
 

 
Journal of Applied Fluid Mechanics, Vol. 13, No. 1, pp. 199-209, 2020.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.29252/jafm.13.01.30077 

  

Multi-Parameter Optimization and Analysis on 

Performance of a Mixed Flow Pump 

X. F. Wu1, X. Tian2†, M. G. Tan2,3 and H. L. Liu2,3 

1 School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China 
2 Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu, 

212013, China 
3 Institute of Fluid Engineering Equipment, Zhenjiang, Jiangsu, 212013, China 

†Corresponding Author Email: tianxiao1128@163.com 

(Received January 25, 2019; accepted April 27, 2019) 

ABSTRACT 

A mixed flow pump with guide vanes was chosen as research model in this study, and eight parameters of the 

impeller were selected as optimization variables, including blade outlet inclination angle, blade wrap angle at 

hub, blade inlet angle and outlet angle at middle stream line, blade outlet width, front shroud inclination angle, 

hub inclination angle and vane number. Firstly, orthogonal experimental method and CFD numerical simulation 

method were used to produce samples, then the RBF neural network was adopted to establish the performance 

prediction model as the objective function, multi-island genetic algorithm was used for solving the objective 

function at last. Based on all the above, a method of multi-parameter optimization method on energy 

performance of mixed flow pump without changing the nominal diameter of impeller outlet was proposed and 

then verified by experiments. By this method, the pump head and efficiency at the design point of the model 

pump were increased by 11.5% and 4.32%, respectively. Meanwhile, the peak value of pressure pulsation 

coefficient at pump inlet, impeller outlet, guide vane outlet and pump outlet all decreased obviously, by a 

maximum decrease of 62.9%. Compared to the original model, the static pressure in the optimization model 

increased by 30kPa and the gradient of static pressure distribution after optimization becomes larger and more 

uniform. The turbulent energy intensity at the impeller outlet was reduced by 0.2m2/s2. The pressures at the 

60% blade position and 80% blade position both increased by nearly 65kPa and the pressure decreased by 

50kPa at the blade pressure side. 

 

Keywords: Energy characteristics; Mixed flow pump; Multi-island GA; Optimization design. 

NOMENCLATURE 

D1 impeller inlet diameter 

D2 impeller outlet diameter 

H head 

l impeller outlet width 

n pump rotation speed 

ns pump specific speed  

Qd flow rate 

T1 front shroud inclination angle  

T2 hub inclination angle 

z1 impeller blade number 

z2 diffuser blade number 

 

β1 installing angle of blade inlet 

β2 installing angle of blade outlet 

η pump efficiency 

θ blade outlet inclination angle 

φ blade hub wrap angle 

 

  

 
 

1. INTRODUCTION 

With the rapid development of economy, the 

application of mixed flow pump has gradually 

expanded in China, which plays an important role in 

hydraulic engineering. Therefore, to improve 

efficiency of the mixed flow pump is meaningful for 

energy saving. 

In order to reduce the loss in the guide vane, Jin-Hyu 

et al. (2011)  optimized a mixed flow pump with high 
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specific speed by numerical simulation and the 

efficiency at design point increased by 7.05%. Heo 

et al. (2016) used response surface method to 

improve performance of a mixed flow pump and 

made the efficiency increase by about 1.36% under 

the regulation flow rate. 

Min et al. (2015) studied the influence of blade 

thickness on the performance of the mixed flow 

pump and found that the efficiency would increase 

with the decrease of blade thickness. Bing et al. 

(2012), Wu et al. (2005) and Zhang et al. (2006) 

simulated the 3D turbulent flow field in a mixed flow 

pump by CFD and found that the unreasonable 

design would result in uniform flow, which can 

deteriorate the performance of pump. Guang et al. 

(2004) and Lu et al. (2004) combined CFD 

simulation with RBF neural network to optimize the 

performance of a mixed flow pump and succeeded 

increasing its efficiency from 88.1% to 88.8%. 

