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ABSTRACT 

This study aims to discuss and illustrate the role of insoluble surfactants on the stability analysis of a shear-

imposed free surface motion down an oblique heated substrate. The couple effects of temperature and surfactant 

concentration gradient on the surface tension are assessed, in which the surface tension of the fluid is assumed 

to vary linearly on surfactant concentration and the temperature. The exact analytical solutions for the Stokes 

flow and the long-wave approximation are derived, depending on the linear stability theory, and hence the 

neutral curves are plotted and discussed. Due to the presence of the surfactant, there are two different modes 

that impact the stability process of a shear-imposed inclined flow. The current study recovers some limiting 

cases upon the selected data. The system parameters governing the liquid layer and the substrate geometry have 

a strong effect on the wave forms and so the stability of the free surface. The influences of various parameters 

such as Marangoni, Biot, elasticity, surfactant Péclet number and Reynolds numbers, besides the angle of 

inclination are considered. It is found that, the Reynolds and the surfactant Péclet numbers and the angle of 

inclination have destabilizing effects. 

Keywords: Free surface stability; Shear-imposed; Insoluble surfactants; Inclined substrate; Long-wave 
approximation. 

NOMENCLATURE 

Bi Biot number 

c complex frequency 

Ca capillary number 

Cp specific heat at constant pressure 

Ds  surface diffusion coefficient 

g gravity force 

h surface deflection  

k  wave number 

Ma Marangoni number  

n  unit outward normal vector to the surface  

Ne elasticity number 

Pe  Peclet number  

Pr  Prandtl number 

Pes surfactant surface Peclet number 

q uniform heat transfer coefficient 

Re Reynolds number 

T absolute temperature  

t  the corresponding unit tangent 

Tr  the matrix transpose 

V fluid velocity vector 

x,y coordinates system 

γ surface tension  

 

∇ gradient operator  

ρ fluid density 

p fluid pressure 

µ dynamic viscosity  

β angle of inclination  

τs imposed shear stress 

 unperturbed film thickness  

κ thermal conductivity  

Γ surfactant concentration 

ψ stream function  

1. INTRODUCTION 

Moving a thin layer down an inclined substrate or 

a vertical plane with a free surface is of interest in 

a broad range of dynamical studies. The stability 

of a thin layer flows system along an oblique 

substrate under the gravity force is performed in 

many various industries due to its dramatic effect 

on the manufacturing of microelectronics 

components, active glass screens, cathode ray 

tubes, magnetic tapes, computer disks, and in the 

modern accuracy, coating of photographic 
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emulsions, and to keep paints protected. 

Furthermore, the transport rate of mass, heat, and 

momentum have an important influence in 

adsorption columns, designing distillation 

evaporators and condensers and so on. 

Due to these handy applications, several re-searches 

on computational as well as theoretical problems 

have illustrated that laminar flows are sensitive to the 

capillary number giving the impact of surface tension 

strength, and the substrate geometry as well as 

Reynolds number, which characterizes the evolution 

methods of a viscous Newtonian liquid layer down a 

sloping substrate or a vertical plane. Extensive 

reviews of numerical estimations and analytical 

methods of the free-boundary problem issue, 

characterizing, steady moving films down an oblique 

wall have been investigated by a variety of modes in 

many types of reports. These discussions display that 

the wavy structure on the free interface of the layer 

motion is sensitive to different factors like the slope 

angle, the longitudinal length of the test section as 

well as flow rate, further the effects of external forces 

such as magnetic and electric fields. 

Yih (1963), studies the stability behavior of liquid 

flow down a sloping plane. His result reveals that 

the imposed system was stable to long-wavelength 

perturbations at when the Reynolds number is 

small enough. In a study of the stability process of 

a magnetic film of a viscous liquid down an 

oblique substrate under the effect of gravity force, 

Renardy and Sun (1994) illustrated that the 

magnetic range has a stabilizing influence on both 

the surface and shear modes and can be applied to 

delay the instability behavior. In two-dimensions 

domain, Tomlin et al. (2019), analyzed the 

nonlinear behavior of the liquid interface, that is 

dominated by a forced Kuramoto-Sivashinsky 

relation, in which the non-linearity is assumed to 

be weakly. In this work, the authors considered the 

rule of a three-dimensional oblique fluid thin layer. 

Additional interested studies concerned with the 

stability of free surface motion are in Uma and 

Usha (2006), Samanta (2008a,b): Mukhopadhyay 

and Mukhopadhyay (2009). 

