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ABSTRACT 

The significance of multiple porous structures with finite spacing upon elevated seabed in the presence and 

absence of the leeward wall is examined under oblique wave impinging. Fluid propagation is assumed over the 

impermeable elevated bottom, and the fluid realm is separated into open water and porous structure regions. 

Continuity of the dynamic pressure and mass fluxes at the interfaces of the porous structure and the open water 

regions are adopted. The resistance and reactance due to the presence of the porous structure are taken into 

account using the porous structure dispersion relation. The numerical model is developed based on the 

eigenfunction expansion method along with matched velocity potentials at the interfaces of open water and the 

porous block regions. The wave reflection and transmission characteristics, energy damping and wave force 

impact on the leeward wall is analysed. The significance of the porosity, structural width, angle of incidence, 

width between the two structures and water chamber length is studied considering multiple porous blocks with 

finite spacing under oblique wave impinging in the presence and absence of leeward wall. The numerical results 

obtained in the present study agrees well with the theoretical and experimental results available in the literature. 

The present study illustrates that, with the increase in the number of porous blocks and gap between the porous 

blocks, the resonating trend is observed in the wave transformation and the influence of the elevated step height 
is revealed for the wave trapping.  

Keywords: Multiple porous structures; Energy damping; Impermeable elevated bottom; Eigenfunction 
expansion method; Wave transformation.  

NOMENCLATURE 

bN position of the porous block 

Cf dimensionless turbulent resistant 

coefficient 

d width of the porous structure 

f linearized friction factor 

g gravitational acceleration 

G impedance of the porous medium 

hj water depth in each of the region 

i imaginary number 

j different regions 

kjn wave number in x-direction 

KP intrinsic permeability 

Kr wave reflection characteristics 

Kt wave transmission characteristics 

Kd wave energy dissipation 

Kf wave force on leeside wall 

l wave number in z-direction 

L distance between the structure and wall 

M number of evanescent wave modes 

N number of porous structures 

q instantaneous Eulerian velocity vector 

R10 complex amplitude of reflected wave 

s inertial effect of porous medium 

t time 

T wave period 

T(2N+1)0 complex amplitude of transmitted wave 

w width between the two porous structures 

γjn wave number in y-direction 

 
δmn Kronecker delta 

ε porosity of the structure 

ζj free surface wave elevation 

θ angle of incoming wave trains 

λ wave length 

ϕ velocity potential 

ρ density of water 

v kinematic viscosity 

ω wave frequency 
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1. INTRODUCTION 

In the last few decades, the novel design and 

development of various types of breakwaters are 

performed by scientists and engineers for the 

protection of offshore facilities and safe harbourage 

of ships in the port regions from the wave trains. The 

conventional breakwaters are preferred most to 

prevent the tremendous wave motion, and their 

primary purpose is to decrease the wave reflection, 

wave transmission phenomena and to increase the 

energy damping (Twu and Chieu, 2000). The recent 

studies suggest that the vertical porous breakwaters 

are one of the solution to mitigate the mainlands and 

coastal facilities from the oblique waves (Karmakar 

and Guedes Soares, 2015). Vertical porous 

breakwaters of different configurations are widely 

used to dissipate the wave energy. Among the 

vertical breakwaters, vertical porous structures on 

rubble mound bottom and elevated seabed are widely 

developed to provide better shelter to the maritime 

facilities (Das and Bora, 2014). Most of the ports and 

harbours such as Gudong and Zhuangxi Sea Dike in 

Shengli Oil Field in the Republic of China (Zhao et 

al., 2017) are constructed with the porous blocks to 

create a gentle wave action for better maritime 

transport.  

A significant study has been reported on wave 

scattering phenomena due to different types of 

porous barriers, plates and breakwaters using 

analytical methods and laboratory experiments. 

Newman (1965a) performed wave propagation in the 

presence of two-dimensional obstacles and extended 

the study to analyse the wave motion over the infinite 

step for the analysis of gravity wave scattering 

(Newman, 1965b). Sollitt and Cross (1972) 

investigated the wave motion inside the porous 

structure by considering the medium resistance and 

reactance offered by the structure with a new 

complex dispersion relation. The wave reflection and 

transmission coefficient is analysed using the 

eigenfunction expansion method, and validated with 

the experimental results. Newman (1974) 

investigated the wave scattering due to two closely 

spaced obstacles and, the second barrier/obstacle is 

observed effectively reducing the wave transmission 

coefficient. Dalrymple et al. (1991) obtained 

simplified analytical equations for finding the long-

wave reflection and transmission characteristics due 

to the presence of the porous block for different 

configurations such as a porous block of finite width, 

semi-infinite width and porous block backed by the 

wall. The comparative study is presented between 

the full solution, plane-wave, and long-wave 

approximation for the wave reflection and the study 

reported that the deviation in the wave reflection is 

evident for γ10h1≥1.5 in the presence of evanescent 

waves. Afterwards, Huang and Chao (1992), 

extended the study and analysed the velocity 

distribution within the porous structure. Recently, 

Liu and Li (2013) proposed a new analytical 

approach neglecting the porous structure dispersion 

relation in the formulation and the outcomes of the 

study are validated with the previous predictions.   

Madsen and White (1976) presented the wave 

transformation due to the trapezoidal breakwater, 

and the study is extended by Hsu and Wu (1998) to 

investigate the trapezoidal porous structure protected 

with a seaward plate as an effective energy absorber. 

Rambabu and Mani (2005) conducted the numerical 

study on multiple trapezoidal breakwaters and 

reported that the high energy damping is achieved 

with the porous breakwater compared with the 

impermeable breakwater. Koley et al. (2015a) 

examined the trapezoidal breakwater considering 

perforated outer layer and rigid inner layer placed on 

the sloping seabed. The leeward wall on the sloping 

seabed and uniform seabed with porous breakwater 

are analysed using coupled eigenfunction-boundary 

element method. The outer permeable layer shows 

the significant impact in reducing the wave force 

impact on the rigid inner layer due to the increase in 

the energy damping by the outer permeable layer.  