Ruofu et al. (2014) applied CFD numerical 

simulation and orthogonal test method to enlarge the 

efficiency of the mix-flow pump and make hydraulic 

efficiency improved by 3.2% under the optimal 

condition. Zhang et al. (2014) optimized the 

performance of a mixed flow pump by overall 

consideration of numerical simulation and 

experimental texts. Li et al. (2015) studied the effect 

of blade tip clearance on the pump performance and 

found that the larger blade tip clearance can help to 

reduce the pressure pulsation at impeller inlet area 

under the small flow conditions, which makes the 

mixed flow pump run more stably. Duraisamy et al. 

(2019) advocated that by exploiting foundational 

knowledge in turbulence modeling and physical 

constraints, data-driven approaches can yield useful 

predictive models. Ling et al. (2016) and Ling et al. 

(2015) established a machine evaluation algorithm 

and presented a method of using deep neural 

networks to learn a model for the Reynolds stress 

anisotropy tensor from high-fidelity simulation data 

which was more accuracy compared with generic 

neural network architecture. Ma et al. (2015) used 

Neural Networks (NNs) numerical simulations of 

bubbly multiphase flows to find closure terms for a 

simple model of the average flow. The resulting 

model predicts the evolution of the various initial 

conditions reasonably well. Derakhshan et al. (2013) 

redesigned impeller by CFD based on optimization 

algorithm. The results show that the efficiency of 

centrifugal pump was improved by 3.60%. Bellary et 

al. (2014) optimized the main parameters of impeller 

by CFD using multi-objective optimization 

algorithm. The results show that the optimized head 

is 9.5m and the efficiency is increased by 2.4%. 

Susanne et al. (2005) simplified the model control 

parameters. The optimization design of the pump 

blade was completed through parameter cycle 

iteration by CFD. 

Generally, only the key parameters of impellers were 

selected for optimization of mixed flow pump, 

whose number was usually less than 5. Meanwhile, 

the diameter of impeller outlet was usually 

considered as an optimization variable. However, in 

order to reduce engineering cost in practical 

application, it was often requested that the 

performance of mixed flow pumps should be 

improved without changing the diameter of impeller. 

Based on all above consideration, a new multi-

parameter optimization method on improving energy 

performance of mixed flow pump without changing 

impeller outlet diameter was proposed in this paper, 

which was verified by experiments. 

2. RESEARCH MODEL 

The mixed flow pump with specific speed of 336 was 

used as the research object. The main design 

parameters of the pump include flow rate 

Qd=1300m3/h, head H=20m, rotation speed 

n=1450r/min, efficiency η=85%, and other main 

structure parameters were shown in Table 1. 

The model pump consists of impellers, guide vanes 

and discharge elbow. Besides, the impellers and 

diffusers were all made by casting as shown in Fig. 

1. 

 

Table 1 Main structure parameters of model 

pump 

Number Name Parameter Size 

1 
Inlet diameter/ 

mm 
D1 270 

2 
Outlet diameter/ 

mm 
D2 320 

3 
Impeller blade 

number 
z1 5 

4 
Impeller outlet 

width / mm 
l 94 

5 
Blade hub wrap 

angle / ° 
φ 110 

6 
Installing angle of 

blade inlet / ° 
β1 20 

7 
Installing angle of 

blade outlet / ° 
β2 18 

8 
Hub inclination 

angle / ° 
T2 48 

9 

Front shroud 

inclination angle / 

° 

T1 40 

10 

Blade outlet 

inclination angle / 

° 

θ 34 

11 
Diffuser blade 

number 
z2 7 

 

3. TEST OF ENERGY PERFORMANCE 

Figure 2 shows the test performance curves of the 

model pump. As shown in Fig. 2, the pump 

efficiency is 81.08% and the head is 18.10m at the 

design point. Compared with design requirements, 

the efficiency is lower by 3.92%, and the head is 

lower by 1.9m. Besides, with the increase of flow 

rate, the head decreases fast. The efficiency curve is 

rather flat under large flow rate. The pump efficiency 

maintains upper 80% when the flow rate is between 

1200m3/h and 1350m3/h, which can be defined as 

high efficiency area. So, the high efficiency span of 
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this pump is only 150m3/h. 

