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ABSTRACT 

Marine oil spills can cause serious damage to the marine ecological environment. In the numerical modeling 

of oil plume rising and its advection, a better understanding of the oil plume transport may be effective on the 

sea pollution reduction and removing pollutants. In this paper, the effects of waves are investigated on the oil 

plume convection-diffusion pattern using smoothed particle hydrodynamics (SPH). Firstly, the rising patterns 

of an oil plume of different densities are simulated and the results are compared with the analytical solution. 

Then, the concentration distribution is shown for the oil plume rising problem. Afterwards, the suitability of 

the SPH method is examined by a cnoidal wave on shore effect. Finally, the plume of different conditions is 

located in waves and the advection of pollutant is studied with a fixed boom and different angles. It will be 

concluded that using a boom with a zero diversion angle would lead to minimum passing pollutant. 

 

Keywords: Smoothed particle hydrodynamics; Two-phase currents; Oil plume rising; Concentration 

distribution. 

NOMENCLATURE 

C concentration 

c sound speed 

d water depth 

Fr Froude number 

f external forces 

H wave height 

h smoothing length 

𝑛̂ unit vector perpendicular to the interface 

P pressure   

R plume radius 

T wave period 

u velocity 

𝑢𝑔 plume rising velocity 

 

κ interface curvature 
𝑑

𝑑𝑡⁄  material derivative 

θ boom angle 

𝜎 surface tension coefficient 

 Π𝑖𝑗 artificial viscosity 

𝜗 kinematic viscosity 

𝛿𝑠 normalized function     

ρ density 

 

 

1. INTRODUCTION 

Oil pollution is one of the most predominant forms 

of sea pollution and it can cause a wide range of 

impacts in the marine environment. Dispersion of 

oil pollutants is one of the important problems in 

the marine environment and the increasing of oil 

pollution led different numerical models to be 

developed. In the previous studies, (Hua & Lou, 

2007) using the finite volume method and (Sultana, 

2012) using the finite element, could predict the oil 

plume rising and dispersion pattern. The numerical 

modeling of a two phase current with complicated 

free surface in the vicinity of a boom is a 

challenging issue. Most of methods applied up to 

now are Eulerian’s methods, while there are 
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Lagrangian methods used to examine two-phase 

flows. 

The Smoothed Particle Hydrodynamics method is a 

mesh-free Lagrangian method to obtain numeral 

solutions of fluid governing equations. In this 

method, the fluid is considered as moving separate 

particles each of which has its own physical 

characteristics. A most important advantage of this 

method is solving free surface problems without 

any need to treat the free surface. Also, it has its 

own characteristics such as capability, coherence, 

and high accuracy to examine and analyze problems 

compared with other numerical methods. Moreover, 

for the problems involving more than one material 

where each material is described by its own set of 

particles, interface problems are found to be trivial 

in SPH in comparison with other methods e.g. finite 

difference schemes. In addition, the equations used 

in the SPH method are simpler in comparison with 

other methods and solid boundaries are 

implemented by a set of computational boundary 

particles that are interacting with fluid particles. 

However, the computational cost is one of the 

disadvantages of SPH because the time step is much 

smaller than the ones in other methods as explicit 

integration schemes are used.  

    The SPH method was introduced by (Gingold & 

Monaghan, 1977, Lucy, 1977) to examine 

astrophysics problems. Multi-phasic currents (Shao, 

2012; Pourabdian et al., 2017; Hu & Adams, 2006; 

Rostami & Omidvar, 2018), free surface currents 

(Violeau & Rogers, 2016, Omidvar et al., 2015), 

Non-Newtonian fluids (Abdolahzadeh et al., 2019; 

Omidvar & Nikeghbali, 2017; Shao & Lo, 2003), 

fluid and structure interactions (Omidvar et al., 

2012), heat transfer (Cleary & Monaghan, 1999b), 

and turbulent flows (Monaghan, 2011, Lo & Shao, 

2002) are other applications of this method. 

