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ABSTRACT 

The stability of aerospace vehicles is one of the concerning subjects for aerospace engineers and researchers 

and there are different solutions for the stabilization purpose including rigid and flexible stabilizers use. 

Design and analysis of such systems generally need multi-disciplinary analysis tools and also efficient design 

strategies. The first goal of this paper is to develop a computational framework for the simulation of body-

fluid-structure interactions (BFSI) due to the oscillations of a flexible stabilizer connected to the end of body. 

For analyzing fluid-structure interactions, an iterative partitioned coupling algorithm is utilized. With 

combining a dynamic simulation tool for body motions, the ultimate multidisciplinary framework is arranged. 

As the second goal of the work, for the sensitivity analysis and also constructing a cost-efficient basis for 

parametric study, the design of experiments (DOE) methodology is implemented. The proficiency and 

efficiency of computations is evaluated with the results obtained in a variety stabilizing conditions and 

various strip characteristics such as length, width, and bending stiffness.  The results of different simulations 

shows that the proposed framework is capable to capture the multi-physic nature of the problem with 

reasonable cost, especially useful for frequent analyses needed during product design and development loops.   

 

Keywords: Fluid-structure interaction; Partitioned coupling algorithm; Strip stabilizer,; DOE; Reentry 

capsule. 

NOMENCLATURE 

A area 

E module of elasticity 

h angular momentum 

I moment of inertia 

M moment 

P pressure 

P, Q, R angular velocity 

Qi(t) generalized forces 

T temperature 

μ dynamic viscosity 

μ dynamic viscosity 

U, V, W linear Velocity 

Wi natural modes 

w transverse displacement 

 

ηi (t) generalized coordinates 

ρ density 

ω angular velocity 

 

 

1. INTRODUCTION 

In order to ensure the stability of some of the flying 

bodies, concerning configuration and volume 

constraints, usually flexible retractable stabilizers 

are used. Samples of these stabilizers are strips that 

in addition to providing dynamic stability, occupy a 

small volume and space. Of course, the analysis and 

design of the strip should be done correctly to 

provide the dynamic stability of the body; 

otherwise, the body will be unstable and its 

oscillations will lead to the failure of the mission. In 

this paper, the stability of Sub-orbital Re-entry 

Capsule that has been used for carrying live 

organism in the Aerospace Research Institute 

(ARI), is investigated and the effect of the 

stabilizing strip on this reentry capsule is analyzed 

(https://www.ari.ac.ir). The reason for using the 

strip in this capsule is that before the parachute is 

opened and the speed of the vehicle is reduced (Fig. 

http://www.jafmonline.net/
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1, stage 2), it is necessary to reach initial stability 

and its rotations and oscillations are damped (Fig. 1, 

stage 1). Therefore, a system is needed to provide 

initial stability for the spacecraft to prevent a high 

angular acceleration of cargo after opening the 

parachute. Moreover, stable flight during final 

stages of mission will help more accurate and 

comfortable landing and recovery that is an 

important requirement especially for manned 

reentry vehicles. 

 

 
Fig. 1. Sub-orbital Re-entry Capsule in launch 

and descent process. 

 
The performance of strips for providing stability 

primarily relates to the creation of force and the 

aerodynamic moments at the end of the body, and 

thus the production of an optimum moment for the 

dynamic stability of the body. Concerning the 

design goals and missionary, geometric and mass 

constraints presented as input to the design 

problem, several analyzes are required to optimize 

the design parameters. The computational cost of 

every three-dimensional analysis, which involves 

the unsteady simulation of body-fluid-structure 

interaction, is very high. Therefore, we need to use 

an optimal approach to the computational analysis 

process. In this study, a multi-disciplinary design 

consists of fluid solving, structure analysis and 

body oscillation is considered. So the complicated 

coupling of these disciplines needs a suitable 

framework to handle the problem and capture the 

nature of body-fluid-structure interactions, properly. 

Some related researches and studies about this issue 

are presented in the following. 

