0 due 

to ignoring the discontinuity in jy across the Hart-

mann layer. The electric current surface density z 

component is jz = uc − ∂ϕ/∂z where uc = uc (1 −e−Mξ) 

is the core-layer velocity profile as discussed in 

Moreau (1990).  = d (σH/σ) = 0 and = d (σL/σ) 

→ ∞ are the Hartmann and side walls conductance 

ratios respectively, for the system to function as a 

generator. uc is the core velocity and ξ is the 

coördinate perpendicular to the Hartmann wall 

measured from it. Due to   continuity across the 

Hartmann layer, ∂ /∂z can be considered constant 

within an error of O(M−2). Outside the layer, the 

electric current surface density z component is jzC = 

uc − ∂ /∂z. The net current trough it is: 

0 0
( )

     
M c

z zC c

u
j j d u e d

M

                     (11) 

In terms of h, the fluid region electric current stream 

function is defined by jyo = −∂h/∂z and jzo = ∂h/∂y. 

(11) can be rewritten via (2): 

2 2
1

2 2

( , ) ( , )
  

   
   

F a z F a z
h M

y z
                         (12) 

Adding to this last estimation the current into the 

load resistance (RK) in (10) one gets: 

2
1

2

2
1

2

( , ) ( , )
( )

( , ) 1 ( ,1)

1 ( ,0)






 
  

 

  
  

 

 
 

 

k

k

F a z F a z
M

y z

F a z F a
M

R zy

F a

R z

                            (13) 

The last two terms in Eq. (13) come from Ohm’s law. 

Since φ (y, z) = ∂F(y,z)/∂z, an estimate of the current 

through RK (IK ) at y = a is: 

1

0
0.25

( , )1 1 (2 )

2 2






 
  

z

z
K

K K K

a z
I

R R R

 
             (14) 

1/2 in (14) far left means that restricting the analysis 

to one of the Hartmann walls deals with one half of 

the total through RK . Factor of 2 in 2 '  reflects 1/4 

− 0.25 duct symmetry, as schematized in Fig. 3. One 

can notice that ' 2    , once realizing that   

is the potential difference between side/lateral walls 

in Fig. 2. In dimensionless quantities:  

1

0
0.25

( , )






 

z

z
K

K K

a a za
I

R R


                                   (15) 

Non-dimensionalization equations used to obtain 

(15) were 
0 0u B L   for the electric potential, 

0 0

j
j u B  for the electric current surface density, 

and 
K K iR R R for the load electric resistance. 

iR b al  is an estimate for the generator internal 

electric resistance, l is the duct length and a, b half of 

the duct height and width respectively. Characteristic 

length used for non-dimensionalization was half of 

the duct width, i.e., L = b = 1. Since y y L y b  , at 

y = a: 1y a b a a   . a  is then simultaneously 

half of the dimensionless duct height and its aspect 

ratio. On the other hand 1z z b z  . The non-

dimensionalization relation resulting for the electric 

current is 
0 0 0 0 0 0 .I I u B Ll I u B bl I u B l        

 

 

 
Fig. 3. Schematic of the generator setup taking 

into account 1/4 − 0.25 duct symmetry. 
 

 

With (15), (1) to (9) result: a) Fluid region governing 

equation. 

2 2 2
2 10 0

02 2 2

 
   

    
    

u u F
M iN u G

y z y
              (16) 

Where, given that 0 < y < a ∧ 0 < z < 1: 

2 2

0 2 2

 
 
 

F F
u

y z
                                                              (17) 

b) Boundary conditions. 

2 2

2 2
0,       0

    
   

    

F F F

z zy z
                            (18) 

At y = 0: 
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2 2

2 2
0,       0
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F F F

y yy z
                            (19) 

At z = 1: 

2 2

L2 2
0,        0

   
    
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F F F
F

zy z
                  (20) 

At y = a: 
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0
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
 


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F F

y z
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M M
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          (21) 

Last term in (21) bottom results from (13) 

considering (15) for 1a  . That is, (13) is correct for 

a = 1. Notice that ∂F(a,0)/∂z = 0. In addition to 

conditions in (16) to (21), the formulation must also 

account the dimensionless volumetric flow 

conservation condition in terms of the averaged 

velocity amplitude (u0): 

1

00 0
 

a
u dydz a                                                                (22) 

(22) comes from  
1

0 00 0
.

a

ds
u ds u dydz a     since a 

is simultaneously the generator cross-section 

dimensionless area, half of its height, and aspect 

ratio. Because the spatial average of u0 is  

0u =
0.

ds

ds

u ds

ds




, in order to normalize u 

respect to it: 

0
1

0
00 0

( , )( , , )
 

 

it

n a

u y z eu x y z
u a

u u dydz

                                  (23) 

4. NUMERICAL FORMULATION AND 

ISOTROPIC EFFICIENCY 

To solve (16)-(21) with spectral collocation, a 

function F = F (y,z) satisfying boundary conditions 

is proposed as a finite series of even Chebyshev poly-
nomials (T2m (y/a), and T2n (z)). 