According to the test results, it is necessary to 

optimize the mixed flow pump to meet the design 

requirements. 

 

 
(a) impeller 

 

 
(b) guide vanes 

Fig. 1. The mixed-flow pump model. 

 

 
Fig. 2. Performance curves of the model pump. 

 

4. NUMERICAL CALCULATION OF 

MODEL PUMP 

In order to predict the performance of following 

optimization samples by CFD accurately, the internal 

flow simulation method of the model pump was 

discussed at first step. 

4.1 3D Model and Grid Generation 

As shown in Fig. 3, the calculation domain consists 

of inlet extension, impeller, clearance between 

impeller and diffuser, diffuser, discharge elbow and 

outlet extension. In order to simulate the rotational 

effect, the multiple frames of reference were 

involved. The impeller was set to be the rotational, 

and the remaining flow field was set to be the 

stationary. ICEM15.0 was used to generate the grid 

of computational domain and all computational 

domains were generated into hexahedral cells to 

improve simulation precision. The grid of computing 

domain was shown in Fig. 3. 

 

 
Fig. 3. Grid of computational domain. 

 
4.2  Grid Independence Check 

The accuracy of simulation results increases with the 

number of the total grid. A grid independence check 

was carried out, including four schemes, to eliminate 

the effects of grid number on the simulation results. 

The total grid number of four schemes were 

1.4million, 2.84million, 3.54million, 5.14million. 

The head under design flow rate was used as the 

criteria. The simulation results were shown in Fig. 4. 

The y+ value is less than 40 and it satisfies the 

requirements of turbulence model. It can be seen that 

when the total grid number is less than the 3.5 

million, the calculated head increases with the total 

grid number. Head difference between 3.5 million 

total grid number and 5.1 million total grid number 

is just 0.01 m, only about 0.06 percent when the flow 

rate is 1300 m3/h. Therefore, considering the 

calculation resource and time, the 3.5 million total 

grid number was selected finally. 

 

 
Fig. 4. Grid independency check. 
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4.3  Numerical Method 

CFX15.0 was used to conduct steady numerical 

simulation of the pump internal flow; the turbulence 

was modeled by SST turbulence model. Besides, five 

operating points of 0.8Qd, 0.9Qd, 1.0Qd, 1.1Qd and 

1.2Qd were considered. 

The inlet boundary condition of computing domain 

was set as pressure inlet by 1 atm, and the outlet 

boundary condition was set as the mass flow outlet; 

in calculation, the PRESTO format was used to 

discrete pressure term, the second order windward 

format was used to discrete convection terms, and 

the others are discrete by second order center 

difference scheme. Also, the non-slip wall surface 

was adopted, and the roughness was set to be 

0.05mm. Frozen rotor interface was used for 

constant calculation. 

4.4  Validation of the Method 

The comparison between experimental test and 

numerical prediction of the model pump external 

characteristics is shown in Fig. 5. As can be seen, the 

head and efficiency curve of the numerical 

calculation is basically consistent with the trend of 

the test. The head decreases with the increase of the 

flow rate, and the efficiency increases first and then 

decreases with the increase of the flow rate, and the 

calculated value of the head is slightly lower than the 

experimental value. At the small flow rate, the 

calculation value of efficiency is slightly lower than 

that of experiment, but the calculation value of 

efficiency is slightly higher than the experimental 

value under big flow rate. 

Quantitative analysis shows that the CFD prediction 

value of efficiency is 80.848% while the test value is 

81.08%, the distance is only 0.232%. The CFD 

prediction value of head is 17.81m while the test 

value is 18.1m, and the predicted deviation is 1.6%. 

Pump test efficiency and efficiency of CFD are very 

closed to each other, which is due to that the 

efficiency of CFD is modified by empirical formula 

to include the volumetric efficiency and mechanical 

efficiency. The errors between calculation results 

and test results are all within 3% at each condition, 

which shows that CFD numerical calculation method 

is enough accurate and it can be used for subsequent 

performance prediction of sample points. 