Levine and Dasser (1997) conducted an 

experimental study on the characteristics of ribbons 

in the subsonic wind tunnel. This study was carried 

out based on the variation of the aspect ratio and 

rectangular ribbon material. Auman and Dalek 

(2000), Aumon and Wilkes (2005) and Lamar and 

Wain (2011), conducted an empirical test to 

determine the aerodynamic characteristics of ribbon 

stabilizers. Wang et al. (2012), used numerical 

solutions (imaginary field method) for three-

dimensional page movement. In one related study,  
Gomes  and Leinheart (2013), used and combined 

commercial software to investigate body-fluid-

structure interactions in the water that have got 

good results compared to empirical testing. Xiao 

and Wang (2016), gave a numerical simulation of 

the vortex-induced vibrations of vertical raisers in 

linear and uniform shear flows, and the predicted 

numerical results are in good agreement with 

experimental results. Dobrucali and Kinase (2017), 

in their paper about the prediction of vortex-induced 

vibration for circular cylinders using URANS have 

concluded that vibration caused by vortex due to 

three different frequencies is highly nonlinear: the 

frequency of the flow, the frequency of vortex 

fluctuation and the frequency of oscillation. Stabile 

et al. (2018), have also developed a reduced order 

modeling for the analysis of flexible long cylinders. 

In the field of design of experiments (DOE) for 

aerospace applications, Tucker et al. (2010), used 

DOE methodology to a flight test. In this limited 

effort, an actual flight test program serves as a case 

study to compare and contrast five different designs 

to explore a flight-test envelope. Liang et al. (2016), 

applied Taguchi method for evaluating the 

maximum swimming speed of robotic fish under the 

limitation of the output of the motor. Four factors 

were considered in the optimization: the caudal-fin 

aspect ratio, the caudal fin stiffness, the oscillating 

frequency and the stiffness of the spring that 

transmits forces from the actuators to the foil. In 

another study, an empirical drag prediction model 

plus the design of an experiment, response surface, 

and data-fusion methods are brought together with 

computational fluid dynamics (CFD) to provide a 

wing optimization system. This system allows high-

quality designs to be found using a full three-

dimensional CFD code without the expense of 

direct searches (Keane, 2003). Lee and Jonathan 

(2016), presented an alternative formal 

methodology for smart weapons conceptual 

airframe design and optimization based on DOE. 

Khoshdast et al. (2017), combined two methods of 

CFD and DOE to hydrodynamic simulation of a 

coal classifier. Raul et al. (2017), used Design of 

Experiments and surrogate models in aircraft real-

time and many-query aerodynamic analysis. Julian 

et al. (2017), applied design of experiments 

techniques to improve the thermal performance of a 

gas oven, aided with a computational fluid 

dynamics in concept selection phase of product 

design process. 

In the present work, a hybrid approach, including 

computer code development and simultaneous use 

of existing solvers' capabilities, is adapted to 

simulate the complex problem of strip stabilizer 

oscillations attached to the trailing edge of a reentry 

space capsule, i.e. body-fluid-structure interactions. 

Expected achievements can be summarized as: 1) 

Developing a suitable computational framework for 

analyzing body-fluid-structure interactions. 2) 

Dynamic analysis of rigid body with a flexible strip 

stabilizer attached to its trailing edge. 3) 

Modification of the stabilizer design process and 

sensitivity analysis using Design of Experiments. 4) 
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Design of flexible stabilizer, based on the results of 

aero-elastic analyses. The main features of the 

presented work are, three-dimensionality of the 

solution, emphasize on the stabilization process, 

and developing an iterative partitioned framework 

for Body-Fluid-Structure interaction (BFSI) 

analysis. Moreover, through implementing DOE 

technique we tried to manage the computational 

cost. The results of the present work are useful for 

any flying vehicle which needs to stabilize e.g. 

before opening the parachute during descent phase 

or when some limitations exist on the minimum 

angular acceleration inserted on the sensitive 

payload i.e. living organisms. 

2. GOVERNING EQUATIONS 

2.1 Fluid flow Equations 

The governing equations for fluid flow are Navier-

Stokes equations, which are defined as below: 

a- Continuity equation 

  0j
j

U
t x




 
 

 
 

(1) 

b- Momentum equation 

 i
i j

j i
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



  
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  

      

       (2) 

In order to solve these equations in viscous fluid 

mode and high Reynolds numbers, a turbulent 

modeling is needed, where the k-ε model is used 

here. In this model, the concept of the viscosity of 

vortex is used: 

eff t     (3) 

The vortex viscosity is defined as follows: 

2

t

k
C 


  (4) 

And the partial transmission equations for turbulent 

kinetic energy and disturbance dissipation rate are 

as follows: 
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  (6) 

Where Pk is the force of turbulence due to the 

viscous forces: 



2
3

3

ji i k k
k t t
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P
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 (7) 

2.2 Flexible Structure Equations 

Considering the fact that the strip is considered thin, 

with a low width and the type of connection 

(clamped) to the body is such that its main 

oscillations are in the xy plane, such as a 

cantilevered beam with a distribution of extensive 

load we obtain the relation of Euler-Bernoulli beam. 