SPHysics2D is an open source code to simulate free 

surface single phase problems. Here, this code is 

developed into two-phase fluids by adding the 

surface tension effect and an additional pressure 

term to the momentum equation for two fluids with 

density difference (such as water and oil). In the 

present study, and after Rostami and Omidvar 

(2018), the surface tension term provided by 

(Morris, 2000) was applied. In order to control the 

pressure between two phases, an additional pressure 

term provided by (Grenier et al., 2009) was used. 

The rising pattern of a single plume with different 

densities is presented and the results are compared 

with available data. Simulating oil plume rise in a 

still water tank is aimed to validate and optimize the 

code of modeling different problems such as wave 

effect on oil plume convection and distribution. The 

convection-diffusion process and the concentration 

distribution are shown for the oil-plume rising 

problem. Then, the simulation of the cnoidal wave 

on beaches is conducted and compared with an 

available experimental result. Finally, the wave 

effect on oil plume convection and diffusion in the 

presence of a still boom on water was simulated. It 

will be shown that the SPH method is a useful tool 

for studying multiphase flows and convection-

diffusion processes. 

2. GOVERNING EQUATIONS 

The fluid governing equations in a continuous 

medium as follows: 

Mass conservation equation: 

. 
d

dt


   u         (1) 

And momentum conservation equation: 

1d
P

dt 
   

u
f        (2) 

where d/dt, ρ, u, p and 𝒇 are the material derivative, 

density, velocity, pressure, and gravity acceleration, 

respectively. The approach of the SPH method is to 

use particles carrying mass, density, pressure, 

viscosity, velocity, location, and other fluid 

characteristics. All terms of momentum and mass 

conservation equations could be discretized for two 

phases using this method by considering viscosity 

and surface tension. The particle different 

parameters are interpolated relative to neighbor 

particles to supply continuity. 

In SPH methodology the continuous function 𝜙(𝑟) 

could be estimated for a particle located at distance 

r by the interpolation integral as below: 

     
 

Ω

,  r r W r r h dr         (3) 

In the above equation, 𝑊(𝑟 − 𝑟′, ℎ) is an 

interpolation function, in which h is the smoothing 

length. The above equation could be written as 

below by considering𝑚𝑗 = 𝜌𝑗∆𝑉𝑗 , where ∆𝑉𝑗 is 

domain volume of function 𝜙(𝑟):  

     ,
j

j j
jj

m
r r W r r h 


     (4) 

where 𝜌𝑗  and 𝑚𝑗 are density and mass of the 

particle j, as well as 𝑊𝑖𝑗 = 𝑊(𝑟𝑖 − 𝑟𝑗 , ℎ) is the 

interpolation function between particles I and j: 

   j

i j ij

j j

m
r r W 


     (5) 

The 𝜙(𝑟𝑗) spatial derivative is: 

   

         

j
j j j ij

jj

j
j i ij

jj

m
r r W

m
r W

 





   

 





    (6) 

In the SPH method, density is calculated based on 

two ways. Using the interpolation formula of the 

SPH method described in Eq. (5), density is 

calculated  as below (Monaghan, 1992): 
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 i i h ij

j

m W r   
     (7) 

Based on the above equation, density of particles 

located near the surface is unreal due to their 

dependence on neighbor particles. Thus, the 

equation of density changes relative to time as 

(Monaghan, 2005): 

 .  i
j ij i h ij

j

d
m W r

dt


  u     (8) 

where 𝒖𝑖𝑗  is velocity difference between particles i 

and j. As it is essential to calculate the interpolation 

function gradient in the continuity equation and also 

since the gradient of the interpolation function must 

be calculated in the conservation of momentum 

equation, therefore the second method is a better 

choice because the interpolation gradient can be 

calculated in a subroutine. For more information, 

readers are referred to (Grenier et al., 2013). 

Also, the momentum conservation equation could 

be discretized using the SPH method. The pressure 

gradient term is calculated as below: 

 2 2

j i
j i h ij

i j j i

PP P
m W r

  

  
    
    

   (9) 

where P is the pressure. In order to simulate 

velocity of a two-phase flow, we have: 

  

Π
i ji

j ij
i j

ij i h ij s

P Pdu
m

dt

R W r

 














 




j

f       

    (10) 

    In the above equation, 𝑅𝑖𝑗 𝑎𝑛𝑑 𝒇𝑠,  and  Π𝑖𝑗 are 

an added pressure, forces such as surface tension, 

and the viscosity term to consider the viscosity 

effects in the Euler equation, respectively. 