Various types of breakwaters are used to attenuate 

the unwanted wave oscillations. The increase in the 

life period of the seawall is achieved on reducing the 

wave force impact on the seawall by constructing the 

various types of porous absorbers. The investigation 

on the wave interaction with the permeable walls 

(porous block backed by the wall) are widely 

performed. Madsen (1983) reported the iteration 

method to describe the friction factor in the 

theoretical analysis of porous structure backed by the 

leeward wall. The effect of the porosity and friction 

factor is studied in detail in reducing the wave 

reflection coefficient for long-wave approximation. 

Later, many similar studies were performed for a 

porous block placed on the sloping seabed 

(Mallayachari and Sundar, 1994; Zhu, 2001) and 

elevated seabed (Das and Bora, 2014) with the 

leeward wall. An extensive study on the wave 

scattering due to the porous structure away from the 

leeward wall is addressed by Zhu and Chwang 

(2001), Koley et al. (2015b), Zhao et al. (2016). The 

studies reported that the porous breakwater could be 

a preferable solution for providing better shelter to 

the coastal facilities and the spacing between porous 

structure and the leeward wall has a substantial role 

in the incident wave trapping.   

Further, the permeable vertical walls are constructed 

to prevent the free passage of oblique incident waves, 

Dalian Chemical Production Terminal, Republic of 

China (Huang et al., 2011) and Dieppe, France 

(Belorgey et al., 2003) opted the permeable walls to 

protect the mainlands from incoming waves. The 

double vertical walls with finite spacing are 

suggested by Das et al. (1997), Sahoo et al. (2000), 

Koraim et al. (2011) to achieve the better wave 

trapping. After that, Karmakar and Guedes Soares 

(2015) proposed multiple bottom standing barriers to 

attenuate the wave energy using the least-squares 

approximation. The study suggested that the bottom 

standing barriers are acceptable as breakwaters, and 

free clamped barriers performance is significant as 

compared with moored clamped barriers to attenuate 

the maximum wave energy. Behera and Ng (2018), 

Kaligatla et al. (2018) extended the study 

considering variation in the seabed characteristics in 

the wave reflected region. Very recently, Somervell 

et al. (2018) proposed a simplified empirical relation 
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to find the friction factor with known parameters like 

porosity, width and depth of the structure using the 

eigenfunction expansion method. The experimental 

tests are performed for specific cases and validated 

with the theoretical results.  

Experimental studies on wave interaction with the 

submerged structure are well documented in the 

literature. Dattatri et al. (1978) indicated that the 

performance of the semi-trapezoidal breakwater 

(seaside slope with leeward vertical) is better than 

the structures of regular configurations to attenuate 

the high wave action. Sulisz (1985) focused on the 

multi-layered trapezoidal structure using theoretical 

and experimental approach. The comparative study 

shows that the results of the hydraulic tests coincide 

with the theoretical results in the case of transmission 

characteristics. But a little variation between both 

numerical and experimental study is observed in the 

case of wave reflection characteristics. Especially for 

high wave steepness, theoretical results overestimate 

the experimental results. Losada et al. (1995, 1996, 

1997), Twu and Chieu (2000), Ting et al. (2004), 

Reddy and Neelamani (2006), Wang et al. (2006) 

investigated the breakwaters with a series of 

experimental tests considering various types of 

structural configurations. Thereafter, Laju et al. 

(2011) concentrated on the relevance of friction 

factor for finding wave scattering due to pile 

supported skirt breakwaters using eigenfunction 

expansion approach and the results obtained are 

compared with the experimental study. In general, 

finding the friction factor is cumbersome and the 

study presented the friction factor in terms of relative 

submergence of the skirt walls. Recently, Neelamani 

et al. (2017) documented the multiple slotted vertical 

barriers with the rigid leeward wall to replace the 

sloping breakwater in the random wave fields. The 

study suggests that the size of rubble mound 

breakwater can be reduced up to 50% along with the 

reduction in 21% of construction cost with three 

slotted walls having 40% porosity without affecting 

the energy damping.   

A significant study has been performed for the wave 

interaction with porous blocks placed on uniform 

seabed but very limited study is found for the wave 

scattering due to multiple porous blocks with finite 

spacing over the impermeable elevated bottom. In 

practice, the porous blocks are constructed near and 

far away from the shore and it is very challenging to 

find uniform/flat seabed for marine engineers. The 

continental shelves, natural and artificial sand bars 

are in common regarded as an elevated impermeable 

bottom. In the current manuscript, an attempt is made 

to examine the multiple porous blocks with finite 

spacing over impermeable elevated bottom 

(Karmakar et al. 2010) under oblique wave 

impinging. The wave scattering by the single and 

double porous structures are examined using the 

analytical method and the results obtained from the 

present study are validated with the available 

experimental results (Twu and Chieu, 2000) and 

numerical results (Mallayachari and Sundar, 1994). 

In addition, the wave reflection, transmission 

coefficient, energy damping and wave forces on the 

leeward wall is analysed. The relevance of the 

leeward wall in the presence of the multiple porous 

blocks over the elevated bottom is documented and 

the influence of porosity, structural width, width 

between the structures and water chamber width on 

the oblique wave propagation are presented. 

2. MATHEMATICAL FORMULATION 

The present study investigates the oblique wave train 

incident on the multiple porous blocks. The 

geometry of the porous structure consists of 

homogenous porosity ε finite thickness d and water 

chamber width L. The physical problem is analysed 

in the three-dimensional Cartesian coordinate system 

with horizontal x-z directions, and the y-axis is 

considered to be downward positive. The foundation 

is assumed to be horizontal impervious with zero 

velocity in the case of open water region and porous 

block region. The porous structure is assumed to 

occupy till free surface level, and the elevated 

impermeable seabed height is varied. The 2N porous 

structures with and without leeward wall located at 

x= -bj for j = 1,2,…..,2N are examined as in Figs. 

1(a,b). In the schematic diagram (Figs. 1a-b), the 

black portion depth shows the impermeable elevated 

bottom and dotted portion depth hj for j = 2,4,…,2N 

represents the porous structure height. However, the 

difference between the open water depth and depth 

of the porous structure shows the elevated step height 

(h j+1- hj) in each of the regions. In the case of the 

open water region, the water depth is kept constant, 

but the porous structure is placed on the elevated 

bottom of different depths. 