The transverse motion equation under the extensive 

transverse force is: 

 
 

 
 

 

2 22

2 2 2

, ,

,

w x t w x t
EI x A x

x x t

f x t


  

  
       (8) 

Using the method of natural modal analysis, the 

above relation solution is obtained by linear 

combination of natural modes of the beam as 

follows: 

     
0

, i t

i

w x t W x t




    (9) 

Where ηt is the generalized coordinates and Wi is 

natural modals that are obtained by solving the 

following equation: 
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) 

 

 
Fig. 2. Distribution of extensive load on 

cantilever beam. 

 

 

Then we have: 
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After substituting the above equations: 
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According to the condition of orthogonally, all the 

terms on the left of the above relationship are 

deleted except for the case i j . Then we have: 

 
   

2
2

2
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i
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Where Qi (t) is the generalized force, and for im 

mode, it is: 
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0
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The complete solution of the relationship can be 

expressed as follows: 
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Therefore, the final relation for Euler-Bernoulli 

beam is as follows: 
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The first two expressions represent free oscillation 

and the third term indicates the forced oscillation of 

the beam. Ai and Bi are fixed numbers and also are 

obtained using the initial conditions. 

2.3 Rigid Body Dynamic Model 

To simulate the dynamic of body, following 

equations are used. It is noticeable that moments are 

considered about the body center of mass. 

The equations of forces exerted on stabilizer 

concerning Fig. 3 (up) are determined as follows: 

   
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 (17) 

Where 𝐹𝑥 is axial force, 𝐹𝑦 is normal force, 𝑃𝑖 is 

fluid pressure on surface element, 𝜏𝑖 is shear stress 

on surface element, 𝐴𝑥 is projection of surface 

element on longitudinal direction, 𝐴𝑦 is projection 

of surface element on transverse direction and 𝑖 is 

the number of elements. 

The forces imposed on the body from the fluid 

around it are obtained from Eqs. 17 on body 

elements. The equation of moment exerted on body 

from the fluid around it, is as follows: 

(18) 

   

    
1

n

Body i x i y ii i
i

i y i x iii

M P A A y

P A A x







   
 

 
 


  

 

 

 
Fig. 3. Pressure and shear stress on an element of 

structure (up) and inserted forces on body from 

stabilizer (down). 

 

The equation of moment exerted on body from 

stabilizer concerning Fig. 3 (down) is as follows: 

(19)    
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where  𝐹𝑥𝑆𝑡𝑎𝑏
 and 𝐹𝑦𝑆𝑡𝑎𝑏

 are respectively, axial and 

normal forces exerted on body from the stabilizer in 

the contact point, 𝐿𝐵 is body length, 𝐿𝐶.𝐺  is the 

distance of body center of mass from its tip and 𝜃 is 

the angle of body longitudinal axis from horizon. 

Finally from relations (18) and (19) total moment 

for body stabilizing is obtained from the equation: 

(20) 
Total Body StablizerM M M   

2.4 Analysis Model of (DOE)  

In this work, Taguchi model is implemented for the 

design of experiments. Taguchi used the following 

models to achieve the expected results: 

- Analysis of variance (ANOVA) 

- Signal to noise ratios (S/N) 

Taguchi defined S/N ratio differently according to 

the quality characteristic, i.e., the-lower-the-better, 

the-nominal-the-better, and the-higher-the-better, 

which their relations respectively are as follows:  
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Where n is the test number, 𝑦𝑖
  is the trial result of 
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ith test and 𝑦0 is the nominal value. Various models 

used to analyze the results of the design of 

experiments methods are as follows: 

-Linear: 

0

1

 
k

i i

i

y x 


   (24) 

- Linear Concerning Binary Interactions 

(2FI): 
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-Quadratic: 
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 (26) 

where y is the desired index, β0 is the nominal value 

of the index, βi is the slope of the line of variation 

of the variable (constant number) and xi is the 

desired variable such as length, width, mass... 