The artificial viscosity is (Monaghan, 2005): 

 

2 2

Π

.
  ,         . 0

 

                             0,         . 0

ij

ij ij
ij ij

ij ij

ij ij

f x

hc

r 



  
 

 




u r
u r

u r

        (11) 

 

where α is a constant between 0.01 and 1. Also, h, 

c, and 𝜌̅𝑖𝑗 =
𝜌𝑖+𝜌𝑗

2
 are the smoothing length, sound 

speed, and average density, respectively. 𝒖𝑖𝑗 =

𝒖𝑖 − 𝒖𝑗  and 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗  are the velocity and the 

distance differences between particles i, and j, 

respectively. 𝜂 is considered 0.1ℎ𝑖𝑗 to prevent the 

denominator to become zero when two particles are 

getting closer to each other. The kinematic viscosity 

𝜗 is proportional to 
1

8
𝛼ℎ𝑐, and 

∆𝑢

∆𝑟
 is similar to the 

spatial derivative of velocity. By disregarding 𝜂, the 

artificial viscosity for a two-phase flow is: 

 
16 .

Π  
i j ij ij

ij
iji i j j

v v

h rv v 
 



u r
   (12) 

The above equation is based on in which 
𝑣̅𝑖𝑗

𝜌̅𝑖𝑗
 is 

replaced by 
2𝑣𝑖𝑣𝑗

𝑣𝑖𝜌𝑗+𝑣𝑗𝜌𝑖
 as following: 

2
                      

ij i j

ij i j j i

v v v

v v  



   (13) 

where 𝑅𝑖𝑗 is applied to control the pressure between 

two phases that its value is corrected by Monaghan 

and Rafiee as below (Monaghan & Rafiee, 2013): 

0, 0,

0, 0,

. .
i jw o

ij
w o i j

P P
R

P P

 

 

  
  

  

   (14) 

𝜌0,𝑤 and 𝜌0,𝑜 are reference densities of water and 

plume, respectively. 𝒳 is a coefficient that is 

usually between 0.01 and 0.1 obtained based on 

numerical experiences and stability. 

It is notable that surface tension plays an important 

role in problems such as the rising of oil plume in 

fluids like water. The fluid dynamic numerical 

method applied to calculate the surface tension 

should be extremely flexible for a better simulation 

of the interface of two immiscible fluids. The 

vertical surface tension is inserted on the interface 

of fluids is as (Morris, 2000, Hu & Adams, 2006): 

.s s sF f      (15) 

where 𝛿𝑠 is a normalized function and the force per 

unit area 𝑓𝑠 is: 

ˆ  sf n       (16) 

where σ, 𝑛,̂ and κ are the surface tension coefficient, 

unit vector perpendicular to the interface, and 

interface curvature, respectively. It is assumed that 

surface tension of the whole fluid is constant and 

the surface gradient is negligible. 𝑓𝑠 is inserted 

perpendicular to the interface and the local 

curvature. This force makes smooth areas of high 

curvature, reduce the total area, and decrease the 

surface energy. 

We should choose 𝛿𝑠 to have a unit integral on the 

interface. In this condition, the physics of the 

interface is properly retrieved. Thus, 𝛿𝑠 could be 

(Morris, 2000): 

s n      (17) 

where |𝑛| is the magnitude of the vector normal on 

the oil-water interface. The interface is routed by 

the color function, 
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 j
i j h ij

jj

m
c c W r


      (18) 

    The color function equals to 1 for water particles 

and 2 for oil particles far from the oil-water 

interface, while it decreases to 0.4-0.5 near the free 

surface and the oil-water interface. The surface 

normal vector, unit normal vector, and the surface 

curvature are 𝑛 = ∇𝑐, 𝑛̂ =
𝑛

|𝑛|
 and κ = ∇. 𝑛̂, 

respectively. Based on above formulas, we have: 

   j
i j i h ij

jj

m
n c c W r


     (19) 

 

     

ˆ

ˆ ˆ

.