 

 

 
Fig. 5. Test and numerical simulation curves. 

5. MULTI-PARAMETER OPTIMIZATION 

5.1  Establishment of Sample Points 

Eight parameters of impeller, such as blade outlet 

edge inclination angle θ, blade wrapping angle at hub 

φ, inlet angle β1 and outlet angle β2 at blade middle 

streamline, blade outlet width l, front shroud 

inclination angle T1, hub inclination angle T2 and 

vane number z were selected to do optimization. 

 

Table 2 Factor level table 

Factor Level 1 Level 2 Level 3 Level 4 

φ(°) 90 96.7 103.3 110 

T1(°) 28 32 36 40 

β1(°) 12 15.3 18.7 22 

β2(°) 18 21.3 24.7 28 

T2(°) 50 55 60 65 

θ(°) 22 28 34 40 

l(mm) 84 91 97 104 

z 4 5   

 
Orthogonal test was helpful for balancing the test 

factors and the distribution of data points, which can 

greatly reduce the number of test. Therefore, based 

on orthogonal test and CFD numerical calculation, 

blade number was set to be 2 levels, the other 7 

optimization variables were set to be 4 levels to 

obtain sample points. The factor level table is shown 

in Table 2. 

64 sets of research schemes were obtained by L64 

mixed orthogonal table design. Because of project 

quantity, to save the calculation resources, Isight 5.5 

was chosen to be the optimization platform, which 

can integrate 3d modeling software ProE, mesh 

generation software ICEM and numerical calculation 

software CFX. 

5.2  Orthogonal Test Results 

Due to limited space, only 10 sample data was listed 

here, as shown in Table 3. 

5.3  Establishment of Performance 

Prediction Model 

Compared with other neural networks, RBF neural 

network has the advantages of high efficiency, 

simple structure, fast training speed, good 

approximation performance and global optimization. 

RBF neural network was used to predict the 

performance of mixed flow pump to provide goal 

function for the next performance optimization of 

mixed flow pump. Based on RBF neural network, the 

performance of mixed flow pump was predicted by 

building the relation between input parameters (8 

optimization parameters) and to output parameters 

(head, efficiency). 

200 400 600 800 1000 1200 1400 1600
5

10

15

20

25

30

H
(m

)

Q(m3/h)

 H  Test

 H  Calculation

30

40

50

60

70

80

90

η
(%

)

 η  Test

 η  Calculation



X. F. Wu et al. / JAFM, Vol. 13, No. 1, pp. 199-209, 2020.  

 

203 

Table 3 Orthogonal test scheme 

Number θ l β1 Φ β2 T1 T2 z H(m) η(%) 

1 1 1 1 1 1 1 1 1 16.83 84.23 

2 1 1 1 4 2 2 2 1 15.17 81.65 

3 1 1 4 1 2 2 2 1 16.71 82.75 

4 1 1 4 4 1 1 1 1 13.81 83.73 

5 1 2 1 2 3 3 3 1 18.58 82.15 

6 1 2 1 3 4 4 4 1 18.45 78.47 

7 1 2 4 2 4 4 4 1 18.46 81.06 

8 1 2 4 3 3 3 3 1 17.09 82.25 

9 1 3 2 2 2 4 4 2 20.71 82.58 

10 1 3 2 3 1 3 3 2 19.34 84.35 

 

Based on the samples obtained by orthogonal 

experiments, 1~60 sets of data were selected to train 

RBF neural network prediction model, and 61~64 

groups were used as test samples. Figure 6 shows the 

mean square error variation curve of the RBF neural 

network. As can be seen from Fig. 6 the network 

completes the training in 300 steps, while the 

learning error accuracy gets lower than 10-3. 

 

 
Fig. 6. RBF mean square error variation curve 

of neural network. 