In all the works cited above, the free surfaces have 

been considered to be clean i.e., there are no 

surfactants diffuse at the dividing surface. The 

problems involving the phenomena of diffusion for 

insoluble surfactants at the free surface (or the 

interface between two fluids) have been increasingly 

attracting the attention of many researchers. For 

examples, in the limit of disappearing Reynolds 

number, Luo and Pozrikidis (2007), investigated the 

three-dimensional motion of the gravity-driven for a 

fluid thin layer down an oblique substrate with 

doubly periodic corrugation, where the layer surface 

may display surface tension (variable or constant) 

due to insoluble surfactants. 

Based on a Stokes approximation Frenkel and 

Halpern (2002), discussed the stability picture of a 

two-liquid shear motion with insoluble surfactants 

on the separator interface, in which long-wave 

approximation for the growth rates is reported. 

Pozrikidis (2003), investigated the effect of insoluble 

surfactants on the gravity-driven flow of a fluid film 

down an inclined plane with periodic corrugations or 

indentations. Marangoni convection in the limit of 

the long-wave asymptotic in a horizontal fluid film 

with insoluble surfactants (not into the bulk of the 

liquid) diffused on the free surface (not into the bulk 

of the liquid) is the subject of the pa-per by Mikishev 

and Nepomnyashchy (2010). It is shown that the 

oscillatory long-wave instability is less serious than 

monotonic one only for slight, elasticity numbers, if 

the Lewis number is slight. 

In the work by Srivastava and Tiwari (2018) in the 

presence of an insoluble surfactant depending an 

embedded, regularly spaced heaters, the stability 

process of a gravity-driven thin liquid layer is 

discussed. They investigated that insoluble 

surfactant plays a stabilizing influence on the 

imposed system, wherein it reduces the height of 

the capillary ridge. Yang et al. (2018) have 

performed a numerical illustration of a falling 

liquid film as an insoluble surfactant is located at 

the surface. The concentration of surfactant is 

obtained by the ratio between the surface area of 

the layer and surfactant mass. Their results 

illustrated that the surfactant has a considerable 

effect on the dynamics of the considered liquid 

thin layer. Wei (2004), examined the impact of 

insoluble surfactants on the linear stability process 

of a shear-imposed flow down an oblique 

substrate, in the long-wavelength limit. The 

surfactants diffuse on the free surface, not on the 

bulk of the fluid film. He assumed an additional 

surface shear, which causes instability as a result 

of the shear-induced Marangoni influence. Two 

types of stability are specified, and the associated 

growth rates are investigated. The linear and 

nonlinear stability of the effect due to air shear on 

the interfacial instability is studied by Iqbal 

(2013). The author investigated that the transverse 

velocities and stream-wise growing when the 

falling, shear works in favor of inertial force to 

reduce the flow stabilization, in which the inverse 

effect holds for the uphill shear. 

Finally, in the presence of surfactants and heat 

transfer as well as the presence of surface shear-

imposed contaminated fluid layers, we cited the 

following two works the first by Ding and Wong 

(2013), the authors in this paper studied the linear 

stability analysis of an insoluble surfactants occurs 

on the surface of a liquid heated film. Their results 

show that there are two roles found for the sur-face 

surfactants; one is stabilized the system when it 

concentrated and the other is unstable behavior as the 

diffusion of the surfactant increased. The second, 

Bhat and Samanta (2019) have recently per-formed 

the linear stability behavior of a heated liquid film 

flowing down an inclined substrate the free surface 

of the layer is subjected to shear-imposed stress in 

which an insoluble surfactant has covered the 

interface. 

In view of these, in the present study, our main 

goal has been concentrated, on developing a 

theory for a two-dimensional free surface the 

motion of a thin layer of viscous liquid down an 

oblique heated plane. The free surface is subjected 
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to additional constant shear stress induced by 

airflow and a sur-face insoluble surfactants are 

also presented on the air-liquid interface, not in the 

bulk of the film. 

2. FORMULATION OF THE 

PHYSICAL MODEL 

Consider a laminar flow of a thin viscous film with a 

uniform thickness  along a heated oblique surface, 

which is located at constant temperature Tw as shown 
in Fig.1. 

 
Fig. 1: Sketch of the profile geometry. 