.                

i

j
j i i h ij

jj

n

m
n n W r





 

  
  (20) 

    The interface of a limit width is a surface with 

great variations of the color function. The interface 

width tends to zero when the number of particles 

tends to infinity. Out of the interface, 𝑛 becomes 

small, while 𝑛̂ and 𝜅 become much greater which 

leads to calculate directions and values of surface 

tension improperly. In order to correct this error, 𝑛̂ 

could be filtered as below (Hu & Adams, 2006; 

Morris, 2000): 

1            

0          

i
i

if n
N

otherwise

 
 


                

 

ˆ
           

0            

i
i

ii

n
if n

nn

otherwise





 



                    

(21) 

As ε =  
0.01

ℎ
 , Eq. (20)  becomes: 

    

  

*
nˆ ˆ

.ˆ

. mi ,

 

j
i j ji

jj

i i h ij

m
n N N n

n W r


 

 


  (22) 

    Also, more accurate solutions could be obtained 

by normalizing the curvature line as 

 

     

   

.

min , .

 

ˆ

mi ,

ˆ

n

ˆ

i

j
i j j i h ijj

j

j
i j h ijj

j

n

m
N N n n W r

m
N N W r







 

 







 (23) 

The surface tension acceleration 𝑎𝑠 is: 

   ˆ.
j

s iii
j

a n n



        (24) 

Considering the momentum equation changes for 

two-phase flows and surface tension effects, we 

could rewrite the momentum equation as below: 

 

 

Π

                                                   

i ji
j ij ij i h ij

i jb

s i

P Pdu
m R W r

dt

a

 

 
     

 
 




 (25) 

The diffusion phenomenon is described by the 

Fick’s law of diffusion based on which there is a 

proportion between the mass flow diffusion and 

concentration gradient (Fick, 1855). By neglecting 

convection phenomenon, the diffusion equation is: 

2dC
D C

dt
        (26) 

in which C and D are concentration and diffusion 

coefficients, respectively. If the current is two-

phasic with little density difference (for example 

water and oil), convection does not significantly 

affect the diffusion phenomenon. The convection-

diffusion equation is (Fischer et al., 1979): 

 2 .
dC

D C vC
dt

        (27) 

Also, the convection-diffusion equation in the SPH 

form is: 

  2 2
1

1

                                        

4N
j i j ij iji

i j ij
i j i jj ij

N
i

j ij i ij
ij

m D D r WdC
C

dt D D r

C
m W

 
  











 

 



 v

 
(28) 

in which 𝜂2 = 0.01h in order to prevent the 

denominator to become zero when two particles are 

very close. 

Water is usually considered as an incompressible 

fluid. Thus, pressure is calculated by the Poisson’s 

equation. As there is not separate any pressure 

equation for incompressible fluids like water, an 

artificial state equation is used in which the sound 

velocity should meet the compressibility condition. 

Based on, (Monaghan, 1994) and (Batchelor, 2000) 

defining a relation between pressure and density, 

we use the following state equation: 

0

1p B






  
   
   

    (29) 

In this equation, pressure is calculated in terms of 

Pascal, reference pressure is 𝐵 =
𝜌0𝑐0

2

𝛾
, 𝛾 is a 

constant which is considered 7 for a fluid consisting 

of water and a fluid (800 kg/m3) like oil (Grenier et 

al., 2013). 𝜌0 is the reference density which is 1000 

kg/m3 for water. B is a constant, and the sound 

velocity (𝑐0) should be ten times of the maximum 

velocity of fluid particles. 

As mentioned above, the interpolation function is of 

great importance in the SPH method as quantities 

are calculated by using this function. It determines 

the area affected by each particle. Based on (Morris 

et al., 1997) the interpolation function is: 
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1
( )

ij
ij

r
W r f

hh

 
  

 
   (30) 

 where𝜗 is the system dimension, and ℎ =

0.92√∆𝑥2 + ∆𝑧2 with ∆𝑥 and ∆𝑧 being the initial 

horizontal and vertical distance between particles.  