The fluid is assumed to be occupy the regions 
2 1

1

N

j jI


with 

1 1 1( ,0 )I b x y h       sea side open 

water region 
1( ,0 )j j jI b x b y hj      , 

j=2,3,…,2N and 
2 1 2 2 1( ,0 )N N NI x b y h      lee 

side open water region with ( , )z   for all I j

.The subscript j=2,3,…,2N represents the finite open 

water and porous block regions. Further, j = 1 and j 

= (2N+1) represents seaside and leeside open water 

regions in the absence of the leeward wall. The 

region, 
2 1 2 2 2 1I ( ,0 )N N N Nb L x b y h         is the 

leeside confined region in the presence of the 

leeward wall. It is assumed that the monochromatic 

incident wave is propagating from positive x - 

direction with an θ angle and is considered to be 

impinging on the first porous structure at x = -b1The 

fluid is considered to be inviscid, incompressible, 

irrotational and the porous structure is assumed as 

isotropic and homogeneous. 

There exists the velocity potential namely 

( , , , )j x y z t and the free surface deflection 

( , , )i x z t  which can be presented as 

 ilz i t

j j( x, y,z,t ) Re ( x, y )e    and 

 ilz i t

j j( x, y,z,t ) Re ( x )e    for open water 

and porous structure regions. Re denotes the real part 

and l is the component of wave number along the z - 

direction.  
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Fig. 1. Multiple porous structures on elevated bottom (a) without leeside wall and (b) with leeside wall. 

 

 

The spatial velocity potential, ( , )j x y for 

j=2,3,…,(2N+1) satisfies the partial differential 

equation given by  

   2 2 , 0      for      0 .xy j jl x y y h          (1) 

where,
2 2

2

2 2xy
x y

  
  

 
 and l=γ10 sinθ is the wave 

number in the z - direction. The linearized boundary 

condition in each of the regions 
jI for 

j=2,3,…,(2N+1) is of the form 

 
 

,
, 0    at    0,

j
j j

x y
K x y y

y





  


            (2) 

where, 2

jK g for j=1,3,…,(2N+1) in the case 

of open water region and 2( )jK s if g  for 

j=2,4,…,(2N) in the case of porous block region. The 

bottom boundary condition is given by 

 ,
0    at   ,     1,2,...,(2 1).

j
j

x y
y h j N

y


   



(3a) 

In the presence of the elevated seabed the velocity 

near the elevated step (h j+1- hj) for j=1,3,…,(2N+1) 

is zero and is given by  

 
1

,
0    at   x ,    

j
j j j

x y
b h y h

x





   


      (3b) 

In the general, the continuity of dynamic pressure 

and velocity are applicable throughout the depth 

(Sollitt and Cross, 1972; Dalrymple et al., 1991). On 

the other hand, in the case of elevated step porous 

structure, the continuity of pressure and velocity are 

applicable only for the porous structure depth hi for 

j=2,4,…,(2N) (Das and Bora, 2014) along with the 

zero-flow condition for the elevated step height. The 

continuity of dynamic pressure and mass flux 

(Karmakar et al., 2010; Liu and Li, 2013; Das and 

Bora, 2014) at the interfaces along the horizontal x-

direction is given by 

   

   

( 1)

( 1)

1

, , ,    

, ,

at  , 1,3,...,(2 1),   0 ,

j j

jx j x

j j

x y G x y

x y x y

x b j N y h

 

 











     

     (4a) 

   

   

( 1)

( 1)

, , ,     

, ,

at  , 2,4,...,2 ,   0 ,

j j

j j x

j j

G x y x y

x y x y

x b j N y h

 

 









    

               (4b) 

The no-flow condition near to the vertical rigid wall 

is given by 

 ,
0   at   ,    (2 1).

j
j

x y
x b L j N

x


    


  (5) 

where ε is the structural porosity, G=s-if is the 

impedance of the porous medium, s is the medium 

reactance representing the inertial effect of the 

porous medium of the fluid flow (Chwang and Chan, 

1998), i is imaginary number and f is the linearized 

friction factor. The friction factor and inertia effect 

of the porous medium (Sollitt and Cross, 1972; 
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Dalrymple et al., 1991) are computed using the 

relation given by   

2 32

2

1
,

t T
f

p pV t

t T

V t

C
dV q q dt

K K
f

dV q dt

 









 
 
 
 

 

 

      (6a) 

1
1 ,ms A





 
   

 
                (6b) 

where q is the instantaneous Eulerian velocity vector 

at any point, v is the kinematic viscosity, KP is the 

intrinsic permeability, V is the volume, Cf  is 

dimensionless turbulent resistant coefficient, T is the 

wave period and Am is the virtual added mass 

coefficient due to the wave impinging on the porous 

structure. The solution procedure and input values 

required for finding the friction factor is adopted 

from the previous works (Sollitt and Cross, 1972; 

Madsen, 1983; Das and Bora, 2014). In practice, the 

medium reactance/inertia is usually treated as unity 

due to the negligible added mass coefficient (Sollitt 

and Cross, 1972; Liu and Li, 2013) as the structure is 

in a fixed position. The far-field radiation condition 

is of the form 

 

 

10 10

(2 1)0

10 10 10

(2 1)0 (2 1)

( )    as    ,

( )

( ) as    ,N

i x i x

j i x
N N

I e R e f y x

x

T e f y x

 








 

  


 
  


(7) 

with R10 and T (2N+1)0 are the complex amplitudes of 

the reflected and transmitted waves. I10 is the 

incident wave potential, γj0  for j=1,3,…,(2N+1) are 

the positive real roots satisfies the open water 

dispersion relation given by   

2
0 0tanh .j j jg h                  (8a) 

The roots γj0 for j = 2,4,...,2N satisfy the porous 

structure dispersion relation given by 

2
0 0( ) tanh .j j js if g h                  (8b) 

where, g is the gravitational acceleration γj0 is wave 

number in open water and porous structure regions 

and ɷ is the wave frequency. Newton-Rapson 

method is employed to solve the open water region 

dispersion relation and perturbation method/step 

approach as in Mendez and Losada (2004) is applied 

to solve the porous structure dispersion relation. 