2 2

0 0

( ) ( )

 

  
y z

N N

mn m n
m n

y
F A T T z

a
                                    (24) 

Coefficients Amn are to be determined. Ny and Nz are 

the number of terms to consider along y and z 

coördinates respectively. Use of Gauss-Lobatto 

collocation points set is advisable because it yields 

proper numerical resolution for the boundary layers 

by concentrating towards the walls. Amn can be 

considered as a vector β(AJ) = Amn, and the system 

of equations can be expressed as 

1
.TN

PJ AJ AJ PJAJ
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TAJ N , and ( 1)( 1).T y zN N N  

Elements of αPJ×AJ and known vector γ(PJ) are 

obtained by replacing (24) into (16)-(21). Explicitly, 
into (16): 
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 (25) 

Replacing into (18) and (19), boundary conditions 

at z = 0 and y = 0 are identically satisfied, so no 

equations are generated. Into (20) left, the hydro-
dynamic boundary condition at z = 1 results: 
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             (26) 

Into (20) right, electromagnetic boundary condition 

at z = 1 results: 

2
2 L 2

0 0

4  . 0
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Into (21) top, the hydrodynamic boundary condition 

at y = a results: 

 
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                                                                          (28) 

Into (21) bottom, the electromagnetic boundary 

condition at y = a results: 

 
2
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2 2 1 2 2
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H 22 2
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 

(29) 

The linear system by (25)-(29) can be solved by any 

method. Then, the solution of (24) can be con-

structed. Alternatively, key to the characterization of 

a generator is its isotropic efficiency ηe, defined as the 

ratio between the system’s time averaged output 

electric power
eP  and its time averaged input 

power. The last is given by the power related to the 

oscillatory flow interacting with the electro-magnetic 

field 
fP plus the time averaged power related to the 

system’s heating by viscous dissipation P
,  



J. A. Rizzo Sierra et al. / JAFM, Vol. 12, No. 6, pp. 2095-2109, 2019.  

 

2099 

 

 
 

 
Fig. 4. 1 −D analytical vs. numerical generator’s isotropic Faraday and electric efficiencies (ηF and ηe, 

respectively). Nω = 106, a = 1. Top left: M = 101. Top right: M = 102. Bottom left: M = 103. Bottom right: 

M = 104. 
 

 

i. e.,  .e e fP P P    
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        (30) 

µ is the fluid’s dynamic viscosity and µΦu its 

Newtonian viscous dissipation function, 

   
2 2

/   /u x xu y u z       
 

 Cf. Bird et al. 

(2002) denote time average integration over an 

integer number of periods (τ), and dV volumetric 

integration. There’s also the Faraday’s efficiency 

(without Pµ). To distinguish it from ηe we call it ηF . 

With the same non-dimensionalization factors used 

in the formulation, realizing that 
0

2 2 2.B L M   

M is the Hartmann’s number Rizzo-Sierra (2017) we 
have: 

2 2

2

1     
      
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x xu u

y zM
                            (31) 

 3.j E Wm  
is the electric power volumetric 

density for a conducting fluid interacting with the 

electromagnetic field,    3j B .u Wm   
is the 

flow power volumetric density due to the fluid’s 

oscillatory motion (i.e., due to its mechanical 

energy), and µΦu ([Wm−3]) is the power volumetric 

density at which the fluid’s mechanical energy is 
transformed into heat within the generator. 