    There are different kinds of interpolation 

functions in the SPH method. As shown below, the 

Wendland interpolation function is used in this 

study (Wendland, 1995): 

 

  
4

,

1 2 2         0 2
                

0                                      2

W r r h

k

h

q q q

q







    








 
(31) 

where 𝑘 is normalization constant with the values of  
3

4
,

7

4𝜋
 and

7

8𝜋
 in one, two, and three dimensions 

calculations, respectively. 

Boundary condition is one of the most important 

aspects of each numerical simulation. The SPH 

method has different boundary conditions to 

simulate boundaries such as dynamic Dalrymple 

dynamic boundary conditions and Monaghan 

repulsive force (Dalrymple et al., 2002, Monaghan 

& Kos, 1999), which is one of the SPH method 

weaknesses. 

In this study, the repulsive force method provided 

by Monaghan was applied for boundary conditions 

(Monaghan, 1989). Based on the free surface 

boundary condition, the surface pressure is zero. 

The SPH method has different time algorithms of 

which the predictive-corrective is used in this study 

(Monaghan, 1989). 

In order to validate the developed code, problems 

such as an oil plume rise with the density ratio 

ρ1/ρ2 = 40 and 1.25 in a still water tank, 

distribution of oil plume concentration in a still 

water tank, and a one-phase wave in shore were 

validated. 

3. RESULTS 

In order to validate the developed code for a two-

phase current, the problem of an oil plume rising (of 

ρ1/ρ2 = 40 and μ1/μ2= 85) in a still water tank is 

examined here. Results of the  numerical model are 

used as reference data (Sultana, 2012). Initial 

conditions can be seen in Fig. 1 in which the plume 

radius is 0.25 m.  

As seen in Fig. 2, the SPH method results for oil 

plume rise are compared with results of Sultana 

numerical solution at different times (Sultana, 

2012). 

As seen in Fig. 2, there is a good agreement 

between results of the developed SPH model and 

the finite element model. 

  
Fig. 1. The initial geometry of oil plume rise 

(ρ1/ρ2 = 40). 

 

 
Fig. 2. Oil plume rise (ρ1/ ρ2 = 40): the Sultana 

numerical solution is at the left of each panel and 

the SPH method solution is at the right side. 
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In order to validate the results for a two-phase 

current with density difference of ρ1/ρ2 = 1.25, the 

problem of oil plume rising in water was 

examined. Based on initial conditions shown in 

Fig. 3, R = 1.  

 

 
Fig. 3. Initial geometry of oil plume rise in a still 

water tank (ρ1/ρ2 = 1.25). 

 

 

 
 

 
Fig. 4. Oil plume rise in a still water tank at 

different times. 

 
 

As the water tank is still, there is a good symmetry 

in the Fig. 4 which continues over time. For water 

and oil, 𝛾 = 7 and the surface tension coefficient is 

considered to be 0.032. In order to validate the oil 

plume rise, the below formula for analytical 

solution is used (Batchelor, 2000):  

 
1

2

w o
st

w

Z Z gR
 




   t      (32) 

in which 𝑍(𝑡) is the distance at each time, 𝑍𝑠 is the 

initial distance, t is time, 𝜌𝑜 and 𝜌𝑤 are the density 

of oil and water, respectively, and R is the plume 

radius. 

The highest point of the oil plume is calculated at 

each time and compared with the analytical 

solution. 

 

 
Fig. 5. A comparison between numerical and 

analytical solution of the oil plume rise in a still 

water tank in terms of dimensionless time. 

 

Comparing the analytical solution with results of 

the SPH method, we calculated the mean absolute 

error as shown below (Omidvar et al., 2012): 

*

1

1 n

i i

i

MAE Z Z
n



   

 

   (33) 

MAE is the mean absolute error, 𝑍𝑖
∗ is the 

location at each time step, and n is the number of 

particles. Based on the diagram of the oil plume 

rise in a still water tank, 𝑀𝐴𝐸 = 0.1434. As seen 

in Fig. 5, there is a good agreement between 

analytical solution and SPH results according to 

the mean error. 

3.1 The Distribution of Rising Oil Plume 

Concentration in the Still Water Tank 

In this problem, the convection and diffusion of a 

2-D two-phasic current (oil and water) is 

examined by the SPH method (ρ1/ρ2 = 1.25). The 

initial condition is a tank by length and width of 

2.4m at the center of which there is an oil plume 

of 0.2m radius. The problem initial conditions are 

shown in Fig. 6. 