 
The coordinate axes are selected such that x− axis 

along the slope of the plane, in the decline direction, 

at an angle β ∈ (0,π/2) with the horizontal, while 

y−axis orthogonal to the inclined plane. The 

deflection of the surface prevented by assuming that 

surface tension and the gravity force are sufficiently 

large. An additional shear stress τs has a constant 

value offered by an airflow is made on the free 

surface and its orientation can either object or 

support the flow under gravity. Also, insoluble 

surfactants are diffused on the free surface (not into 

the bulk of the liquid). If the temperature and 

surfactant concentration have sufficiently small 

deviations from their equilibrium quantities Ta and 

Γ0, respectively, we assume that the surface tension 

linearly varies with the temperature and the 

surfactants, in which both Marangoni effects are 

taken into consideration, so that 

0 0 0γ( , ) γ ( , ) γ ( , ) γ ( , ),a T aT T T T                  

(1) 

where γ0 is the reference value of the surface tension, 

  𝛾𝑇 =  −
𝜕𝛾

𝜕𝑇
 |  𝑇 = 𝑇𝑎  and   𝛾Γ =  −

𝜕𝛾

𝜕Γ
 |  Γ = Γ𝑎  For 

the sake of straightforwardness of this research and 

in order to preclude cumbersome algebra, let us 

accept that the quantities of the viscosity and density, 

as well as thermal conductivities, not alter with 

temperature field. 

2.1   Governing Equations 

The governing relations contain the continuity and 

Navier-Stokes equations for the flow of the liquid 

film and the energy equation for the temperature 

field. In two-dimensional form, the governing 

equations can be expressed as: 

0,
u v

x y

 
 

 
                                                                  (2) 

2 2

2 2

ρ

             ρ sinβ

u u u
u v

t x y

p u u
g

x x y


   
  

   

   
     

    

            (3) 

2 2

2 2

ρ

             ρ cosβ,

v v v
u v

t x y

p v v
g

y x y


   
  

   

   
     

    

           (4) 

2 2

2 2
ρc κ .p

T T T T T
u v

t x y x y

      
              

           (5) 

Here, u and v distinguish the components of the 

velocity vector V, while ρ, µ and p are density, 

dynamical viscosity, and the pressure respectively. 

In addition, cp denotes the heat capacity at the 

constant pressure and κ refers to the thermal 

conductivity of the fluid layer whereas T denotes its 

temperature. Since the motion is supposed to be 

slow, the term due to the viscosity and the joule 

dissipation is ignored as they are really very small in 

creeping motion. The corresponding boundary 

conditions on the lower boundary and the free 

surface are added to achieve and complete the 

problem statement (2-5). On the solid lower plane 

substrate, y = 0, the no-slip, and the no-penetration 

constraints imposed for the velocity components and 

temperature field read 

0,     wu v T T                                                   (6) 

At the free surface, the boundary constraints are 

respectively, the kinematic condition, surfactant 

equation as well as heat transfer governed by New-

ton’s law of cooling. Across the interface, we have 

the of the normal component of the surface-traction 

that balanced by surface tension times curvature, 

which is expressed as 

 ( ). . γ( , ) . ,Tr
airp p T       V V n n n    (7) 

where pair represents the pressure afforded by the air, 

which is taken to be constant and ∇VTr is the 

transpose of the gradient of the velocity vector. At 

any point on the free surface, the unit out-ward 

normal vector is defined by 

 𝑛 = ∇ (𝑦 − [ℓ + ℎ(𝑥, 𝑡)])/|∇ (𝑦 − [ℓ + ℎ(𝑥, 𝑡)])|, 

and t is the unit vector along the tangential direction 

at that point such that n·t = 0. The tangential 

component of the stress tensor is affected by the air 

pressure and the Marangoni effects and reads as 

 ( ). . γ( , ). τTr
sT     V V t n t                   (8) 

Expressing that the free surface is a material 

interface, the location of the interface can be founded 

by using the following kinematic term 

  , . ( ) 0.
h

u v l h y
t


    


                             (9) 
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Newton’s law of cooling at the interface y = h(x,t) is 

given as 

κ . 0,T qt  n                                                   (10)   

where q is the coefficient of uniform heat transfer 

describing the rate transport of the temperature from 

the film to the surrounding air phase. For an 

insoluble surfactant, the distribution of the surface 

concentration Γ(x,t) at the free interface of the liquid 

is governed by the transport relation (Frenkel and 

Halpern (2002), Pozrikidis (2003); Mikishev and 

Nepomnyashchy (2010)):    

( ) ( ) 1
.s

L L u
D

t x x L x

      
   

    
                      (11) 

Here, in this equation  
2

 1     L h x   
and Ds is 

the surface diffusion coefficient. The influence of 

buoyancy can be ignored by the validity that Ds is 

taken to be small enough. Indeed, it should be stated 

here, that the surfactants are the abbreviations of the 

underlined letters of the three words, ”surface active 

agents”, which are materials and chemicals 

(alcohols, fatty acids and some proteins are good 

examples for such materials) that tend to accumulate 

at surfaces or interfaces, causing changes in their 

behavior. 