5. ANALYTICAL VS. NUMERICAL 

COMPARISON 

In absence of experimental data, numerical 

calculations are validated if they are reasonably close 

to analytical results. In this paper that’s not the 

objective due to the dissimilar nature of the models, 

as will be described. In this case an analytical 

solution is not viable. Hence, a comparison between 

an analytical one-dimensional (1−D) inductionless 

oscillatory solution against our numerical oscillatory 

solution on the isotropic efficiency in (30) is carried 

on. Analytical details on Appendix A. Figure 4 

shows the comparison for a sample of the para-

metric range studied. Beyond the similarity on the 

curves in Fig. 4, is important to notice their common 

features. Numerical calculations show that ηe > ηF in 

Fig. 4. Analytical calculations too, except in Fig. (4 

bottom, right). That’s expected since ηe considers 

viscous dissipation while ηF doesn’t. Both imply that 

P
∝ M-2 . That’s appreciated by looking at (31) 

for the numerical and (33) and (36) for the analytical 

one. Then, increasing M will progressively reflect ηe 

∼ ηF . This detail is appreciated from Fig. (4 top, left) 

up to Fig. (4 bottom, right), where the two analytical 

efficiencies are indistinguishable, while the 

numerical ones are as close as they get in the 

parametric range inquired. Increasing M also means 

prevalence of MHD effects due to higher intensity of  
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Table 1 M/Nω and NY = NZ, for the set of numerical experiments performed. a = 0.25, 0.5, 0.75, 1.0 

 
 

 

 
Fig. 5. Velocity profiles.  = 0,  → ∞. Nω = 105, M = 102, a = 1; M/ Nω = 10−3. RK = 10−3. Left image: 

profile at y = 0. Right image: profile at z = 0. 
 

 

the magnetic field. The treatment given by the 

analytical model on the electromagnetic conditions 

of the problem is less thorough than the numerical. 

Because it is 1 − D, the analytical model does not 

develop a quantitative treatment on the 

electromagnetic boundary conditions defining the 

problem equally comparable to the numerical, 

summarized in sections 2, 3, and 4. Details on Rizzo-

Sierra (2016). For example, while for the numerical 

model     it

y y z z
ˆ ˆE E y,z e E y,z e e      

, for the 1 

−D analytical model  0

it

z
ˆE E e e   , E0 being a 

constant. This begins to explain why the two differ 
with increasing M values. 

A formal validation between analytical and 

numerical models could not be our goal here, but a 

mutual cross-reference due to the disparity of their 

physical formulation due to the limitations of the 

analytical one. An analytical solution is not currently 

viable and there is no experimental data available on 

it neither, hence the need of numerical approaches. 

Successful validation instances of this basic 

numerical model before its application to the 

generator case (where analytical and numerical 

approaches were much more comparable) can be 

found in Rizzo-Sierra (2017), Rizzo-Sierra et al. 
(2016). 

6. RESULTS 

Once numerical results are comparable to analytical 

results, a generator characterization can be 

attempted. This is done by inquiring its behavior 

within a parametric range of interest. Parameters 

considered are the Hartmann number M, oscillatory 

interaction parameter Nω, electric load resistance RK, 

and duct aspect ratio a. Emphasis was put on high 

Hartmann numbers because they characterize strong 

magnetic fields, favoring electric generation. Nω 

range was chosen due to our interest in the flow at 

low frequencies having in mind LM-MHD 

generators. Collocation sets to obtain converging 

solutions are not such an issue in the LM-MHD 

generator situation as in the non generating flow 

discussed in Rizzo-Sierra (2017). There, interest 

revolved on velocity profiles and their correct 

side/lateral and Hartmann layers resolution, which 

require higher values for NY ∧ NZ to obtain 

smoothed profiles towards the walls, mainly 

Hartmann’s. Here, interest centers on 
eP ,

fP  and 

P
in order to obtain ηe in (30). The situation is 

grasped with Table 1, filled with values of M/Nω, NY, 

and NZ. The last two register values above which the 

numerical solution was stable up to three significant 

figures within the ranges checked for ηe and ηF. 

Figures 5 to 7 portrait velocity profiles over a semi-

period (0 − π Rads) in increments of π/5 Rads. They 

show how flow comply with characteristics similar 

to those described in Rizzo-Sierra (2017), with a new 

feature. Flow structure depends not only on 

increasing M/Nω ratio as shown in side wall figures 

(5 left), (6 left), (7 left); particularly on the last one. 

It also depends on RK value, noticeable when 

comparing Figs. (5 left) and (7 left). Flow structure 

is the same but its distribution changes with RK, as 

well as the surface electric current density 

distribution j ,  as shown in Fig. 8, just to depict one 

example at M/Nω = 10−3, where the trend is more 

perceivable. Notice also the higher 

phenomenological representativity of side wall layer  
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Fig. 6. Velocity profiles.  = 0,  → ∞. Nω = 104, M = 103, a = 1; M/ Nω = 10−1. RK = 5000. Left image: 

profile at y = 0. Right image: profile at z = 0. 