2.5 Algorithm of Fluid-Structure 

Interaction 

In order to analyze the fluid-structure interaction, an 

algorithm must be available to solve the structure 

and fluid equations simultaneously (monolithic 

method) or to establish a logical relationship 

between the results of the solution of the fluid 

equations and the structures (partitioned method). 

Also, it can adapt fluid and structure grids if they 

are not the same. The first method is very time-

consuming, expensive and not affordable. In the 

second method, the fluid-structure equations are 

solved with separate solvers that can even be non-

editable (black box), and their results are exchanged 

with a combined algorithm. This method makes it 

possible to use a variety of solvents and has high 

flexibility. The partitioned method is applicable in 

two ways, as shown in Fig. 4. 

In the first method (Fig. 4, up), called a staggered 

(parallel staggered) method, at every time step, the 

fluid-structure data are exchanged, and then the 

equations are solved simultaneously but 

independently. In the second method (Fig. 4, down), 

which is called iterative (serial staggered) method, 

the fluid equations are solved first, and then the data 

are entered into the structural part and the structure 

equations are solved based on the new information 

of the fluid and its data are fed into the fluid 

section. The fluid equations are again solved based 

on the new structure data and this repeating cycle 

continues until the problem is completely solved. In 

this paper, the iterative partitioned coupling 

algorithm is used.  

From the perspective of the type of coupling 

algorithm, we can say that there are two types that 

include a weak coupling algorithm and a strong or 

precise coupling algorithm. In a weak coupling 

algorithm at any time step, we have only one 

solution of the structure and fluid. Therefore, it is 

needed to take a fine and empirically time step, 

otherwise, the solution divergence will occur. But in 

a strong coupling algorithm at any time step, we 

have several solutions of the fluid and structure 

equations that are fully synchronized and the 

aeroelastic system be converged. Therefore, the 

solution is prolonged (strong algorithm), but it is 

much more stable than the previous one (weak 

algorithm). In addition, it is algorithmically flexible 

and applicable to various physical systems. 

 

 

 

Fig. 4. Schematic of staggered (up) and iterative 

(down) methods. 

 

The flowchart of the iterative partitioned coupling 

algorithm used in this paper is shown in Fig. 5. The 

process of analysis is that, at first by solving the 

flow equations, the distribution of pressure is 

determined around the body and the forces and 

moments imposed on it, are determined. Then, 

using the equations of rigid body dynamics and 

according to the distribution of the pressure and the 

forces applied to the body, the new state of the body 

is determined. Now, using structural equations, 

structural deformation is calculated and then new 

calculated points are updated. Then due to the new 

coordinates of the structure, re-meshing technic is 

performed and concerning new grid, fluid equations 

are solved. In the next step, solution convergence is 

checked out and if approved, moves to the next time 

step. This process continues until the criterion of the 

end of the process is fulfilled. After analyzing body-

fluid-structure interaction, considering the results 

and on the basis of DOE methodology, the design 

process starts. In Fig. 6, the algorithm of the design 

of experiment process is shown. 
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Fig. 5. Coupling algorithm of solution of the 

body-fluid-structure interaction problem. 

 

 
Fig. 6. Algorithm of DOE process. 

 

3. STATEMENT OF PROBLEM AND 

MODEL 

As many other related works, we have used a 

commercial software (Fluent) for the analysis of 

fluid flow part of the FSI problem, to focus mainly 

on the fluid-structure interaction simulation. Thus, 

we have written a user defined functions (UDF) 

code for structure analysis, based on the Euler-

Bernoulli cantilevered beam theory and iterative 

partitioned coupling algorithm. 

3.1 Geometry and Fluid Domain Condition 

A three-dimensional cylinder simplified geometry 

of Fig. 1, with a strip (flexible thin plate), connected 

to its end, is intended to investigate the problem of 

fluid-structure interaction. It is noticeable that the 

details of geometry in Fig. 1 are not vital for the 

analysis and it was shown only as a sample of 

application in aerospace industry. The simplified 

geometry of the body and strip is shown in Fig. 7. 

The aim is to analyze the stability of body in the last 

phase of trajectory (decent) which is near the earth 

surface. So, flow Mach number is set 0.4 and the 

density of fluid in this conditions is nearly constant 

about 1.16 kg/m3.  

 

 
Fig. 7. Body and strip scheme. 