3. METHOD OF SOLUTION 

The present study is focused on the wave scattering 

due to the multiple porous structures upon elevated 

bottom in the absence and presence of the leeward 

wall.  

3.1   Multiple Porous Blocks on the Elevated 

Seabed  

The multiple porous blocks are designed to 

regulate the high wave action to create the 

tranquillity in the bay regions. The gravity wave 

scattering due to the single and multiple porous 

blocks are investigated under oblique wave 

impinging. The fluid realm is separated into open 

water and porous structure regions and the velocity 

potentials in the open water and porous block 

regions are given by 

 

 

10 1 10 1

1 1

( ) ( )
1 10 10 10

( )
1 1

1

1 1

( , ) ( )

                                   ( ),

                              for   ,   0 ,

n

ik x b ik x b

x b
n n

n

x y I e R e f y

R e f y

b x y h



   


 



 

     

 (9a) 

 1( ) ( )

0

1

( , )

( )

for   ,   0 , 2,3,...,2 ,

jn j jn j

j

ik x b ik x b
jn jn jn

n

j j j

x y

A e B e f y

b x b y h j N



  









      



(9b) 

 

 

(2 1)0 2

(2 1) 2

( )
2 1 (2 1)0 (2 1)0

( )
(2 1) (2 1)

1

2 (2 1)

( , ) ( )

            + ( ),

              for   ,   0 ,

N N

N n N

ik x b
N N N

x b
N n N n

n

N N

x y T e f y

T e f y

x b y h



 



 
  




 







     



(9c) 

where, R1n, Ajn, Bjn and T (2N+1) for n= 0,1,2…and 

j=1,2,3,…2N are the unknown parameters to be 

determined, d = -(bj+1-bj) for j=1,2,3,…2N is the 

thickness of the porous block and confined regions. 

The eigenfunctions in open water region and porous 

structure region is expressed in the form of fjn(y) for 

j=1,2,3,…(2N+1) are given by  

cosh ( )
( )      for  0,1,2...

cosh

jn j
jn

jn j

h y
f y n

h






     (10) 

γjn=iγjn  for n=1,2,3,…., in the case of open water 

region and the eigenvalues γjn satisfy the open water 

and porous structure dispersion relations given by  

2 tanh

                      for  1,3,...,(2 1), 0,

jn jn jg h

j N n

  

  
      (11a) 

2( ) tanh

                      for  2,4,...,2 ,  0,1,2...

jn jn js if g h

j N n

   

 
  (11b) 

with γjn=iγjn  for n=1,2,3,…. and water depth hj=h1 

for j= 1,3,…,(2N+1) in the case of open water 

region. The dispersion relation has positive real 

root γj0 with 2 2 2

jn jnk l   , n= 0 where l = γ10sinθ, 

θ is the angle of wave incidence kjn is the 

component of wave number along x-direction and 

γjn is the wave number in the y-direction. In 

addition, there are purely imaginary roots γjn with 
2 2 2

jn jnk l    for n = 1,2,3,… The eigenfunctions 

fjn(y) for j=1,2,3,…(2N+1) satisfies the 

orthogonality relation of the form 
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1,3,...,(2 1)

0       for   ,
,

    for   ,
jn jm j N

n

m n
f f

C m n 


 

 
       

and 

2,4,...,2

0       for   ,
,

    for   ,
jn jm j N

n

m n
f f

C m n


 

 
          (12) 

with respect to the orthogonal mode-coupling 

relation defined by 
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with 
1,3,....,(2 1)n j NC  


for n= 1,2,3,… are found by 

substituting γjn=iγjn. In order to determine the 

unknown coefficients, the mode coupling relation 

(13a,b) is employed on the velocity potential ϕj (x,y) 

and ϕjx (x,y) with the eigenfunction fjn(y) along with 

continuity of dynamic pressure and mass fluxes as in 

Eqs. 4 (a, b) across the vertical interface x= -bj, 

0<y<hj for j=1,3,…(2N-1) to obtain 

1

1

1

1

0

0

0

( , ), ( ) ( , ) ( )

                              ( , ) ( )

( , ) ( ) ( , ) ( )

             for  0,1,2,...  and  1,3,...,(2

j

j j

j

j j

j

h

j jm j jm

h h

j jm

h

h h

j jm j jm

h

x y f y x y f y dy

x y f y dy

G x y f y dy x y f y dy

m j N

 



 











 
 

  
 
 

 

  



 

 

1).

(15) 

1

1

0

( 1)

0

( , ), ( ) ( , ) ( )

        ( , ) ( ) ,

         for  0,1,2,...  and  1,3,...,(2 1).

j

j j

j

h

jx jm jx jm

h h

j x jm

h

x y f y x y f y dy

x y f y dy

m j N

 

 









 
 

  
 
 

  



    (16) 

Again, the mode coupling relation (13a,b) is 

employed on the velocity potential ϕj+1 (x,y) and ϕ(j 

+1)x(x,y) with the eigenfunction f(j+1)m(y) along 

continuity of dynamic pressure and mass fluxes as in 

Eqs. (4a, b) across the vertical interface x= -bj, 

0<y<hj to obtain 
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It may be noted that the zero-horizontal velocity at 

x= -bj, is applied for hj+1<y< hj , j=1,3,…(2N-1) and 

hj<y< hj+1 , j=2,4,…(2N) as in Eq. (3b) to obtain 

1
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The infinite series sums shown in the algebraic Eqs. 

(15), (16), (17) and (18) are truncated upto finite M 

terms and a linear system of for 4j (M +1) for 

j=2,4,…(2N) algebraic equations is obtained to solve 

the 4j (M +1) unknown coefficients. The wave 

reflection and transmission characteristics due to the 

porous structure on the elevated seabed is given by 

(2 1)010

10 10

      and     
N

r t

TR
K K

I I


              (20a) 

The wave energy damping due to the presence of the 

porous block is investigated based on the relation as 

in Chwang and Chan (1998) given by 

2 21 .d r tK K K                (20b) 

3.2   Multiple Porous Blocks on the Elevated 

Seabed with Leeside Wall  

The significance of the multiple porous structures 

over elevated seabed away from the leeward wall is 

studied to understand the wave transformation 
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mechanism. The velocity potentials in open water 

and porous structure regions are similar as in Eqs. 