 

 

 
Fig. 7. Velocity profiles.  = 0,  → ∞. Nω = 103, M = 104, a = 1; M/Nω = 101. RK = 15000. Left image: 

profile at y = 0. Right image: profile at z = 0. 

 

 

Fig. 8. j distribution respect to M, Nω, M/ Nω and RK . Nω = 105, M = 102, a = 1, t = 0 Rads; M/Nω = 

10−3. Top left: RK = 10−3. Top right: RK = 10.3. Bottom left: RK = 90.8. Bottom right: RK = 800. 
 

 

velocity profiles (left) over Hartmann’s (right). 

Figures 9 to 12 illustrate the behavior of 
eP ,

fP , 

and P
 respect to M for a high Nω in (9), (10) and 

a low Nω in (11), (12). Notice that 
eP maxima 

remain at the same level, trend consistent with 

different M values for 
eP . Explaining that is not 

straightforward since the parameters defining the 

problem (M, Nω, and a) are embedded in the 

formulation. In (12), the amount of current inside the 

generator (jG), not through the load resistance RK , is 

jG ∝ M−1. Considering that    O E O u B by 

means of Ohm’s law, since
0M B L   , it 

results that  O E M . This means that 

1

eP MM  , so the behavior of 
eP respect to M 

seems reasonable. Notice how this is reflected in the 

1 − D analytical model too by (34) combined with 

(33). For P
, it was discussed how 2P M

  . 

This means viscous dissipation decreases rapidly 

with increasing M, which can be appreciated from  
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Fig. 9. 

eP and P
respect to M. Nω = 106, a = 1. Left: M = 101. Right: M = 103. 

 

 

 
Fig. 10. 

fP respect to M. Nω = 106, a = 1. Left: M = 101. Right: M = 103. 

 

 
Fig. 11. 

eP and P
respect to M. Nω = 102, a = 1. Left: M = 101. Right: M = 103. 

 
 

the figures. But P
 could also decrease with RK, as 

noticeable in Fig. (11, right). Regarding that, (13) 

multiplied by M shows that the term related to the 

electric current through the load resistance RK can 

then be considered 1

0 25K . KI MR

  . Now, since 

M2=NωRω, M N  ⇔ Nω ∝ M2. Therefore, 

1

0 25K . KI N R



  . This means that for low inter-

action parameters such as Nω = 102, less current is 

drawn from the generator for a fixed RK, which 

translates into stronger Lorentz forces acting on the 

fluid proportional to j B , and therefore into 

greater averaged velocity gradients in (31), leading 

to greater P
values diminishing with increasing 

RK values. By the way, it must be noticed that 

fP j B   as well. The difference with the 

situation depicted in Fig. (9, right) is that at Nɷ =106, 

more current is drawn from the generator for a fixed 

RK , so the averaged velocity gradients in (31) result 

smaller and the effect described is damped. Since 

fP j B  , by similar considerations to the ones 

just used for 
eP , 1

fP MM  . This way, what is 

shown in Figs. 10 and 12 seems reasonable as well. 

Figures 13 to 16 inquire the influence of Nω on 
eP

,
fP  and P

. For the latter, since 2P M

 , it 

is clear why P
 is higher for M2 in Fig. 13 than for 

M4 in Fig. (15). 
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Fig. 12. 

fP respect to M. Nω = 102, a = 1. Left: M = 101. Right: M = 103. 

 

 
Fig. 13. 〈𝑷𝒆〉 and 〈𝑷𝝁〉 respect to 𝑵𝝎. 𝑴 = 𝟏𝟎𝟐, a = 1. Left: 𝑵𝝎 = 𝟏𝟎𝟑. Right: 𝑵𝝎 = 𝟏𝟎𝟔. 

 

 
Fig. 14. 〈𝑷𝒇〉 respect to 𝑵𝝎. 𝑴 = 𝟏𝟎𝟐, a = 1. Left: 𝑵𝝎 = 𝟏𝟎𝟑. Right: 𝑵𝝎 = 𝟏𝟎𝟔. 

 

 
Fig. 15. 〈𝑷𝒆〉 and 〈𝑷𝝁〉 respect to 𝑵𝝎. 𝑴 = 𝟏𝟎𝟒, a = 1. Left: 𝑵𝝎 = 𝟏𝟎𝟑. Right: 𝑵𝝎 = 𝟏𝟎𝟔. 