 

According to the error analysis, the multiple 

correlation coefficients of the head and efficiency 

generated by the neural network are 0.928 and 0.912 

respectively. The correlation coefficients are all 

above 0.9, which means that the approximation 

model has good precision. 

5.4  Optimization Algorithm 

Multi-island genetic algorithm was used to solve the 

performance prediction model. Figure 7 shows the 

optimization process based on the multi-island 

genetic algorithm. 

The optimization purpose was to improve the 

efficiency of the mixed flow pump while the head 

requirement must be met. So, the constraint was that 

H≥20m and 85%≤η%≤100%. The ranges of 

optimization variables were that 18≤β2≤28, 

50≤T2≤65, 84≤l≤104, 22≤θ≤40, 90≤φ≤110, 

28≤T1≤40, 12≤β1≤22, z =4, 5. 

There were 1002 steps in the optimization of the total 

iteration. From the 400th steps, the obvious local 

convergence appears. As optimization calculation 

goes on, the number of local convergence gradually 

increases and the convergence situation was good. 

Finally, all the iterative computation data were 

arranged to obtain global search results. 

 

 
Fig. 7. Optimization process of multi Island 

genetic algorithm. 

 
Figure 8 is the distribution of efficiency and head 

during the optimization procedure. In Fig. 8, the blue 

point represents the feasible solution, which can 

satisfy the constraint conditions. The red point 

represents unfeasible solution, which cannot satisfy 

the constraint condition. The green point represents 

the optimal solution. Therefore, the global optimal 

solution was that η=85% and H=20.6m. 

5.5  Optimization Results 

As shown in Table 4, after optimization, the blade 

number was 4, and the blade outlet edge 

inclination angle θ, blade wrapping angle at hub φ, 

blade outlet angle β2 and front shroud inclination 

angle T1 got smaller, which were reduced by 

10.3%, 8.6%, 10% and 18.3% respectively. The 

blade outlet width l, blade inlet angle β1 at middle 

streamline and hub inclination angle T2 became 

bigger, which were increased by 6.4%, 1.5% and 

14.6% respectively. 
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(a) efficiency 

 

 
Fig. 8. Distribution of efficiency and head during 

the optimization progress. 

 
Table 4 Comparison of parameters before and 

after optimization 

Variable 
Before 

optimization 

After 

optimization 

θ(°) 34 30.5 

l (mm) 94 100 

β1(°) 20 20.3 

φ(°) 110 100.5 

β2(°) 20 18 

T1(°) 40 32.7 

T2(°) 48 55 

Z 5 4 

6 COMPARISON OF THE 

PERFORMANCE OF MODEL PUMP 

BEFORE AND AFTER OPTIMIZATION 

In order to verify the optimization results, the 

optimized impeller was manufactured and tested. 

Figure 9 presents the new impeller. 

6.1  Energy Performance 

The energy performance comparison between the 

optimized model and the original model is shown in 

Fig. 10. As shown in Fig. 10, the optimized head 

curve is basically the same as before optimization, 

but its slope gets smaller at large flow rate. Under 

small flow rate, the optimized efficiency curve is 

slightly higher than that before optimization, but the 

trend of variation is basically the same. Under large 

flow rate, the optimized efficiency curve is obviously 

more flat. 

After optimization, the maximum efficiency was at 

1348m3/h and the efficiency was 86.08%, the head 

was 19.98m. Compared with the original model 

pump, the efficiency has increased by 5 % and the 

head has increased by 10.38%. At the design point 

(Qd=1300m3/h), the head and efficiency of the 

optimized pump were 20.18m and 85.4%, which had 

increased by 11.5% and 4.32% respectively. 

Therefore, the optimization was successful and can 

meet the design requirements. 

 
 

 
Fig. 9. Optimized impeller. 

 

 

 
Fig. 10. Comparison of performance curves 

before and after optimization. 

 
From Fig. 10, it can be found that the efficiency of 

optimized pump was always higher than 80% 

between 1000m3/h and 1550m3/h. Therefore, the 

high efficiency area span increased to 550m3/h, 

which is 3.67 times bigger than that before 

optimization. 