 
3.2 Grid Study 

a- Body and Fluid Domain Grid  

Concerning that fluid flow analysis is in an 

unsteady state and the motion of the body and strip 

cause the grid of fluid domain to collapse, the 

moving mesh and re-meshing are used at any time 

step. Because the geometry and the angles of cells 

are changed at any instant and are collapsed, 

therefore using unstructured mesh is better and 

more appropriate than structured mesh. 

 However, because the body is rigid and only 

rotates, and in addition, the grid of strip does not 

collapse; as a result, the structured mesh is used for 

both of them. In Fig. 8, the grids of the body with 

strip and domain are presented. 

 

 
Fig. 8. Body and strip grids (structured) and 

fluid domain grid (unstructured). 

 

In order to ensure the accuracy of the analysis and 

the independence of the results to the number of 

grid cells, some grids with different cell numbers 

were modeled which the numbers of cells were 

80000, 130000, 340000, 600000 and 780000 
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cells. In Fig. 9, the pitching moment coefficient is 

plotted versus the number of cells for each grid. It 

was found that for a model with 330000 cells, the 

pitching moment coefficient differs about 3% 

compared with the 780000 cells model, which is 

negligible, and since the model with 340000 cells 

takes less computational time than the model with 

780000 cells, so it was used for next analysis. 

 

 
Fig. 9. Pitching moment coefficient versus grid 

cell numbers. 

 

b- Flexible Structure Grid 

In the following, we investigate the independence 

of the results to the number of cells in the grid of 

strip. For this purpose, differently structured meshes 

with the different number of cells were considered. 

Five grids with 246, 326, 406, 486 and 566 cells 

were created and according to the application of the 

problem, in Fig. 10, pitching moment coefficient is 

plotted based on the numbers of grid cells and it 

was found that the model, which has 406 cells, has 

a difference of about 2% compared with the 566 

cells model, which is negligible and therefore, 

considering the computational cost, the same grid 

was selected for further analysis. In Fig. 11, a 

structured grid for the strip is shown. 
 

 
Fig. 10. Pitching moment coefficient versus grids 

cells number. 
 

4. RESULTS AND DISCUSSIONS 

At first, for the validation of the developed code, we 

analyzed an elastic plate as a cantilevered beam 

attached to the end of a square, as considered in the 

work of Hubner et al. (2004). The dimensions of 

geometry and surrounding domain are presented in 

Fig. 12. A snapshot of pressure contours around the 

body and its trailing edge stabilizer is shown in Fig. 

13. Also, the transverse force of plate is compared 

with the reference work in Fig. 14. The results of 

simulations indicate good agreement between the 

present work results and reference data. 

 

 
Fig. 11. Structured grid for the flexible strip. 

 

 
Fig. 12. Geometry and domain of the test case. 

 
 

 
Fig. 13.  Pressure Contours around the test case. 

 

 

 
Fig. 14. Comparing of transverse force of plate 

with the results of Hubner et al. (2004). 

 

In the remain of this section, note that for all 

investigations, Mach number is 0.4 and the angle of 

attack is 10 degrees as they encountered in the 

targeted phase of flight envelope. 
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4.1 Setting Initial Condition  

In this investigation, the finite volume method is 

used to solve the fluid flow. Since the flow 

conditions are within the compressible range, here a 

density-based algorithm is used to associate the 

equations. Time discretization is performed 

implicitly. The standard k-ε model is used for 

modeling the turbulent flow. The second-order 

accuracy has been used for spatial discretization, 

and the gradients have been calculated based on the 

least squares of the cell base. 

4.2 Effect of the Strip on Body 

Oscillations and Aerodynamic Coefficients 

In Fig. 15, the oscillations of the body alone and 

body with strip are presented. The angle of the body 

alone is increased gradually because it is unstable 

inherently. However, when the strip is added to the 

end of the body, it prevents from increasing the 

amplitude of oscillation by creating a restoring 

moment and body has a periodic (stable) oscillation 

about a small angle. In Fig. 16, axial and normal 

forces due to strip oscillations are shown. 

 

 
Fig. 15. Oscillations of the body with and without 

strip versus time. 

 

 
Fig. 16. Axial and normal forces of oscillating 

strip versus time. 