(9a, b) and the leeward region velocity potential is 

obtained as 
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Further Eq. (21c) is simplified using the no-flow 

condition near to the leeside wall as in Eq. (5) given 

by 
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The matching conditions as in Eqs. (4a, b) and mode 

coupling relation as in Eqs. (13a, b) is applied to 

obtain system of linear equations as in section 3.1. 

The infinite series sums are truncated upto finite M 

terms and a inear system of 4j (M +1) for 

j=2,4,…(2N) algebraic equation is obtained to solve 

the 4j (M +1) unknown coefficients. The wave force 

acting on the leeside wall Kf is given by 

1 102

w
f

F
K

gh I
               (22a) 

with

  (2 1) 2 1

0

( , )   at  

jh

w j jF i x y dy x b b L      

for 1,2,...,2j N               (22b) 

where I10 is the amplitude of the incident wave 

potential considered to be unity. 

4. RESULTS AND DISCUSSIONS 

The present study elaborates the wave reflection Kr 

transmission Kt , energy dissipation Kd , and wave 

force impact on leeside wall Kf  due to multiple 

porous , blocks with finite spacing placed over the 

elevated bottom in the presence and absence of the 

leeward wall. The influence of the evanescent waves 

on the wave transformation due to the single porous 

block kept on elevated seabed is investigated and 

presented in Table 1. It is observed that, the variation 

in the Kr and Kt with the increase in the evanescent 

waves converges for M > 20. So in the present study 

evanescent modes are truncated for M = 30 to 

perform the hydrodynamic analysis of porous 
structure placed over elevated step.  

 

Table 1 Convergence study with increase in the 

evanescent waves for f = 0.5, d/h1= 1.25, ε =0.4, 

γ10h1=0.5 and 10% elevated step height 

 

 
In order to verify the present model outcomes, the 

wave transformation due to the single and double 

porous blocks is analysed and study outcomes are 

validated with the numerical and hydraulic tests 

results available in the literature. Mallayachari and 

Sundar (1994) reported the wave reflection 

phenomenon due to the permeable breakwater with 

leeward wall using the numerical model based on 

green’s identity formula. The present study examine 

the structural configuration as in Mallayachari and 

Sundar (1994) using the matched eigenfunction 

expansions. In Fig. 2(a) the wave reflection Kr due to 

the permeable structure backed by rear wall is 

presented with variation in the structural width for 

various porosities within 0.2 < ε < 0.8. It is noted that, 

the increase in the structural porosity shows the 

significant decrease in the Kr due to increase in the 

wave damping. The minimum wave reflection is 

obtained at γ10h1=1.5 for the porosities within 0.2 < 

ε < 0.8 may be due to formation of the standing 

waves. However, the increase in γ10d shows the 

uniform results in the Kr within 3<γ10d<8 for 

different porosities. In addition, the correlation 

between the present study and Mallayachari and 

Sundar (1994) is quite acceptable in the wave 

reflection Kr as shown in Fig. 2(a). On the other hand, 

the energy damping Kd due to the double porous 

blocks placed on uniform rigid seabed is analysed 

with variation in the dimensionless wavelength ℎ1/𝜆 

using matched eigenfunction expansions and 

validated with the experimental results presented by 
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Twu and Chieu (2000). Almost 90% of energy 

damping 𝐾𝑑  is achieved (Fig. 2b) due to the double 

porous structure and the correlation between the 

experimental and analytical results in the 𝐾𝑑  is 

observed considerable. 

 

 
 

 
Fig. 2. Comparative study of (a) 𝑲𝒓versus 𝜸𝟏𝟎𝒅 

for the porous block backed by wall 

(Mallayachari and Sundar, 1994) and (b)  

𝑲𝒅 versus 𝒉𝟏/𝝀 for double porous structure 

(Twu and Chieu, 2000) on uniform seabed. 

 
The numerical outcomes obtained from the present 

approach converge well with the analytical (Fig. 2a) 

and experimental predictions (Fig. 2b) available in 

the literature, and the study is extended to analyse the 

hydrodynamic performance of multiple porous 

blocks placed on elevated impermeable bottom in the 

presence and absence of leeward wall using the 

eigenfunction expansion technique.  

4.1   Multiple Porous Blocks on the Elevated 

Bottom  

The significance of multiple porous blocks with 

finite spacing over the elevated bottom is examined 

in the present section. The wave transformation due 

to the change in elevated step height, structural 

porosity, structural thickness d, width between the 

two porous structures w and angle of incidence θ are 

investigated in detail.  

4.1.1  Single Porous Block Placed on 

Elevated Bottom  

The impact of the elevated step height on the wave 

transformation due to presence of porous block is 

analysed. In Figs. 3(a,b), the 𝐾𝑟 and 𝐾𝑡  versus 𝛾10𝑑  

is plotted for various values of elevated step height 

ℎ2/ℎ1 for a single porous structure and the elevated 

step height is varied within 0.75 ≤ ℎ2/ℎ1 ≤ 1.0. 

 
 

 
Fig. 3. Variation in (a) 𝑲𝒓 and (b) 𝑲𝒕 versus 

𝜸𝟏𝟎𝒅 for different elevated step height with 𝜺 =
𝟎. 𝟖, 𝜸𝟏𝟎𝒅=0.5, f=0.5, 𝜽 = 𝟎°. 

 
The variation in the Kr  (Fig. 3a) is significant with 

variation in the elevated step height. The resonating 

pattern is obtained in the Kr  with increase in the 

γ10d  for 0.75 ≤ h2/h1 ≤ 1.0. The Kr is observed 

to converge due to the change in h2/h1 at particular 

intervals (γ10d =1.5, 2.75 and 4.5). The periodic 

increase and decrease in the Kr is obtained as 

compared with flat seabed due to increase in h2/h1. 

Minor variation is observed in the transmission 

characteristics (Fig. 3b) between the uniform bottom 

and elevated bottom. The increase in the step height 

shows the small variation in the Kt  due to the 

increase in Kr within 2 < γ10d < 5. 