 
 

Remembering Fig. (11, right), when the situation is 

checked for M = 103 and Nω = 102 (not shown here), 

an analogue occurrence is found, so the same 

considerations apply regarding P
 respect to Nω. 

Moreover, no apparent effect of Nω on 
eP  for this 

parametric range is observed. Focusing on that, it 

was previously stated that 
eP ∝ MM−1. Recalling 



J. A. Rizzo Sierra et al. / JAFM, Vol. 12, No. 6, pp. 2095-2109, 2019.  

 

2104 

 

 
Fig. 16. 〈𝑷𝒇〉 respect to 𝑵𝝎. 𝑴 = 𝟏𝟎𝟒, a = 1. Left: 𝑵𝝎 = 𝟏𝟎𝟑. Right: 𝑵𝝎 = 𝟏𝟎𝟔. 

 

 
Fig. 17. 〈𝑷𝒆〉 and 〈𝑷𝝁〉 respect to a. M= 𝟏𝟎𝟐, 𝑵𝝎 = 𝟏𝟎𝟒. Left: 𝒂 = 𝟎. 𝟐𝟓. Right: 𝒂 = 𝟏. 

 
 

 
Fig. 18. 〈𝑷𝒇〉 respect to 𝒂. 𝑴 = 𝟏𝟎𝟐, 𝑵𝝎 = 𝟏𝟎𝟒. Left: a = 0.25. Right: a=1. 

 

 
Fig. 19. 〈𝑷𝒆〉 and 〈𝑷𝝁〉 respect to a. 𝑴 = 𝟏𝟎𝟒, 𝑵𝝎 = 𝟏𝟎𝟒. Left: 𝒂 = 𝟎. 𝟐𝟓. Right: 𝒂 = 𝟏. 

 

that M2 = NωRω, M N ⇔ Nω ∝ M2. This way we 

can rewrite 1 2 1 2

eP N N  , so the behavior of 
eP

respect to Nω seems reasonable as well. Analogue 

considerations conduce to 1 2 1 2

fP N N  , so Figs. 

13 and 16 do not surprise. In their part, Figs. 17 to 20 

inquire the influence of the aspect ratio a on 
eP , 
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Fig. 20. 〈𝑷𝒇〉 respect to 𝒂. 𝑴 = 𝟏𝟎𝟒, 𝑵𝝎 = 𝟏𝟎𝟒. Left: a = 0.25. Right: a=1. 

 

 

 
Fig. 21. 〈𝛈𝒆〉 and 〈𝛈𝑭〉 respect to M. 𝑵𝝎 = 𝟏𝟎𝟔, 𝒂 = 𝟏. Left: 𝑴 = 𝟏𝟎𝟏. Right: 𝑴 = 𝟏𝟎𝟒. 

 
 

 
Fig. 22. 〈𝛈𝒆〉 and 〈𝛈𝑭〉 respect to M. 𝑵𝝎 = 𝟏𝟎𝟐, 𝒂 = 𝟏. Left: 𝑴 = 𝟏𝟎𝟏. Right: 𝑴 = 𝟏𝟎𝟐. 

 
 

 

fP  and P
. No appreciable effects are detected 

for P
 over this parametric range since 

 𝑂(〈𝑃𝜇〉) ∼ 𝑀−2 ∼ 0 for increasing M. The situation 

for 〈𝑃𝑒〉  and 〈𝑃𝑓〉  is as one should expect for a 

rectangular cross-sectioned duct, since 

 〈𝑃𝑒〉 = 1
𝜏⁄ ∫ ∫ ∫ ∫ (𝑗. 𝐸⃗⃗)