 
In the following, the effect of strip on aerodynamic 

coefficients of the body is presented. Table 1 shows 

the aerodynamic coefficients of a body alone and 

with the strip in the static state which presents that 

the maximum effect of the strip is on the normal 

force and the presence of a strip at the end of body 

can have a significant effect on the aerodynamic 

coefficients even in static state. In Figs. 17, Mach 

number contours on the body and strip in different 

instants are presented that show the deformations of 

strip attached to the free oscillating body. 

[ 

Table 1 Aerodynamic coefficients for the static 

body with and without the strip 

Aerodynamic 

coefficients 
Body alone 

Body with 

strip 

𝐶𝑎 1.04 1.35 

𝐶𝑛 0.11 0.41 

𝐶𝑚 -0.08 -0.11 

 

 

       t = 0.005s 

 

 

 

 

   t = 0.048s 

 

 

 

 

 

   t = 0.093s 

 

 

 

 

 

t = 0.134s 

 

 

 

 
 

Fig. 17. Mach contours on the body/strip surface. 

 

4.3 Effect of the Body Center of Mass  

Concerning that the location of the body center of 

mass affects its oscillations, two locations were 

considered for body center of mass that one of 

them is in Xcg=0.15m and the other one is in 



M. Mohammadi Amin and A. Kiani / JAFM, Vol. 13, No. 1, pp. 261-273, 2020.  

 

269 

Xcg=0.1m from body leading edge. The results of 

the investigation are presented in Fig. 18.  

It can be concluded from Fig. 18 that the 

oscillation frequency and amplitude of the body 

increase if the center of mass goes backward, 

which is expectable based on stability 

conditions. Of course, it is noteworthy, this type 

of geometry is inherently unstable and c.g. 

displacement is not a solution to its instability 

duo to the configuration constraints. Also, the 

oscillation intensity is higher when the center of 

mass is more backward and as a result, if there is 

a payload that is sensitive to the angular 

accelerations, its failure is more probable. 

 

 
Fig. 18. Body oscillation angle versus time for 

different body center of masses. 

 
4.4 Effect of Length and width of the Strip  

In the following, we studied variations of strip 

length for two different lengths consist of 0.5L 

and 1.5L which L is the length of ribbon. The 

angle of body oscillation in Fig. 19 is presented 

for the above-mentioned strip lengths. As can be 

seen, more length of strip prevents from a large 

oscillation angle of the body. In Fig. 20, the body 

oscillation angle versus time for different width of 

strip is presented that same result can be 

concluded.  
 

 
Fig. 19. Body oscillation angle versus time for 

different length of the strip. 

 
 

4.5 Effect of flow Velocity (Mach Number)  

In this section, by assuming that the center of 

mass is in front of the body, the effect of flow 

velocity on the body oscillations is investigated. 

The results of this study are presented in Fig. 21. 

As can be seen, with the increase of Mach 

number, the amplitude of strip oscillations 

decreases but the frequency is increased, so for a 

sensible cargo, it may cause to damage or fail. 

Therefore in the main phase of the flight path of 

this vehicle which Mach number is about 0.4, the 

payload is almost safe and there will be not any 

dangerous condition. 

 

 
Fig. 20. Body oscillation angle versus time for 

different width of the strip. 

 

 
Fig. 21. Body oscillation angle versus time in 

different Mach number. 

 
4.6 Computational Efficiency 

Initially, the average duration of each analysis is 

presented in order to examine and compare the 

computational efficiency in two-dimensional, three-

dimensional, static and dynamic states, with or 

without strip (Tables 2 and 3). A numerical solution 

is performed using a laptop with Intel Core i5 

processor 2.1 GHz. As can be seen, for numerical 

computations of fluid-structure interaction in the 

three-dimensional case and with concerning 

oscillations of body and flexible strip attached to it, 

it takes about two hours.  It should be noted that 

according to the type of problem, the two-

dimensional analysis is presented only for 

comparison, and it is obvious that the three-

dimensional state must be taken into account for the 

correct analysis of the problem. 
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Table 2 Average duration of numerical 

computation for the body alone 

 
2-dimensional 3-dimensional 

Static Dynamic Static Dynamic 

time 

(minutes) 
21 58 79 98 

 
Table 3 Average duration of numerical 

computation for the body with strip 

 
2-dimensional 3-dimensional 

Static Dynamic Static Dynamic 

time 

(minutes) 
24 64 85 112 

 