Based on the geometry of oil plume rise, the 

distribution of oil plume concentration at the initial 

moment is assumed as below (Aristodemo et al., 

2010):  
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Fig. 6. The initial geometry of oil plume. 

 

The plume center is located at (𝑥0,𝑦0), and D is the 

diffusion coefficient. The analytical solution is: 
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  (35) 

In this equation, t0 =1 s, c0 =1 kg.s1/2/m3, and 𝑉 is 

the mean velocity of oil plume rise. 
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 
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    (36) 

The distribution of oil plume in a still water tank at 

different times is shown in Figs. 7 and 8. The 

distribution of oil plume concentration for two 

diffusion coefficients, 10-3 and 10-4, is compared 

with the analytical solution at different times which 

shows a good fit between the analytical solution and 

the distribution of oil plume concentration.  

As seen in Figs. 7 and 8, there is a good agreement 

between the analytical solution and the distribution 

of oil plume concentration using the SPH method. 

Also, the oil plume rise and its diffusion velocity 

decreased during 0.5s due to the plume 

deformation. Moreover, the oil plume concentration 

is reduced as the diffusion velocity is decreased. 

Based on results, the distribution of concentration 

may be examined by the SPH method. This 

simulation is applied to predict the concentration 

pattern of two-phase currents. 

3.2 Validation of Cnoidal Wave on 

Shore 

A cnoidal wave on shore was simulated in this 

problem. A water tank of 24 m length has 1:35 

gradient at the right side. Water depth (d), wave 

height (H), and wave period (T) were 0.4 m and 

0.12 m, and 2 s respectively. The problem initial 

geometry is shown in Fig. 9. 

 

 
Fig. 7. A comparison between the distribution of 

oil plume concentration in analytical and SPH 

method solutions at different times for D = 10-4 

m2/s. 

 

 
Fig. 8. A comparison between the distribution of 

oil plume concentration in analytical and SPH 

method solutions at different times for D = 10-3 

m2/s. 

 

 
Fig. 9. Initial geometry of water tank of cnoidal 

wave on shore. 

 

 

To validate the wave on shore, six points on the 

gradient were chosen and the free surface height at 

different locations were compared with results of 

(Zheng et al., 2009) measurements which can be 

seen in the Fig. 10. 

To validate the wave, the problem of a cnoidal 

wave on shore were simulated which it is found that  
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Fig. 10. Free surface height at different locations. 

 

 
Fig. 11. Initial geometry of cnoidal wave on a slopped shore in which there is a motionless boom. 

 

 

the SPH method has acceptable results compared 

with measurement results. Based on validated 

results, the SPH method is a proper way to examine 

the behavior of oil plume in water and its 

concentration distribution. Thus, this method is 

applied to simulate some problems in different 

conditions to examine the distribution of plume 

concentration. 

3.3 The Wave Effect on Oil Plume Rise 

A plume is a column of one fluid moving through 

another. Several effects control the motion of the 

fluid, including momentum (inertia), diffusion 

and buoyancy (density differences). In this 

problem, the wave effect on oil plume convection 

and diffusion in the presence of motionless boom 

on water was simulated. The water tank was of 

length 25 m and gradient 1:2. Water depth d was 

2.5 m, wave height H was 0.3 m, and wave 

period T was 2 s. Also, the piston height was 4 m. 

The problem initial geometry is shown in Fig. 11. 

 



M. Rostami Hosseinkhani et al. / JAFM, Vol. 13, No. 1, pp. 39-54, 2020.  

 

47 

 
Fig. 12. Wave effect on oil plume convection and diffusion on a shore in which there is a motionless 

boom. 
 

 

Based on results, the SPH method is a great way to 

examine the wave effect on the oil plume 

convection and diffusion in water. As seen in Fig. 

12, oil plume around the boom, which prevents 

from oil plume convection and diffusion, had risen 

symmetrically for 3.75 s before wave reached there. 