That is to say, the overall performance of this pump 

becomes improved, and the range of the high 

efficiency range is widened. 

6.2   Pressure Pulsation 

In order to compare the pressure pulsation 
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performance between the original model and 

optimized pump, four monitoring points were 

arranged, as shown in Fig. 11. P1 was at pump inlet, 

P2 was at guide vane inlet, P3 was at guide vane 

outlet and P4 was at pump outlet. 

 

 
Fig. 11. Monitoring points of pressure pulsation. 

 

Figure 12 presents the pressure pulsation in time 

domain at 1.0Qd. As can be seen, the pressure 

pulsation curves at each monitoring point all show a 

certain periodicity. From the P1 point to the P4 point, 

the pressure pulsation coefficient first increases and 

then decreases, and pressure pulsation at P2 is the 

maximum, the pressure pulsation at P4 is the 

minimum. Besides, the peak value of the pressure 

pulsation coefficient at P2 is 4.77 times bigger than 

that at the P4. The amplitude of the pressure 

pulsation at the P3 is the maximum after 

optimization, indicating that the pressure pulsation is 

severest here under the 1.0Qd condition. The peak 

value of pressure pulsation of P1, P2, P3 and P4 gets 

reduced by 62.9%, 37.5%, 28.57% and 62.5%, 

respectively after optimization, which means that the 

pressure pulsation condition gets improved. 

6.3   Internal Flow Field 

As known, the internal flow determines the 

performance for fluid machinery. In order to find out 

the mechanism how the performance got improved, 

the inner flow in this mixed flow pump was 

compared and analyzed in details before and after 

optimization. 

Figure 13 shows the static pressure distribution in 

axial middle section of impeller before and after 

optimization under 1.0Qd condition. Obviously, two 

pictures all show the similar pressure distribution. 

The inlet lower pressure area is in two sides of the 

impeller inlet while higher pressure area is in the 

middle of the impeller inlet. Meanwhile, the pressure 

increases from impeller inlet to outlet gradually. But 

the gradient of static pressure distribution after 

optimization becomes larger and more uniform and 

the pressure at outlet gets larger. Compared to the 

original model, the static pressure in the optimization 

model increased by 30kPa. This is mainly because 

the flow in the optimized impeller was improved and 

gets more uniform, which makes the inlet impact loss 

decrease. So the low pressure area at the impeller 

inlet was reduced. 

 

 
(a) P1 

 

 
(b) P2 

 

 
(c) P3 
 

 
(d) P4 

Fig. 12. Pressure pulsation in time domain at 

1.0Qd. 
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(a)before optimization    (b)after optimization 

Fig. 13. Static pressure distribution in axial 

middle section of impeller under 1.0Qd. 

 

Figure 14 shows the distribution of turbulent kinetic 

energy in axial middle section of impeller before and 

after optimization under 1.0Qd. As can be seen from 

Fig. 14, the maximum turbulent kinetic energy 

before optimization is near the rim in whole impeller, 

which indicates most unstable flow is here and great 

energy loss. Further comparison shows that the 

turbulent kinetic energy intensity at the rim decreases 

after optimization, which means that the flow gets 

more stable and the flow loss is reduced. So the pump 

efficiency is improved. 

 

         
(a)before optimization      (b)after optimization 

Fig. 14. Distribution of turbulent kinetic energy 

in axial middle section of impeller under 1.0 Qd 

 

Figure 15 shows static pressure distribution before 

and after the optimization at the 60% and 80% blade 

height positions under 1.0Qd. In Fig. 15, 0~1 

represents the position along the blade surface, 0 

represents the blade inlet and 1 represents the blade 

outlet. The PS represents the blade pressure side and 

the SS represents the blade suction side. 

As shown in Fig. 15, the changing tendency of static 

pressure distribution along radius direction at the 

60% and 80% blade height positions is almost the 

same. The static pressure at the blade pressure side 

gradually decreases from the blade inlet to the outlet, 

while the static pressure at the blade suction side 

increases gradually form blade inlet to outlet. 