Now, in order to remove the units related to the 

above system involving the physical parameters, 

reference scales are specified. So we introduce the 

following quantities to form non-dimensional 

governing relations and boundary constraints: 

   , , ,     ( , ) ( , ),     ,c
c

l
u v U u v x y l x y t t

U
         

0

ρ sinβ
,   ( ) ,    

2
w a a

gl
p p T T T T T        (12) 

where we select the unperturbed film thickness ℓ as 

the characteristic length and the basic surface 

velocity  

Uc = 
ρgℓ2𝑠𝑖𝑛β

2𝜇
 is used to scale the velocity 

components. Using these dimensionless quantities 

(dropping the bar sign for simplicity), the equations 

of motion and heat equation read 

0,
u v

x y

 
 

 
                                                         (13) 

2 2

2 2
2,e

u u u p u u
R u v

t x y x x y

      
       

      
 (14) 

2 2

2 2
             2cotβ,

e

v v v
R u v

t x y

p v v

y x y

   
  

   

  
    

  

               (15) 

2 2

2 2
,e

T T T T T
P u v

t x y x y

     
    

     
                 (16) 

where, Pe = PrRe is the Péclet number and Pr =
𝜇𝑐𝑝

𝜅
  

denotes Prandtl number, Re = 
𝜌ℓ𝑈𝑐

𝜇
 refer to the 

Reynolds number. In terms of these non-dimensional 

parameters, the boundary conditions at the inclined 

substrate y = 0 then read 

0,    1.u v T                                           (17) 

The interfacial stresses created, by the surface 

tension gradient including the Marangoni impacts 

and the related regimes of instability are known as 

thermocapillary instability. Hence, the boundary 

conditions at the free interface y = h(x, t) can be 

written in the form 

1 2( )(1 ( ) ) 2( )

       τ ,a e s

u v h v u h
L

y x x y x x

T T h T
M N

x y x x

       
    

      

    
     

    

        (18) 

2
2

2
3

2

2 ( )

1
                  ( 1) ,

air

a e
a

v u h u v h
p p L

y x x y x x

h
L M T N

C x





        
      

        

   
     

   

(19) 

0,
h h

u v
t x

 
  

 
                                       (20) 

( ) ( ) 1 1

es

L L u

t x P x L x

      
   

    
                        (21) 

1 0,i

T h T
L B T

y x x

    
   

   
                               (22) 

where Ma = 
γ𝑇 (𝑇𝑤 − 𝑇𝑎) 

𝑈𝑐µ
 denotes the Marangoni 

number, 

Ne =
γΓ Γ0 

𝑈𝑐µ
is the elasticity number encapsulating the 

effect of surface surfactants, Ca =
   𝜇𝑈𝑐 

𝛾0
 represents the 

capillary number that expresses the effect of surface 

tension, Pes =
   ℓ𝑈𝑐 

𝐷𝑠
   is the surfactant Péclet number 

and Bi =
   𝑞ℓ  

κ
 refers to the Biot number, which 

measures the heat transfer mechanism at the free 

surface and if Bi equals zero, the surface is then 

thermally insulated. 

2.2   Base State Solutions 

In solving the steady unidirectional flow motion in 

the x direction due to gravity field we get the base 

state solutions whose stability configuration is of 

interest in this work. That is, when the system is 

unperturbed, the heat distribution and the velocity 

range are separated from each other. Hence, to obtain 

the base state solutions of the velocity and the heat 

equation, we use the zero order of the governing 

equations and the associated boundary conditions. 

Hence the solutions of the basic pressure p0(y), 

velocity (U0(y),V0(y)) and the base heat Tb(y) are 

given by 

2
0 0( ) (2 ) τ ,   ( ) 0,sU y y y y V y     
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0 0ˆ( ) 2cotβ(1 ),   ( ) 1 .
1

i
b

i

B
p y p y T y y

B
    


 (23) 

Here it is noted that the basic state velocity profile is 

parabolic in y, while the unperturbed temperature is 

a linear function of y alone and 𝑝̂0 represents the air 

constant pressure. Also, we note that while the basic 

velocity of the diffused surfactant is not affected, it 

is strongly affected by the shear stress imposed on 

the surface. 