𝑎

0

1

0

𝑙

0

𝜏

0
𝑑𝑧𝑑𝑦𝑑𝑥𝑑𝑡, 〈𝑃𝑓〉 = 1

𝜏⁄  

∫ ∫ ∫ ∫ [(𝑗× 𝐵⃗⃗). 𝑢⃗⃗]
𝑎

0

1

0

𝑙

0

𝜏

0
𝑑𝑧𝑑𝑦𝑑𝑥𝑑𝑡  That is, in 

principle 〈𝑃𝑒〉 ∝ 𝑎𝑀𝑀−1 and 〈𝑃𝑓〉 ∝ 𝑎𝑀𝑀−1 if one 

were to consider 𝜕
𝜕𝑦⁄ (𝑗. 𝐸⃗⃗) ∧  𝜕 𝜕𝑧⁄ (𝑗. 𝐸⃗⃗) ∼ 0  and 

𝜕
𝜕𝑦⁄ [(𝑗× 𝐵⃗⃗). 𝑢⃗⃗] ∧  𝜕 𝜕𝑧⁄ [(𝑗× 𝐵⃗⃗). 𝑢⃗ ] ∼ 0 or what would 

happen with variations of terms 𝑗. 𝐸⃗⃗  and (𝑗× 𝐵⃗⃗). 𝑢⃗⃗ 

for fixed M. The smaller the aspect ratio, the smaller 

the induced current, and so the smaller 〈𝑃𝑒〉  or 

〈𝑃𝑓〉. 〈𝜂𝑒〉 and 〈𝜂𝐹〉 behavior respect to M is shown in 

Fig. 21 for a high oscillatory interaction parameter 

and Fig. 22 for a lower one. The influence of M 

respect to 〈𝜂𝑒〉  and 〈𝜂𝐹〉  is clear. To explain it, 

previous arguments can be employed again. It was  

discussed how the current density flowing inside the 

generator is 𝑗𝐺 ∝ 𝑀−1, and that current through 𝑅𝑘 

is 𝐼𝐾−0.25 ∝ 𝑀𝑅𝐾
−1 . Thus, for a fixed 𝑅𝑘  an 

increment in M would translate into less current 

flowing inside the generator and simultaneously 

more current drawn from it. Both effects compensate 

for a fixed 𝑅𝑘when considering the order of 〈𝑃𝑒〉 , but 

regarding 〈𝑃𝑓〉, in principle more current drawn from 

the generator means less Lorentz force acting on the 
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Fig. 23. 〈𝛈𝒆〉 and 〈𝛈𝑭〉 respect to 𝑵𝝎. 𝑴 = 𝟏𝟎𝟐, 𝒂 = 𝟏. Left: 𝑵𝝎 = 𝟏𝟎𝟑. Right: 𝑵𝝎 = 𝟏𝟎𝟔 . 

 

 

 

 
Fig. 24. 〈𝛈𝒆〉 and 〈𝛈𝑭〉 respect to 𝑵𝝎. 𝑴 = 𝟏𝟎𝟒, 𝒂 = 𝟏. Left: 𝑵𝝎 = 𝟏𝟎𝟑. Right: 𝑵𝝎 = 𝟏𝟎𝟒. 

 

 

fluid and therefore decreasing 〈𝑃𝑓〉  values since 

〈𝑃𝑓〉 ∝ 𝑗 × 𝐵⃗⃗. This explains why 〈𝜂𝑒〉 and 〈𝜂𝐹〉 keep 

increasing with increasing M. There’s no apparent 

effect from the part of 𝑁𝜔 for the parametric range 

presented, as occurred with 〈𝑃𝜇〉. Figures 23 and 24 

illustrate the behavior of 〈𝜂𝑒〉  and 〈η𝐹〉  respect to 

𝑁𝜔 . As previously discussed, there’s no explicit 

intervention of 𝑁𝜔  in (30), which defines 〈𝜂𝑒〉 and 
〈𝜂𝐹〉,  but the same arguments employed keep 

applying. If 〈𝑃𝑒〉 ∝ 𝑁𝜔
1/2

𝑁𝜔
−1/2

,  〈𝑃𝐹〉 ∝ 𝑀𝑀−1 ∝

𝑁𝜔
1/2

𝑁𝜔
−1/2

;  and that’s reflected in the analytical 

model as well by (35) and (33) combined. 

Furthermore, since 〈𝑃𝜇〉 ∝ 𝑁𝜔
−1, it is clear that 〈𝜂𝑒〉 

and 〈𝜂𝐹〉  will vary very slowly if any at all with 

respect to that specific parameter, and that’s 

precisely noticed in those figures. Change respect to 

M is clear though. In their turn, Figs. 25 and 26 show 
〈𝜂𝑒〉 and 〈𝜂𝐹〉 respect to a. Observations analogue to 