However, the increase in the elevated step height 

shows little increase in the wave reflection at each of 

the resonating peak and little decrease in the wave 

transmission coefficient, which may be due to the 

change in the energy damping by the porous 

structure. 

4.1.2 Double Porous Blocks Placed on 

Elevated Bottom  

In Fig. 4, the impact of the elevated step height on 

the Kr is studied for double porous structures. The 

increase in the elevated step height shows the 

increase in the Kr within 0° ≤ θ ≤ 60° compared with 

flat bottom and it is obvious in the wave structure 

interaction problems. The optimum aim of the 

elevated step porous block is to increase the wave 

energy damping, but it is found that 51% increase in 

the Kr is noted with 25% increase in the elevated step 

height at θ = 0° as in Fig. 4. In order to increase the 

performance of the structure in the energy damping, 

the present study suggests the elevated step height 

within 0.85 ≤ h2 / h1 ≤ 0.9, which is beneficial to 
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construct the porous structures upon the artificial 

elevated seabed without affecting the energy 

dissipation. 

 

 
Fig. 4. Variation in the Kr versus θ for different 

elevated step height with ε = 0.8, w / h1 = 1, 

γ10h1=0.5, f = 0.5 and d / h1 = 4. 

 
The structural porosity plays an immense role in the 

wave transformation. In general, minimum porosity 

yields low energy dissipation and maximum porosity 

shows high energy dissipation. However, the 

stability of the structure which depends upon the 

self-weight of the breakwater also influences the 

wave transformation. In most of the conditions the 

porosity is considered within 0.4 < ε < 0.8 (Sollitt and 

Cross, 1972; Madsen, 1983; Mallayachari and 

Sundar, 1994). In Figs. 5(a-c), the impact of the 

structural porosity within 0.4 < ε < 0.8 is studied on 

the wave scattering in the presence of two porous 

blocks. The resonating trend is observed in the 

reflection characteristics Kr (Fig. 5a) which may be 

due to wave trapping by the confined region existing 

between the two porous structures. The sudden 

variation in the wave reflection coefficient is noticed 

within 0.1 ≤ γ10d ≤3.5 and the resonating pattern 

decreases with the increase in the porosity. Around 

28% and 57% decrease in the  Kr is noted for ε = 0.6 

and ε = 0.8 as compared with ε = 0.4 at γ10d = 2.25. 

However, the drastic variation in the Kr is only due 

to increase in the Kt and Kd . In Fig. 5(b), the increase 

in the ε shows the increase in the Kt due to the high 

permeability of the structure, which causes the high 

interaction between the fluid and structure and 

results in high energy absorption. The increase in the 

structural porosity shows the significant increase in 

the Kt within  0.1 ≤ γ10d ≤ 3.5, thereafter, the Kt 

reaches to the minimum values. Hence, the increase 

in the structural porosity shows the significant 

increase in the Kt for specific range and enhances the 

energy damping. 

In the case of wave energy damping (Fig. 5c), it is 

noticed that the resonating trend disappears with the 

increase in porosity and maximum energy damping 

of Kd  > 80% is achieved for structural porosity ε = 

0.8 within 3.25 ≤ γ10d ≤ 5.0. Almost 15% difference 

is observed in the Kd  for 0.4 < ε < 0.8. However, the 

increase in the porosity ε shows the preferable 

increase in Kd , which may be due to the wave 

trapping in the finite spacing. 

The structural width is an essential phenomenon in 

the wave blocking, especially the waves of higher 

wavelength can be attenuated for significant 

structural width. The present condition elaborates the 

effect of the non-dimensional structural width d / h1 

on wave scattering for a double porous block kept on 

elevated bottom. In Figs. 6(a,b), the Kr, Kt versus 

angle of incidence θ is presented with variation in the 

d / h1 for ε = 0.4 (Fig. 6a) and ε = 0.8 (Fig. 6b). 

 

 
 

 
 

 
Fig. 5. Variation in (a) Kr (b) Kt and (c) Kd versus 

γ10d for different porosities with γ10d h1 = 0.5, w / 

h1 = 5,  h2 / h1 = 0.9,  d1 = d2 = d / 2, f = 0.5 and θ = 

0° . 

 
The increase in the d / h1 shows an increase in the Kr 

and minimum Kr from the structure is observed at θ 

= 74° (Fig. 6a) and θ = 54° (Fig. 6b) for all 

nondimensional structural width within 0.25 < d / h1 

< 2. The minimum Kr at θ = 74° (Fig. 6a) and θ = 54° 

(Fig. 6b) is due to the formation of standing waves at 

that particular angle of incidence which may be 

termed as critical angle. However, increase in the  d 

/ h1 illustrates significant reduction in the Kt for ε = 

0.4 (Fig. 6a) and ε = 0.8 (Fig. 6b). It may be noted 

that for  d / h1 = 2 the variation in Kr and Kt is more 

as compared to other non-dimensional width of the 
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structure. High wave reflection is observed for all 

structural width d / h1 at ε = 0.4 as compared with ε 

= 0.8 but the transmission coefficient is almost 

similar for ε = 0.4 and ε = 0.8. This shows that the 

increase in the ε  presents a preferable decrease in the 

wave reflection characteristics and less variation in 

transmission coefficient is noted between ε = 0.4 and 

ε = 0.8 due to the increase in the energy damping by 

fluid and porous structure interaction. However, the 

minimum Kt can be achieved with increase in the 

structural width. 

 

 
 

 
Fig. 6. Variation in Kr and Kt versus Ө for 

different values of d / h1 for γ10d h1 = 0.5, h2 / h1 = 

0.9, w / h1 = 1, f = 0.5, d1 = d2 = d / 2, (a) ε = 0.4 

and (b) ε = 0.8. 