2.3   Linearization 

In order to discuss the linear stability analysis, the 

velocities components, the pressure distribution, the 

temperature filed, the interfacial position, are 

perturbed about its equilibrium position as well as 

the diffusive surfactant by introducing infinitesimal 

perturbation and given by the relations 

0 0,    ,    ,u U u v v p p p        

,    ,    1 .bT T T h h                                  (24) 

By involving these quantities into the equations of 

motion, heat equation and linearizing them with 

respect to the base states, one can obtain 

0,
u v

x y

  
 

 
                                                       (25) 

0
0

2 2

2 2
                  ,

e

Uu u
R U v

t x y

p u u

x x y

   
  

   

    
   

  

                       (26) 

2 2

0 2 2
,e

v v p v v
R U

t x y x y

         
     

     
              (27) 

2 2

0 2 2
,b

e

TT T T T
P U v

t x y x y

       
    

     
         (28) 

which are called as the perturbation relations. At this 

point, it is appropriate to call a perturbed stream 

function from the perturbed continuity equation such 

that 𝑢 ́ = ∂ψ  ́  /∂y and 𝑣 ́ = ∂ψ  ́  /∂x. To discuss the 

stability process of the liquid film, the normal mode 

is investigated by supposing the traveling wave 

solutions: 

 

   

, , , ,

ˆˆ ˆ ˆˆ             = ( ), ( ), ( ), , exp ( ) ,

p T h

y p y T y h ik x ct

     

  
(29) 

where k denotes the wave number of the disturbance 

and  

c = cr + ici represents the velocity of complex wave. 

Here the wave number k is taken to be real and the 

letter i indicates √−1, the imaginary number. The 

imaginary part of c gives the growth rate s = kci, 

while the phase velocity of the corresponding 

infinitesimal perturbations is determined by cr. The 

system is unstable (stable) when s is negative 

(positive) and when s = 0, the system is neutrally 

stable. Substituting the perturbed variables into 

relations (26)-(28) and removing the pressure term, 

thus we can obtain the equations governing the linear 

stability system as 

 

4 2
2 4

4 2

22
2 0

0 2 2

ˆ ˆ
ˆ2

ˆ
ˆ ˆ       ,e

d d
k k

dy dy

d Ud
ikR U c k

dy dy

 
  

   
        

   

  (30) 

  
2

2
02

ˆ
ˆˆ ˆ .b

e

dTd T
k T ikP U c T

dydy

 
     

 
            (31) 

Eq. (30) is in the form of Orr-Sommerfeld equation 

(Wei (2004), Samanta (2008a)). The disturbance 

stream function ϕ̂ and the heat 𝑇̂ are subject to the 

boundary constraints at the plate and at the free 

surface. Thus, the linearized boundary conditions at 

the plane (y = 0) become 

ˆ(0)ˆ(0) 0,
d

dy


                                                     (32) 

ˆ(0) 0,T                                                                 (33) 

while the boundary conditions at the free surface (y 

= 1) read 

22
2 0

2 2

ˆ (1)(1) ˆˆ(1)

(1) ˆˆ ˆ    Γ (1) 0,b
e a

d Ud
k h

dy dy

dT
ik N M T h

dy


  

   
     

   

          (34) 

  

3
2 0

3

0

2 2 0

ˆ ˆ (1)(1) (1) ˆ3 (1)

ˆ(1) ˆ(1) 2cotβ

(1)1 ˆ( (1)) 2 0,

e

a b
a

dUd d
k ikR

dy dydy

d
c U ikh

dy

dU
k M T k h

C dy

 
  



 
  




   



            (35) 

 0
ˆˆ(1) (1) 0,c U h                (36) 

 0
0

ˆ (1)(1) ˆ ˆ(1) Γ 0,
dUd

h c U
dy dy


                   (37) 

ˆ (1)(1) ˆˆ(1) 0.b
i

dTdT
B T h

dy dy

 
   

 
                         (38) 

Here, in driving Eq. (35), we use the linearized 

version of the normal stress equation (19), by 

removing ing the pressure value depending on the 

stream function via the x−momentum relation (26). 

Further, all the physical variables are developed 

about the surface y =1 in terms of Taylor expansion. 

3. STABILITY ANALYSIS 

For each k, the system of (30) and (31) with related 

boundary conditions assigns an eigenvalue system 

that can be utilized to get the wave velocity c, that is 

a complex value. Indeed, for arbitrary Re and k, there 
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are no analytical exact solutions for such a system 

and so numerical estimations must be used to solve 

the stability picture in general. In this section, we will 

deal with these equations in two cases, the first is the 

situation of low Reynolds number i.e. Re ≪  1, in 

which that the inertial forces will be small compared 

to the viscous forces (which is known by Stokes 

approximation). The second is the long waves 

evolution, in which we consider low wave number k 

→ 0, thus an asymptotic analysis in the small 

parameter k is possible, which yields an exact 

expression for the wave velocity as an asymptotic 

series in k (Kwak and Pozrikidis (2001), Shankar 

(2005), Gao and Lu (2007); Barra et al.(2019)). 