the ones previously discussed wrap up these 

comments. Since 〈𝑃𝑒〉 ∝ 𝑎𝑀𝑀−1 and 

𝑂(〈𝑃𝜇〉)~𝑀−2~0, the behavior of 〈𝜂𝑒〉 and 〈𝜂𝐹〉 in 

those figures is reasonable with  

increasing a and M. In summary, a brief illustration 

on the flow (𝑢⃗⃗) and surface electric current density 

distribution (𝑗) in the generator is carried on with 

Figs. 5 to 8. Parameters concerning generator 

performance are M, 𝑁𝜔 , and a through 〈𝑃𝑒〉, 〈𝑃𝑓〉, 

〈𝑃𝜇〉 and features of η𝑒  and η𝐹  were investigated as 

follows: varying number of collocation points (NY 

and NZ), not shown here; 〈𝑃𝑒〉,  〈𝑃𝑓〉, and 〈𝑃𝜇〉 respect 

to M, see Figs. 9 to 12; 〈𝑃𝑒〉, 〈𝑃𝑓〉, and 〈𝑃𝜇〉 respect to 

a, see Figs. 17 to 20; η𝑒  and η𝐹  respect to M, see 

Figs. 32 to 22; η𝑒 and η𝐹 respect to 𝑁𝜔, see Figs. 23 

and 24; η𝑒 and η𝐹 respect to a, see Figs. 25 and 26. 

As a side result outside our scope, we can estimate 

dimensions and operation ranges of prospective LM-

MHD generators. We can use 〈𝑃𝑒〉 =
(σ𝑢0

∗2𝐵0
2𝐿3) 〈𝑃̃𝑒〉 = (ρν𝑢0

∗2𝑀2𝐿)〈𝑃̃𝑒〉 = (ρω𝑁𝜔𝑢0
∗2𝐿3) 〈𝑃̃𝑒〉, 

obtained from previous expression. Figures 9, 11, 13, 

15, 17, and 19 show how for a = 1, 

𝑂(|〈𝑃̃𝑒〉|)~10−2 as a peak value. With fluids such as 

Hg, Na, 𝐺𝑎68𝐼𝑛20𝑆𝑛12 , 𝑁𝑎22𝐾78, 𝑃𝑏𝐿𝑖17  with  

105 ≲ 𝑂(σ) ≲ 106 𝐴
𝑉.𝑚⁄ , magnetic fields of 

𝑂(𝐵0) ≲ 100𝑇 , generator semi widths b of 

 𝑂(𝑏 = 𝐿) ∼ 10−1  (L being the motion’s 

characteristic length), and motion’s characteristic 

velocities of 𝑂(𝑢0
∗) ∼ 101 𝑚

𝑠⁄ , we obtain that a 

mesoscale generator having in mind “household” 

devices can reach dimensional peak averaged output 

powers of 𝑂(|〈𝑃𝑒〉|) ≲ 103𝑊 . That translates into 

peak averaged volumetric power densities (ρ𝐸)  of 

𝑂(ρ𝐸)  ≲ 105 𝑊
𝑚3⁄  when considering axial 

longitudes of 𝑂(𝑙) ∼ 100𝑚 . This means they can 

produce peak dimensional averaged output powers 

of 𝑂 ≲ 103𝑊 for domestic energy consumption 

(corresponding to ≲ 8760 𝑘𝑊. ℎ
𝑦𝑒𝑎𝑟⁄ ), being of 

𝑂 ≲ 10−2𝑚3, at 0.05 ≲ 𝜂𝑒 ≲ 0.9 for Hg (𝑀 ∼ 103) 

and Na (𝑀 ∼ 103); or 0.1 ≲ 𝜂𝑒 ≲ 0.95  for 𝑃𝑏𝐿𝑖17 

(𝑀 ∼ 104) , 𝐺𝑎68𝐼𝑛20𝑆𝑛12  (𝑀 ∼ 104)  and 

𝑁𝑎22𝐾78 (𝑀 ∼ 104) depending on 𝑅𝐾. Figs. 21-26.   
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Fig. 25. 〈𝛈𝒆〉 and 〈𝛈𝑭〉 respect to 𝒂. 𝑴 = 𝟏𝟎𝟐, 𝑵𝝎 = 𝟏𝟎𝟐. Left: 𝒂 = 𝟎. 𝟐𝟓. Right: 𝒂 = 𝟏. 

 

 

 
Fig. 26. 〈𝛈𝒆〉 and 〈𝛈𝑭〉 respect to 𝒂. 𝑴 = 𝟏𝟎𝟒, 𝑵𝝎 = 𝟏𝟎𝟐. Left: 𝒂 = 𝟎. 𝟐𝟓. Right: 𝒂 = 𝟏. 

 

 

 
Fig. 27. Layout of the problem & its basic scheme. 