Besides, there exists a "concave" near the inlet at the 

suction side, which means that there appears a 

pressure drop here and the vortex is more likely to 

appear. 

By further comparison, it can be seen that the 

pressures at blade pressure side of the two curves all 

decrease and the drop amplitude all is about 50 kPa 

at the inlet. 

 
(a) 60% blade height 

 

 
(b) 80% blade height 

Fig. 15. Static pressure distribution before and 

after the optimization under 1.0Qd. 

 

From 0 to 0.1, the pressures at blade suction side of 

two curves are all increased by nearly 65 kPa. But 

the pressure at blade suction side from 0.2 to 1 is 

decreased a little. This variation means the 

optimization reduce the pressure difference at inlet 

and make the pressure of suction side at inlet bigger. 

Therefore, the unstable flow at inlet caused by 

pressure difference can be effectively suppressed. 

7. CONCLUSION 

A multi-parameter optimization method for mixed-

flow pump performance without changing the 

nominal diameter of impeller outlet is proposed in 

this paper. 

(1) Eight parameters of impeller, including blade 

outlet inclination angle, blade wrap angle at hub, 

blade inlet angle and outlet angle at middle 

stream line, blade outlet width, front shroud 

inclination angle, hub inclination angle and vane 

number, were selected to optimize the 

performance of the pump. RBF neural network 

model was used to establish the performance 

prediction model of mixed-flow pump. The 

sample points of training and testing were 

determined by orthogonal test and CFD 

numerical simulation. The genetic algorithm was 

used to solve the prediction model. The 

numerical results showed that the performance of 

the model pump has been significantly improved 

after optimization. 
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(2) At designed point, the head and efficiency of the 

optimized pump were 20.18m and 85.4%, which 

had increased by 11.5% and 4.32 percentages 

respectively and the high efficiency area got 3.67 

times bigger after optimization. Besides, the 

peak value of pressure fluctuation decreased by 

62.9%.  

(3) The internal flow became more stable since the 

static pressure got uniform and the turbulent 

kinetic energy intensity decreased. The static 

pressure in the optimization model increased by 

30kPa. The turbulent energy intensity at the 

impeller outlet was reduced by 0.2m2/s2. The 

pressures at the 60% blade position and 80% 

blade position both increased by nearly 65kPa. 

The pressure decreased by 50kPa at the blade 

pressure side. All of these make the overall 

performance of pump greatly improved. 
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APPENDIX 

 
Orthogonal test scheme 

Number θ l β1 Φ β2 T1 T2 z H(m) Η(%) 