3.1   Stokes Flow 

For an extreme example, it is interesting to study the 

inertialess stability and let the Reynolds number be 

zero, and consequently, Pe = RePr is also led to zero. 

Thus, it is easy to find the general solution of the 

system (30) and (31) in the Stokes flow: 

1 2 3 4
ˆ( ) ,ky ky ky kyy A e A e A ye A ye               (39) 

1 2
ˆ( ) .ky kyT y B e B e                                            (40) 

From the boundary conditions, we once more obtain 

a secular equation by setting the determinant of the 

coefficients of 𝐴′s, 𝐵′𝑠, ℎ̂ and Γ̂ to zero: 

2 2 2 2

2 2

0

0

0

1 1 0 0

1 1

2 2 2 2

2 2 2 ( 1) 2 ( 1)

(1 ) (1 )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ˆ0 0 0

0 0

0 0 0

1 1 0 0

(1 ) (1 ) 0

e

k k k k

k k k k

k k k k

k k k k

k k
a a a b e

p

k k
i i i b

k k

k e k e k e k e

k e k e k k e k k e
A

ke ke k e k e

e e e e

h

iM ke iM ke iM T U ikN

U U

U c

B k e B k e B T

 

 

 

 







 

 


  

 



 

 

 

where ℎ̃̂= −2icotβ− ik2(
1

𝐶𝑎
−Ma𝑇𝑏) − 2k𝑈́0

 ̅̅ ̅, and 𝑈𝑝𝑒 = 

𝑈0
 ̅̅ ̅− 

𝑖𝑘

𝑝𝑒𝑠
−c. Here, and in what follows, for simplicity 

we write U0(1) = 𝑈0
 ̅̅ ̅= 1 + τs, 

𝑑𝑈0(1)

𝑑𝑦
 = 𝑈́0

 ̅̅ ̅ = τs, 
𝑑2𝑈0(1)

𝑑𝑦2  

= 𝑈̅0
′′ = −2, Tb(1) = 𝑇b and 

𝑑𝑇0(1)

𝑑𝑦
  = 𝑇́0

 ̅ . 

Direct computation of this determinant gives the 

dispersion relation of the Stokes flow: 

2
0 1 2 3 4α (α α ) α α 0,c i c i                    (41) 

where the quantities 𝛼́ s are obvious from the 

context. This equation may be used to discuss the 

stability of Stokes flow, in the presence of all 

physical parameters acted on the problem at hand. 

Applying the Routh-Hurwitz stability criterion (Pop 

and Ingham (2001); El-Sayed (2013)) to Eq. (41), we 

can check the signs of the real parts of these roots 

without getting them explicitly, and hence the 

necessary and sufficient terms for stability are 

2 2
2 3 2 1 2 4 0 4α 0,   α α α α α α α 0.                    (42) 

Note that, the quadratic dispersion relation (41), in 

the limiting case clean flow (i.e. no insoluble 

surfactants at the free surface) reduces to linear 

dispersion equation in c. Thus the phase speed and 

the growth rate corresponding to the Stokes clean 

flow are given by 

0 0
02

(2 sinh 2 )
,

(1 2 cosh 2 )
r

kU k k U
c U

k k k

  
 

 
               (43) 







3 2

2
1

2

6

16 (1 2 cosh 2 )( cosh

8
sinh ) (2 sinh 2 )( cosh 2

sinh 2 ) ( 1) 2 cotβ

16 cosh .

i

i
a

i a a b a

a b

kc k k k k k

k
B k k k k k

C

B k k C M T C

M k kT



  


 



   
 



      (44) 

It is illustrated from Eq. (43) that phase velocity of 

the infinitesimal disturbance is dependent directly on 

the shear stress offered by air and independent of the 

thermocapillary parameters. In addition, in the 

situation when the imposed shear is put to be zero 

(i.e. τs = 0), Eqs. (43) and (44) are then coincide with 

that obtained by Samanta (2008a). 

In Figs. 2 through 4, our main aim is to observe the 

effects of several values included in the analysis on 

the linear stability criterion of the system under 

consideration, in the limit of Stokes flow. In order to 

show this examination, numerical values for the 

stability relation (42) are achieved by the variation of 

the physical terms. The first condition of (42) is 

always satisfied when β < π/2. Therefore, the 

stability configuration can be controlled only by the 

second condition in relation (42). Hence, the stability 

pictures occur when χ < 0, otherwise, instability 

holds when χ > 0. 