 

Table 2 Generator’s dimensional averaged power output estimates in order of magnitude for different 

liquid metals as working fluids. Externally applied magnetic fields of O(B0) ∼ 100 T , characteristic 

lengths of O(L) ∼ 10−1 m (i.e., cross-sections of O ∼ 10−2 m2), axial longitudes of O(l) ∼ 100 m, a = 1. 
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According to Yohanis et al. (2008), the 2005 average 

household energy consumption (𝐸𝐻) in the UK was 

 2000 ≲ 𝐸𝐻 ≲ 12000 𝑘𝑊. ℎ
𝑦𝑒𝑎𝑟⁄ . Calculations in 

Table 2 comply with 
0 0 0 1m BR u L u L .    

0u  is any velocity characteristic to the motion.

0 0 0

1 it

ds ds

u u .ds ds e dt




  

   
   
   is the period average of 

the fluid velocity amplitude spatial average as 

introduced in (22), (23). Since 

   0

itu y,z u y,z e  
, 

0 0u  . In the limit of

0u
taken as a fraction in the definition of Rm, one has 

Rm  1. Future work: first, a detailed study on the 

rescaling is required to determine dimensions of a 

prototype potentially useful in experimental 

protocols. Then, a comparison of numerical and 

experimental figures could ascertain both 

physical/numerical and experimental shortcomings. 

For example, temperature dependence of the values 

used to obtain Table 2 was not considered since they 

were given in orders of magnitude and its variation 

over valid temperature ranges is not significant, Cf. 

Müller et al. (2001). Finer estimates can use 

polynomial fitting (i.e., σ = σ(T ), and ν = ν(T )). 

Beyond the scope of this paper, analyses studying the 

overall influence of temperature on the generator 

operation can and must be developed as well. 

7. CONCLUSION 

The performance characterization of a generator was 

conducted by calculating its isotropic electric 

efficiency. The model consisted of a harmonically 

driven liquid metal fully developed incompressible 

viscous laminar oscillatory flow confined to a 

rectangular channel interacting with a uniform 

magnetic field and attached to a load resistance. 

Spectral collocation method was used to solve the 

boundary-conditioned Navier-Stokes equation un-

der inductionless approximation for the magnetic 

field with implementation of gradient formulation 

for the electric field. Numerical calculations were 

compared with a 1 − D analytical solution developed 

for the same problem, finding reasonable agreement. 

Performance characterization is done in terms of 

dimensionless parameters defining the problem: M, 

Nω, and a. Influence on ηe and ηF of these parameters 

through <Pe>, <Pf> and <Pμ> was investigated as 

well. 

APPENDIX A. ANALYTICAL 

EXPRESSIONS 

Schematics in Fig. 27. It is a (1 − D) analytical model 

for a LM-MHD closed rectangular channel alternate 

generator. The model was developed by Dr. Raúl 

Alejandro Ávalos Zúñiga and Gabriel García at 

CICATA-IPN, Santiago de Querétaro, Querétaro, 

México (Cf. Rizzo-Sierra (2016)). Using 

0 0 ,u u U  2

0 0G G Ua   2

0 ,N B    

,K K iR R R  and χ = y/a, the quantities needed to 

calculate ηe in (30) are obtained. That is, <Pe>, <Pf> 

and <Pμ>. U is a characteristic velocity for the 

system, u0 is the velocity field amplitude, G0 is the 

pressure gradient amplitude, Ri = b/σal is an estimate 

of the system’s internal resistance. With: 

 
 

1
ω

0
1

ω

cosh 1 χ

(χ) 1

cosh 1







 



M iN

f

M iN

                          (32) 

  
0

0 02 1
ω 0 0

(χ) (χ)
1


 

G
u f

M iN f K
              (33) 

one can obtain: 

 2
0 0 0 02 1 (χ) (χ) eP M K K u u               (34) 

  
   (35) 

0 0(χ) (χ)
2

χ χ

u u
P

 


 
                                        (36) 

Tildes indicate dimensionless quantities, and one bar 

above signifies taking a quantity’s complex 

conjugate. Non-dimensionalization equations result: 
2 ,e eP P a bL vU  2 ,f fP P a bL vU  

2.P P a bL vU    1

0 1 1k i k KK R R R R    , 

(dimensionless by definition) is the load factor for 

the system considered also as 
0 0 0 0K E u B  . E0 is 

the electric field amplitude across the load resistance, 

and as before, B0 is the externally applied magnetic 

field. 
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