After, it rose asymmetrically. As seen in Fig. 13(a), 

just a part of oil plume of less concentration tend to 

pass under the boom and other parts of more 

concentration cannot pass from boom over time. 
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According to Fig. 13(b), a part of oil plume of less 

concentration passed the boom at t = 10 s, and other 

parts of more concentration (in red) remained 

behind the boom. 

 

 
a) 

 

 
b) 

Fig. 13. Oil plume concentration at 5s and 10s. 

The distribution of oil plume concentration at 

different times is shown in Fig. 14. As shown in the 

figure, the distribution of oil plume concentration 

decreases in time.   

 

 
Fig. 14. A comparison between the distribution 

of oil plume concentration at different times. 

 

3.4 Boom Effects with Different 

Angles on the Oil Plume Dispersion 

In this problem, the effects of a boom with different 

angles on the oil plume dispersion are investigated. 

As seen in Fig. 15, the percentage of oil plume 

passed was compared for three different angles and 

it was found that the least percentage of oil passed 

the boom at an angle of 0˚. Table 1 shows the effect 

of boom angle variation on the passing plume 

percentage after 10 seconds. It should be mentioned 

that the passing plume percentage is 55% when 

there is no boom at t = 10s.  

3.5 The Wave Height Effect on Oil 

Plume Dispersion 

In this section, the wave height effect on oil plume 

dispersion with boom angle 0˚ has been simulated. 

According to Fig. 16, it can be seen that an increase 

in the wave height led to more percentage of oil 

plume passed the boom. Table 2 shows the effect of 

wave height on the passing plume percentage after 

10 seconds.  

 

Table 1 Effect of boom angle variation on the 

passing plume percentage in 10 seconds 

passing plume percentage 

at t =10 s Boom angle 

1.15% 
θ=0˚ 

2.30% 
θ=-30˚ 

2.53% 
θ=+30˚ 

 
 

Table 2 Effect of wave height on the passing 

plume percentage in 10 seconds 

passing plume percentage H/d 

0% 0.04 

0% 0.08 

1.38% 0.12 

2.07% 0.16 

4.37% 0.20 
 

 

3.6 The Plume Radius Effects on Oil its 

Dispersion 

In the following, convection and diffusion of oil 

plume on shore affected by different plume radii 

were simulated. The percentage of oil plume passed 

for different radii are shown in Fig. 17 from which 

it can be seen that an increase in the radius led to 

more percentage of oil plumes passed the boom. 

Table 3 shows the effect of plume radius on the 

passing plume percentage after 10 seconds. 

 

Table 3 Effect of plume radius on the passing 

plume percentage in 10 seconds for different 

boom angle 

R/d θ=-30˚ θ=0˚ θ=+30˚ 

0.1 0% 0% 0% 

0.2 2.30% 1.38% 2.53% 

0.3 8.04% 6.31% 9.47% 

0.4 13.77% 10.73% 15.55% 
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Fig. 15. Simulation of the effect of boom with different angle on the oil plume dispersion after 10 

seconds. 

 

 

 
Fig. 16. Simulation of the effect of wave height with boom angle 0˚ on the oil plume dispersion after 10 

seconds. 



M. Rostami Hosseinkhani et al. / JAFM, Vol. 13, No. 1, pp. 39-54, 2020.  

 

50 

 

 

 

 
Fig. 17. Simulation of the effect of plume radius with boom angle 0˚ on the oil plume dispersion after 10 

seconds. 

 

 

Figure 18 shows comparison of the effect of oil 

plume radius with different boom angle on the 

passing plume percentage and Fig. 19 shows 

comparison of the effect of different wave height 

on the passing plume percentage after 10 

seconds.  

3.7 The Froude Number Effect on Oil 

Plume Dispersion 

Based on the results, the SPH method for two-phase 

currents with density difference is suitable to 

examine the behavior of oil plume in a shore to 

show concentration distribution in different 

conditions.  

As a result, this method is applied to simulate and 

examine the distribution of oil plume 

concentration under different conditions. It is 

notable that no heat transfer was considered. 

Here, the effects of plume rising velocity on its 

convection and diffusion in the presence of a still 

boom are examined. This problem was aimed to 

examine the effects of plume rising velocity on 

its distribution.  
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Fig. 18. Effect of plume radius with different 

boom angles versus the passing plume 

percentage at t=10s. 