1 1 1 1 1 1 1 1 1 16.83 84.23 

2 1 1 1 4 2 2 2 1 15.17 81.65 

3 1 1 4 1 2 2 2 1 16.71 82.75 

4 1 1 4 4 1 1 1 1 13.81 83.73 

5 1 2 1 2 3 3 3 1 18.58 82.15 

6 1 2 1 3 4 4 4 1 18.45 78.47 

7 1 2 4 2 4 4 4 1 18.46 81.06 

8 1 2 4 3 3 3 3 1 17.09 82.25 

9 1 3 2 2 2 4 4 2 20.71 82.58 

10 1 3 2 3 1 3 3 2 19.34 84.35 

11 1 3 3 2 1 3 3 2 19.84 83.93 

12 1 3 3 3 2 4 4 2 20.97 82.65 

13 1 4 2 1 4 2 2 2 23.94 79.92 

14 1 4 2 4 3 1 1 2 21.04 81.26 

15 1 4 3 1 3 1 1 2 23.07 80.54 

16 1 4 3 4 4 2 2 2 21.41 78.13 

17 2 1 2 1 3 3 4 1 19.03 81.04 

18 2 1 2 4 4 4 3 1 16.84 78.71 

19 2 1 3 1 4 4 3 1 18.87 81.44 

20 2 1 3 4 3 3 4 1 16.50 78.92 

21 2 2 2 2 1 1 2 1 18.26 83.41 

22 2 2 2 3 2 2 1 1 17.60 85.30 

23 2 2 3 2 2 2 1 1 18.10 84.49 

24 2 2 3 3 1 1 2 1 17.26 84.76 

25 2 3 1 2 4 2 1 2 22.82 80.79 

26 2 3 1 3 3 1 2 2 21.97 81.45 

27 2 3 4 2 3 1 2 2 21.99 81.71 

28 2 3 4 3 4 2 1 2 21.32 83.01 

29 2 4 1 1 2 4 3 2 23.63 80.29 

30 2 4 1 4 1 3 4 2 21.26 80.94 

31 2 4 4 1 1 3 4 2 22.80 77.91 

32 2 4 4 4 2 4 3 2 20.61 82.40 

33 3 1 2 2 3 2 3 2 21.07 82.15 

34 3 1 2 3 4 1 4 2 21.44 79.65 

35 3 1 3 2 4 1 4 2 21.95 80.85 

36 3 1 3 3 3 2 3 2 20.07 82.33 

37 3 2 2 1 1 4 1 2 20.83 82.79 

38 3 2 2 4 2 3 2 2 19.67 82.46 

39 3 2 3 1 2 3 2 2 21.70 81.12 

40 3 2 3 4 1 4 1 2 18.30 85.32 

41 3 3 1 1 4 3 2 1 22.61 79.46 

42 3 3 1 4 3 4 1 1 19.20 81.83 

43 3 3 4 1 3 4 1 1 20.74 81.03 

44 3 3 4 4 4 3 2 1 19.59 81.52 

45 3 4 1 2 2 1 4 1 22.90 78.65 

46 3 4 1 3 1 2 3 1 21.03 81.70 

47 3 4 4 2 1 2 3 1 21.04 79.50 

48 3 4 4 3 2 1 4 1 21.41 80.29 

49 4 1 1 2 1 4 2 2 20.23 84.36 

50 4 1 1 3 2 3 1 2 20.08 82.87 

51 4 1 4 2 2 3 1 2 20.09 84.57 
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Number θ l β1 Φ β2 T1 T2 z H(m) Η(%) 

52 4 1 4 3 1 4 2 2 18.74 84.98 

53 4 2 1 1 3 2 4 2 24.52 78.63 

54 4 2 1 4 4 1 3 2 22.84 77.07 

55 4 2 4 1 4 1 3 2 24.38 77.02 

56 4 2 4 4 3 2 4 2 21.50 80.81 

57 4 3 2 1 2 1 3 1 22.82 76.05 

58 4 3 2 4 1 2 4 1 19.94 83.36 

59 4 3 3 1 1 2 4 1 21.97 77.17 

60 4 3 3 4 2 1 3 1 20.28 82.13 

61 4 4 2 2 4 3 1 1 23.51 78.41 

62 4 4 2 3 3 4 2 1 22.16 80.71 

63 4 4 3 2 3 4 2 1 22.67 80.11 

64 4 4 3 3 4 3 1 1 22.51 79.38 

K1, K2, K3 and K4 represent four levels of factors respectively. The influence weight of each parameter on 

efficiency can be determined by the range R of each parameter. The weight of parameters increased with the R 

value. Therefore, ranking R can determine the influence degree of eight optimization parameters on efficiency. 

 

 

Effect of Optimizing Parameters on Efficiency 

 K1 K2 K3 K4 R Rank 

θ(°) 81.86 81.67 81.29 80.48 1.38 5 

L(mm) 80.17 82.14 81.7 81.36 1.97 4 

β1(°) 80.91 81.39 81.46 81.54 0.62 7 

φ(°) 82.14 81.27 80.09 81.8 2.05 3 

β2(°) 82.66 81.9 81.06 79.69 2.97 1 

T1(°) 80.8 81.36 81.33 81.8 1 6 

T2(°) 82.48 81.79 80.85 80.19 2.28 2 

z 81.12 81.53   0.41 8 

 