 

4.1.3   Triple Porous Blocks Placed on 

Elevated Bottom 

In the case of triple porous structures, one of the 

influencing parameters in wave blocking is finite 

spacing between the two successive porous 

structures w/h1. The variation in the wave 

transformation is presented with variation in the  w/ 

h1 and the resonating trend in the wave scattering is 

clearly seen. The resonating peaks in the Kr (Fig. 7) 

and resonating minor troughs in the Kt (Fig. 7) is 

obtained with the increase in the w/ h1 and secondary 

resonating peaks in between the resonating high 

peaks is also noticed. This indicates that, there is 

either increase or decrease in the Kr and Kt due to 

wave trapping by finite spacing w/ h1. In practice, the 

resonating peaks and troughs suggests that, the 

optimum dimensionless width between the two 

structures can be achieved in the design and 

construction of the multiple breakwaters for better 

wave trapping in the confined region. Thus, the 

optimum w/h1 for γ10d h1 = 0.5 is observed to be 

(𝑗𝜋 ) < 𝑤/ℎ1 < (𝑗𝜋 + 1) for j = 0,1,2,... in the 

presence of triple structure placed on elevated seabed 

with finite spacing as in Fig. 7. 

 

 
Fig. 7. Variation in Kr and Kt versus w / h1 for d1 / 

h1 = 1 , d2 / h1 = 1, d3 / h1 = 1,   h2 / h1 = 0.9, f = 0.5, 

ε = 0.4 and (b) ε = 0.8, γ10d h1 = 0.5 and θ = 0°  . 

 
4.1.4 Comparative Study of Multiple Porous 

Blocks 

In order to study the relevance of the multiple porous 

blocks in the wave blocking, a comparative study is 

performed by increase in the number of porous 

structures for the case of plane-wave approximation. 

The numerical parameters such as friction factor f = 

2 width between any two porous structures  w / h1=1 

porosity of the each structure ε = 0.4 and the elevated 

step height   h2/ h1= 0.8 are kept fixed for the 

comparative study. The width of the single porous 

block is separated into equal multiple porous blocks. 

In Figs. 8(a,b) the Kr  (Fig. 8a) and the Kt (Fig. 8b) is 

plotted versus γ10d with increase in the number of 

structures 

The variation between the single, double and triple 

porous structures in the Kr is evident in the design of 

coastal structures. The performance of the four and 

five structures shows almost similar estimation in the 

Kr. It is noticed that the increase in the number of 

porous blocks N shows the decrease in the Kr within 

0.1< γ10d < 2.5 which may be due to the wave 

trapping by multiple confined regions existing 

between the multiple structures. Afterwards, the 

increase in the N shows the almost similar estimation 

in the Kr within 2.5 < γ10d < 5. On the other hand, the 

relevance of the multiple porous structures placed on 

elevated seabed with multiple confined regions w/h1 

in the reduction of transmission coefficient in Fig. 

8(b) is studied. It is noted that the increase in the N 

shows the little decrease in the Kt within 0.1< γ10d < 

1.5. Afterwards, the Kt reaches to zero due to the 

wave blocking by multiple porous blocks. The 

variation in the Kt is mainly due to the increase in the 

multiple confined regions w/ h1 which causes more 

energy damping as compared with the single 

structure. 

4.2   Multiple Porous Blocks Placed on the 

Elevated Bottom with Leeward Wall 

The seawalls are one of the common structures 

constructed in many locations for the protection of 

the main lands. In the present section the necessity of 
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the single and multiple porous structures placed on 

elevated seabed with the water chamber length L/h1 

and leeside wall is analysed for the protection of 

main lands from high wave action. 

 

 
 

 
Fig. 8. Comparative study between the multiple 

structures in (a) Kr and (b) Kt versus γ10d with ε= 
0.4, f = 2, γ10h1 = 0.5, θ = 0° , w / h1 = 1 and h2/ h1 

= 0.8. 

 
4.2.1   Single Porous Block Placed on 

Elevated Bottom with Leeward Wall 

The impact of dimensionless thickness of the 

elevated step porous structure on the wave 

transformation phenomenon is examined. The wave 

reflection coefficient Kr (Fig. 9a) and wave force 

impact on leeside wall Kf (Figs. 9b) due to the single 

porous block with the leeward wall are studied 

varying angle of incidence θ for the different 

structural widths within  0.25 ≤ d / h1 ≤ 2. 

It is found that, the increase in d / h1 shows the 

decrease in the Kr (Fig. 9a) due to the presence of the 

porous block with leeward wall and the critical angle 

moves towards the minimum angle of incidence for 

higher  d / h1. The variation is clearly seen between d 

/ h1 = 2 and other combinations of width of the 

structure and it is significant in the design and 

construction of offshore structures. On the other 

hand, the Kf is calculated for various combinations of 

structural width (Fig. 9b) and the resonating trend is 

observed decreasing for higher values of d / h1 and 

the minimum Kf is achieved for  

d / h1 = 2. However, the decreasing trend in the Kr 

and Kf is noticed for higher values of d / h1 due to the 

enhance in the energy damping by the porous block. 

This suggests that, the width of the structure d / h1 = 

2 is suitable in reducing the Kr and Kf in the presence 

of the leeward wall. 

 
 

 
Fig. 9. Variation in (a) Kr and (b) Kf versus θ for 

different values of d / h1 with γ10d h1 = 0.5, ε = 

0.8, f = 0.5, L/h1=1 and h2/h1 = 0.9. 

 

4.2.2 Double Porous Blocks Placed on 

Elevated Bottom with Leeward Wall 

The wave reflection Kr and force impact on wall Kf 

for double porous structure with confined region is 

analysed in Figs. 10(a,b). The periodic increase and 

decrease in the Kr and Kf is noted and it is observed 

that there is an opposite trend existing between the 

Kr and Kf for variation in the  L / h1. 

The resonating peaks in the Kr and the resonating 

troughs in the Kf  is observed at the same intervals 

and also the resonating troughs in the Kr , the 

resonating peaks in the Kf is observed due to the 

constructive and destructive interference of the 

monochromatic incident wave and the reflected 

waves. The present case suggests that, the L / h1 is an 

influencing factor in order to design the porous 

blocks for better performance and it is noted that the 

porosity of the structure doesn’t affect the periodic 

peaks in the K f. 