 

 
Fig. 19. Effect of different wave heights versus 

the passing plume percentage at  t=10s. 

 

 
Fig. 20. Concentration distribution of oil and water at t(g/R)1/2=0.0. 

 

 

3.8 The Concentration Distributions of 

Oil Plume in a Shore with Different Froude 

Numbers 

In this problem, the concentration distribution of oil 

plume of radius 0.5R in a slopped shore was 

examined. Diffusion coefficient is defined 10-1 m2/s 

and the problem initial geometry is shown in Fig. 

11.  

As seen in Fig. 20, the concentrations of oil and 

water plumes were considered 0 and 1, respectively.  

*
avg

max

C
C

C
                     

g
t

R
   

In this section, time and concentration were made 

dimensionless. C*
avg is the average concentration of 

all particles. Afterward, concentration means 

dimensionless concentration which was made 

dimensionless by the average and maximum 

concentrations. The concentration distribution of 

rising plume at different dimensionless times is 

shown in Fig. 21. Here, the Froude number is 

calculated based on 𝐹𝑟 =
𝑢𝑔

√𝑔𝐿
 where 𝑢𝑔 is the 

plume rising velocity and g is the gravity 

accelerations. In this case 𝐿 = 2𝑅 and R is the 

initial radius of the plume.  

In this problem, the effect of plume rising velocity 

on its convection and diffusion in the presence of a 

still boom was considered. As seen in Fig. 21, 

concentration distribution of rising oil plumes with 

Froude numbers of 0, 1, 2 and3 for dimensionless 

time t(g/R)1/2 equal to 31.32, was simulated. 

According to Fig. 21, it can be seen that an increase 

in the Froude number led to higher percentage of oil 

plume passing the boom. Also, oil plume was more 

diffusion in water and oil concentration was more 

reduced. 

Comparing different Froude numbers was aimed to 

examine the effect of plume rising velocity on the 

concentration distribution at different times. The 

average concentration of oil and water plumes at 

different times are shown in Figs. 22 and 23, 

respectively, in which the average concentrations of 

oil plume with different Froude number are 

compared. 

As seen in Figs. 22 and 23, there is a concentration 

transport from oil plume of the maximum 

concentration to water of the minimum 

concentration. Thus, the plume concentration 

decreases while water concentration increases.  

It is notable that concentration transfers from the 

region of more to less concentration. As seen in Fig. 

22, oil plume diffusion in water is more for a larger 

Froude number because the plume rising velocity is 

more. The reason of an increase in diffusion is that 

plumes do not mix and occupy more space of water 

due to higher velocity of the plume. As a result, the 

contact surface of plume with water was increased, 

oil was more diffused in water, and oil 

concentration was more reduced. According to what 

is seen in Fig. 23, large Froude numbers lead to 

more water concentration. As shown in Fig. 24, the 

mean concentration decreases as the Froude number 

increases. 
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Fig. 21. Concentration distributions of oil plume in a shore with different Froude numbers. 

 

 

 
Fig. 22. A comparison between oil average 

concentration of oil plume with different Froude 

numbers at different times. 

 
Fig. 23. A comparison between water average 

concentration of oil plume with different Froude 

numbers at different times. 

 

 
Fig. 24. A comparison between the distribution of oil plume concentration with different Froude 

number at t(g/R)1/2=0.8. 
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4. CONCLUSION 

In this work, the wave effects on the oil plume 

convection and diffusion process were simulated, 

where the SPHyiscs2D code was developed for 

two-phase flows by taking the surface tension 

effects into account. First and in order to validate 

the two-phase code, a single oil plume rising were 

investigated in a still water tank by looking 

carefully at its convection-diffusion effects. Then, 

the simulation of the cnoidal and single-phase 

waves on a beach is conducted and results were 

successfully compared with an available 

experimental data. As seen in results, oil plume 

diffusion in water is more for a larger Froude 

number due to a larger velocity. It was concluded 

that the SPH method is proper to study two-phase 

currents and the mechanism of convection-diffusion 

due to its unique features to examine the wave 

effects on the oil plume concentration distribution.  
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