5. DESIGN OF STRIP USING DOE  

Now, after various analysis and computational 

efforts performed in different flight conditions, the 

desired design is captured based on obtained 

results, by using an efficient and suitable method 

which a strip can be designed to meet the 

designer's requirements and expectations. In the 

following, the design process is presented using 

the obtained results and DOE methodology, which 

can be an important step for appropriate design (or 

even optimizing) of the strip with consumption of 

minimal time and cost. Two usual methods for 

DOE implementation are Full Factorial (FF) and 

Taguchi methods. For low variables and 

parameters, the Full Factorial method is better 

than Taguchi method. Because it determines 

possible factors interactions and is simpler than 

Taguchi method for performing, but for several 

variables and parameters, Taguchi method is 

better, because uses orthogonal arrays and 

considerably reduces the number of experiments 

and cost. So in this paper, concerning that we have 

three variables in two levels, the Full Factorial 

method with 23=8 experiments is used. 

Variables that can be considered for the strip 

consist of length, width, thickness, and bending 

stiffness, and the variables of the oscillating rigid 

body consist of the body center of mass, length, 

and radius. It should be noted that due to some our 

design constraints, we only consider the 

parameters of length and width of the strip and 

body center of mass in two levels and analyze the 

design of a sample, based on the variations of 

three parameters. 

In the following, the variation in the length and 

width of the strip is considered to be 20% of its 

nominal values. So for parameters values less 

than the nominal value the number -1 is assigned 

and for parameters values more than the nominal 

value the number +1 is assigned. For this 

purpose, the values of the strip width are 0.016 (-

1) and 0.024 meters (+1), and for the length of 

the strips are 0.36 (-1) and 0.54 meters (+1) and 

finally for body center of mass are 0.08 (-1) and 

0.12 meters (+1).  The values of design 

parameters and assigns of them are presented in 

Tables 5 and 6. In Figs. 22 and 23 the slope of 

parameters variations and their interactions are 

presented and in Fig. 24, the Pareto chart is 

presented. In Pareto chart the most important of 

variables are determined. In Fig. 25 the 

contribution percent of all factors to the model is 

determined. Using the results of Figs. 24 and 25, 

important variables for design are specified.  

After performing the necessary changes to the 

variables, the line slopes of variations of parameters 

are presented in Table 4. Finally, concerning the 

above analyzes, the maximum angle of body 

oscillation will be as follows: 

(27) 6.8 3.24 1.7 2.8       

 1  .48 0.48       

  0.76 0.6

r r CG

r CG r r

r CG r r CG

L W X

L X L W

W X L W X

     

 



  

Relation 27 determines the value of maximum 

oscillation angle of body for various lengths and 

widths of the strip and body center of mass in the 

range of 20% deviation from the nominal value. 

 

 
Fig. 22. Body oscillation angle versus variations 

of length, width, and the body center of mass. 

 

 
Fig. 23. Body oscillation angle versus the 

interactions of variables. 

 
5.1 Verification of DOE Results 

We consider a strip with a length of 0.4 m, a width 

of 0.022 m and the body center of mass, 0.1 m 

(within the range of changes from nominal 
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values), and use two manner for calculation of the 

maximum  angle of oscillating body. For the first 

method, we simulate and analyze the problem and 

for the second method, we use relation 27 to 

calculate the body maximum angle. The results are 

as follows: 

θ = −7.04 ° Angle (from simulation) 

θ = −7.8 ° Angle (from relation 27) 

As can be seen from the comparison of results, 

the oscillation angle obtained from relation 27 is 

less than 11% different from what obtained from 

the simulations, which is acceptable and 

verifiable. 

 

 
Fig. 24. Pareto chart for the oscillation angle 

variation versus variations of length, width, and 

their interaction. 

 

 
Fig. 25. Contributions of variables to the model. 

 

Table 4 The line slopes of the variations of the 

parameters 

Parameter Line Slope 

L (Length) -3.24 

W (Width) -1.7 

CG (body mass center) 2.8 

L.CG -1.48 

L.W 0.48 

W.CG -0.76 

L.W.CG 0.6 

Table 5 Parameters values considering length 

and width in two levels 

θ CG (m) W (m) L (m) 

15.5 0.12 0.024 0.54 

9.67 0.08 0.024 0.54 

22.58 0.12 0.016 0.54 

11.29 0.08 0.016 0.54 

8.21 0.12 0.024 0.36 

5.92 0.08 0.024 0.36 

11.0 0.12 0.016 0.36 

8.04 0.08 0.016 0.36 

6.8 

Nominal values 

(L=0.45 m, W=0.02 m, CG=0.1 m) 

 
Therefore, by using this method (DOE), it is simple 

to examine the changes in geometric parameters and 

their effects on the oscillatory characteristics of the 

body such as the instant angle of oscillation, at least 

cost and time. Therefore, it doesn’t need extensive 

simulations and time consuming computational 

runs. It is noteworthy that it’s better to have less 

change within the range of the parameters variation 

comparing with nominal values (length, width, and 

....) to minimize the error of the calculations results. 