On the other hand, the wave scattering due to two 

porous structures (Figs. 11a,b) on elevated seabed 

with leeside wall is examined for different width of 

the structures. Fig. 11(a) shows the uniform values in 

Kr within 0° <θ< 60° and further sharp decrease in 

the Kr within 60° <θ< 86° is obtained for the 

nondimensional structural width considering  d / h1= 

0.25. Afterwards, the increase in the normalised 

structural width shows the resonating trend along 

with decrease in the Kr due to multiple confined 

regions. In Fig. 11(b), the wave force impact on the 

leeward wall Kf versus θ for different d / h1 is plotted. 

The increase in the d / h1 shows the decrease in the Kf 

and minimum Kf is observed for  d / h1 = 2 . 

 



V. Venkateswarlu and D. Karmakar / JAFM, Vol. 13, No. 1, pp. 371-385, 2020.  

 

382 

 
 

 
Fig. 10. Variation in (a) Kr and (b) Kf versus L / 

h1 for different values of ε with γ10d h1 = 0.75, w / 

h1 =1, d / h1 = 1 ,   h2 / h1 = 0.9, f = 0.5, and θ = 0°. 

 

 
 

 
Fig. 11. Variation in (a) Kr and (b) Kf versus θ for 

different values of d / h1 with γ10h1=1, ε = 0.8, f = 

0.5, w / h1= 1, L/h1 = 1 and h2/h1 =0.9. 

 
Around 7%, 16%, 24% and 51% reduction in the 

wave force Kf is achieved considering  0.5 <d / h1 < 

2 as compared with the d / h1 = 0.25 at θ =0° . It is 

also noted that the 50% reduction in the Kr and 15% 

reduction in the Kf is obtained in the case of double 

porous structure (Figs. 11a,b) as compared with the 

single porous structure (Figs. 9a,b) for  d / h1 = 2  at 

θ =0° due to the wave trapping by confined region 

existing between the two porous structures away 

from the rigid wall for a fixed width of the structure.   

 

 
 

 
Fig. 12. Comparative study between the multiple 

structures in (a) Kr and (b) Kf  versus L/h1 with 

γ10h1=0.5, ε =0.4, f = 0.5, θ = 00, d/h1=2, w/h1=1 

and h2/h1 =0.9. 

 

4.2.3   Comparative Study of Multiple 

Porous Blocks with Leeside Wall  

In order to study the significance of the multiple 

porous structure with leeside wall in the wave 

blocking, a comparative study is performed by 

increase in the number porous structures under the 

assumption of plane-wave approximation. The 

numerical parameters γ10h1=0.5, ε =0.4, f = 0.5, θ = 

00, w/h1=1 and h2/h1 =0.8 are kept fixed. The width 

of a single porous structure is considered to be  

d/h1 = 2. Afterwards, the d/h1 is separated into equal 

multiple structures for the purpose of comparison. 

Figs. 12(a,b) shows the variation in the Kr (Fig. 12a) 

and Kf  (Fig. 12b) due to single and multiple 

structures with variation in the water chamber length 

L/h1. The resonating peaks are clear in the case of 

single porous block as compared with the multiple 

porous blocks and the resonating peaks and troughs 

in the Kr (Fig. 12a) is observed decreasing for higher 

number of porous blocks lying on elevated bottom 

which may be due to the increase in the confined 

regions w/h1 and the transmitted wave from the first 

porous block reflected back by the subsequent 

porous block and interacting with incoming waves. 

Similarly, the Kf (Fig. 12b) is noted decreasing with 

the increase in the multiple structures and the 

resonating peaks and troughs are observed to be high 

for N =1 and these resonating peaks and troughs 

decreases with the increase in the multiple porous 
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blocks. The increase in the confined regions is the 

major reason behind the decrease in the Kf. The 

present study suggests that the multiple structures are 

the better solution in the wave blocking and the 

resonating peaks and troughs on the wave reflection 

Kr and wave force in the leeside wall Kf can be 

reduced considering multiple porous blocks. The 

resonating troughs are observed in the Kf at particular 

intervals. These resonating troughs also encourages 

the formation of clapotis nodes (Twu and Lin, 1991). 

These clapotis nodes are helpful in the design of 

coastal structures to find the optimum water chamber 

length for the construction of the porous structure 

away from the leeward wall to achieve better wave 

trapping in practice. 

5. CONCLUSION 

The oblique wave scattering due to the single and 

multiple porous blocks are examined using the 

matched eigenfunction expansion method. The 

following conclusions are drawn, and the outcomes 

are summarised below: 

 The numerical results in the present study are 

validated with the previous theoretical studies 

performed by notable authors. 

 The 90% energy damping in the presence of 

two porous structures is observed, and the 

numerical results are validated with the 

experimental result available in the literature. 

 The effect of elevated step height on wave 

scattering is examined and 10% - 15% elevated 

step height with porous structure is suggested 

to enhance the energy damping. 

 The minimum structural porosity shows the 

high reflection, low transmission, energy 

dissipation and wave force on the leeside wall. 

 In the case of triple porous structure, the 

optimum width between the two structures 

w/h1 for γ10h1=0.5 is observed to satisfy the 

relation (jπ)< w/h1<(jπ+1)  for j= 0,1,2,3,…, to 

achieve the minimum wave reflection and 

transmission coefficients. 

 In the case of porous block with leeside wall 

the porosity within 0.4 < ε < 0.6 is suitable to 

attenuate maximum wave energy and 

subsequently the wave force on the leeside 

wall can be reduced. 

 The structural width is a key role phenomenon 

in the wave energy dissipation. In the case of 

the two porous blocks, the first structure shows 

relevant impact on the wave reflection and 

second structure is successful in regulating the 

wave transmission coefficient. However, the 

successful wave trapping is achieved in the 

confined region. 

 In the presence of the leeward wall, the 

resonating peaks and troughs in the wave 

reflection and force can be reduced due to the 

construction of multiple porous blocks. 

 The resonating peaks and troughs are useful in 

the design of coastal structures to find the 

optimum water chamber length and confined 

region spacing for the construction of the 

multiple porous blocks in the presence and 

absence of the leeward wall. 

 The present method can be easily adopted in 

actual field for better wave blocking for the 

wave conditions within 0.5 < γ10d< 1.0 

considering the medium porosity ε = 0.4 for 

better wave energy reflection and high porosity 

ε = 0.8 for better wave energy dissipation.   
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