The graphs displayed in part (a) of Fig. 2 show 

variation of the condition χ with the imposed shear 

stress τs ∈ (−3,3), for different values of the 

surfactant Péclet number Pes, and the other 

parameters are held fixed as β = π/4, k = 0.1, Bi = 2, 

Ca = 2, Ma = 3, and Ne = 2. It is clear from this figure 

that the condition χ > 0 is satisfied when τs < −2 and 

hence the system is unstable, afterwards the system 

is stable (χ < 0). In addition, it is observed that there 

are three distinct values τs = 0.65, 1 and 2 

corresponding to three values of Pes = 1.5, 1 and 0.5, 

after which the motion resumes again unsettled. 

Therefore, we conclude, in the case of Stokes flow, 

that the surfactant Péclet number has destabilizing 

impacts since the critical stress decreases by 

increasing the Péclet number values. 
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Fig. 2. The graph construction is based on the 

stability condition (42) in the plane (χ − τs) for a 

system having β = π/4, k = 0.1, Bi = 2, Ca = 2, Ma = 

3: Part (a) show the variation of the surfactant 

Péclet number Pes, Part (b) illustrate the effect 

of elasticity parameter Ne. 

 
Fig. 2(b) depicts the stability curves obtained from 

the second condition of (42) versus the shear stress 

parameter axis and different elasticity numbers, for 

the same parameters considered in Fig. 2(a) with 

Pes=1. As shown in Fig. 2(b) with increasing in Ne = 

1.5, 2 and 2.5 for the solid, dotted-dashed and broken 

lines respectively, the stability curves shift to the 

lower region χ < 0, i.e., the higher Ne, the more 

negative parameter χ. Hence, the elasticity parameter 

is found to have stabilizing effects in the movement 

of the free surface. Further, in point of view the 

horizontal axis (τs −axis), it is worth mentioning to 

observe that, when the values of the elasticity 

parameter increased the width of the corresponding 

curve is narrowed. In other words, the distance in the 

range τs between the two intercepted points for each 

curve is contracted due to increase in the elasticity 

parameter. That is the size of the range τs −axis 

narrower for higher Ne and wider for lower Ne, which 

show a destabilizing influence of the imposed shear 

stress τs (this behavior of τs will be confirmed in the 
discussion of Fig. 4(a) below). 

The examination of change of the Marangoni and 

Biot numbers in the stability criteria is shown in the 

(χ − τs) plane via the parts (a) and (b) of Fig. 3. The 

graph illustrated in this figure is carried out for three 

distinct values of Ma (= 5, 10, 15) and Bi (= 1, 1.5, 2) 

for the parts (a) and (b) respectively. It can be seen 

from the part (a) of Fig. 3 that the stability domains 

above the transition curves and under the τs −axis are 

contracted due to the increase of Ma, that is when τs 

< 0, and hence the Marangoni number has a 

destabilizing effect on the movement of the fluid 

film. In a similar manner to that discussed in Fig. 

2(b), the inspection of part (b) of Fig. 3 illustrates 

that the regular regions under the lines are increased 

when the Biot number increases. This reveals that the 

Biot number has a stabilizing impact on the 

movement of the fluid layer. 

 

 
 

 
Fig. 3. The condition χ as a function of the 

imposed shear stress, for a system having the 

same physical parameters as imposed in Fig. 2: 

Part (a) shows the impact of the Marangoni 

number, Part (b) investigate the role Biot 

number. 
 

In order to study the mechanism of the stabilization 

of the imposed shear stress and the capillary number 

on the film flow, Fig. 4 is illustrated in which the 

condition χ is plotted against the dimensionless wave 

number k, for Ma=50, Bi=0.2, Ne=2 and Pes=2. In part 

(a) of this graph, by in-creasing the imposed shear τs 

=−1, 0, 1, it is noted that the unstable wavenumbers 

field enlarged. Therefore, we conclude the imposed 

shear stresses have destabilizing behavior since the 

critical wave numbers stretch by increasing the shear 

parameter quantity. 

On the other hand, it is worth mentioning to observe 

that the imposed shear destabilizes the motion when 

it flows in the direction of x−axis (downhill, τs > 0) 

and decreases the stability threshold (compared to 

the situation when τs = 0). Further, when the imposed 

shear acted against the direction of x−axis (uphill, τs 

< 0), the flow regime is better stabilized than when τs 

= 0. A similar result was reported by Iqbal (2013), in 

his studies of stability and dynamics for air-aided 

shear on a thin layer displayed to a constant magnetic 
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range. Increasing the value of the capillary number 

stepwise from 3 to 7 is presented in the second part 

of Fig. 4. It is clear from this figure that increasing 

the capillary number results in increasing the cutoff 

wave number, in addition decreasing the firm areas 

under the curves. It is apparent from this discussion 

that the variation of the capillary number plays a 

destabilizing role in the motion of the fluid thin film. 