In the following, for example, we compute the 

maximum desired body oscillation angle. Suppose 

that the maximum desired angle of body oscillation 

is 0 degree and body center of mass is 0.14 m and 

the width of the strip is 0.02 m. it is noticeable that 

the converted (assigned) values of factors are 

inserted in the relation (on the basis of -1 and +1) so 

at first, we must convert the values in this range 

then insert in the relation. Now, we want to 

determine the length of the strip that supports the 

desired oscillation angle. Using relation 27 and 

substituting the specified values, the length of the 

strip will be 0.63 m. As can be seen, other factors 

could be easily determined for any change in the 

desired performance characteristics. 

5.2 DOE Computational Efficiency 

All numerical computations is performed using a 

Laptop with Intel Corei5 CPU (2.1 GHz frequency). 

For every computational run, it takes about 112 

minutes. So, for this case with 8 runs, it takes about 

900 minutes. But we have captured a relation that 

helps to determine the instant oscillation angle 

easily and timely. But, for any change in geometry 

if we don’t use the DOE method and we simulate 

and run all of the cases, then we must spend a lot of 

time and cost to calculate the oscillation angle and 

finally we can’t recognize a proper geometry 

consist of length and width. Therefore we won’t 

have a proper and efficient design. So this initial 

investment causes to save time and computational 

costs. These results are presented in Table 5. 

Where, OFAT is an acronym for "one factor at a 

time" that means it will be necessary performing 

many computational efforts of the direct search on 

the CFD code, which at any effort only one 

parameter varies. So with using the DOE method, 

the time is saved 60% at least and the design  
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Table 6 Parameter values considering length and width in two levels 

θ L.W.CG W.CG L.CG L.W CG W L 

15.5 +1 +1 +1 +1 +1 +1 +1 

9.67 -1 -1 -1 +1 -1 +1 +1 

22.58 -1 -1 +1 -1 +1 -1 +1 

11.29 +1 +1 -1 -1 -1 -1 +1 

8.21 -1 +1 -1 -1 +1 +1 -1 

5.92 +1 -1 +1 -1 -1 +1 -1 

11.0 +1 -1 -1 +1 +1 -1 -1 

8.04 -1 +1 +1 +1 -1 -1 -1 

process uses around one-third of the direct search 

on CFD code. 

Table 7 Computational time saving with DOE 

for three factors in two levels 

Number of runs Run duration(min) 

1 112 

8 (using DOE) 900 

several (using OFAT) high 

6.  CONCLUSIONS

Numerical analysis of free body oscillations with a 

trailing edge flexible stabilizer was done in viscous 

subsonic flow regime. For fluid flow simulation, 

finite volume method was used and for structural 

analysis Euler-Bernoulli cantilevered beam theory 

was implemented. For the fluid-structure interaction 

solution, iterative partitioned coupling algorithm 

was used for interrelation.  

Combining a dynamics simulation tool the proposed 

computational framework is capable to capture the 

Body-Fluid-Structure interactions. The results of 

different simulations shows that without the flexible 

stabilizer, the oscillations of free flying body will 

grow towards instability. In order to analyze the 

Body-Fluid-Structure interaction, a computational 

framework based on an iterative partitioned 

coupling algorithm was developed which the results 

showed the capability of capturing the physics of 

this complicated problem.  

Also, using the developed tool, the impact of 

important parameters were examined which was 

shown that as the body center of mass moves to 

forward (toward the body tip), the body 

oscillation amplitude and frequency decrease. 

Likewise, with increasing flow velocity (Mach 

number), the amplitude of the body oscillation 

decreases and the frequency increases. Finally, 

for the design of a suitable stabilizing strip, the 

DOE methodology was used. For low variables 

and parameters, the Full Factorial method was 

better than the Taguchi method. Because it 

determines possible factors interactions and is 

simpler than Taguchi method.  
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