Since the surface tension is related conversely with 

the capillary number, thus we deduce that the surface 

tension has a stabilizing behavior. 

 

 
 

 
Fig. 4. The graph building is based on the 

stability conditions (42) in the plane (χ − k): Part 

(a) discuss the influence of the considered shear 

stress, Part (b) displays the influence of the 

capillary number. 

 
3.2   Long Waves Approximation 

In this part, we consider the effect of Reynolds 

number on the linear stability issue for the general 

form of Orr-Sommerfeld and energy equations. In 

this case, we apply the long-wavelength solutions 

where a regular perturbation technique is used 

(Tseluiko and Papageorgiou (2006), Sadiq, et 

al.(2010), Zakaria (2012), Merkt, et al. (2015), 

Alkharashi et al. (2019); Alkharashi (2019)). Thus 

the appropriate long wave motion is 

0 1

0 1

0 1

0 1

0 1

ˆ ˆ ˆ ,        

ˆ ˆ ˆ ,

ˆ ˆ ˆ ,

ˆ ˆ ˆΓ Γ Γ ,

ˆ ˆ ˆ ,.

k

T T kT

h h kh

k

c c kc

    


  


  


  
 


                 (45) 

By achieving the regular perturbation mode, by 

inserting expansions (45) into Eqs. (30)-(38), and 

combine the terms in each order of k, we gain the 

following arranged problems and their related 

solutions. At order O(1) yields 

4 2
0 0
4 2

ˆ ˆ(1) (1)
0,        0,

d d T

dy dy


                 (46) 

0
0 0

ˆ (0)ˆ ˆ(0) 0,     (0) 0,
d

T
dy


                   (47) 

2
0

0 02

ˆ (1) ˆ 0,
d

h U
dy


                     (48) 

3
0
3

ˆ (1)
0,

d

dy


                                                           (49) 

 0 0 0 0
ˆˆ (1) 0,c U h                                              (50) 

 0
0 0 0 0

ˆ (1) ˆ Γ̂ 0,
d

h U c U
dy


                               (51) 

0
0 0

ˆ (1) ˆˆ (1) 0.i i b

dT
B T B T h

dy
                  (52) 

The solution to (46) that satisfies (47)-(52) can take 
the form 

2 2
0 0 0 0 0

1 ˆ ˆˆ ˆ,        .
2

bU h y T T h y                    (53) 

Substituting Eq. (53) into (50) and (51) we get, 

respectively, 

0 0 0 0

1 ˆ{ } 0,
2

c U U h                   (54) 

0 0 0 0 0 0
ˆ ˆ{ } { } 0.U U h c U                     (55) 

In the absence of heat transfer, the above linear 

system is closed to the problem considered by Bhat 

and Samanta (2019). For dealing with this system, 

we have two temporal modes as illustrated by (Kwak 

and Pozrikidis (2001); Wei (2004)), the first is the 

interface mode (ℎ̂0 ≠ 0, Γ̂0 ≠ 0), this mode is caused 

by the surface deflections via the validity of leading-

order kinematic relation (54) gives c0 (as in free-

falling films). Thus c0 and Γ̂0 are defined by 

0 0 01 2 ,c U U                                   (56) 

and hence leading order amplitude of the surfactant 

reads 

0 0 0
0 0 0

0 0

ˆ( ) ˆˆ (2 ) .
U U h

U h
c U

 
   


               (57) 

Noting that in Eq. (56) 𝑈0
 ̅̅ ̅= 1 + τs this eluci-dated 

that in the surface mode the phase velocity is strongly 

affected by the imposed shear stress. Furthermore, in 

view of Eq. (57) the deformation of the free surface 

affects the surfactant concentration that perturbed on 

it. In addition, from this equation, the concentration 

of insoluble surfactants is in (out) phase with the 
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interface when 2 + 𝑈́0
 ̅̅ ̅ > 0(< 0). Without necessarily 

having a surface deflection, the second type is the 

surfactant mode that can be ex-cited by the 

perturbations of the surfactant amount that 

concentrated at the free surface Γ̂0 ≠ 0. Thus for this 

mode, we have 

0 0 0
ˆ 0,     .h c U                                  (58) 

In comparing Eqs. (56) and (58), we see at the free 

surface, that the leading order surfactant mode 

movies with the same speed of the liquid thin layer, 

while the leading order surface mode exceeds by the 

unity. This means that the leading order surface 

mode movies faster than the leading order surfactant 

behavior. On the other hand, in the existence of 

insoluble surfactants in this work, our asymptotic 

study investigates that at leading order, c0 is 

identified from the leading order surfactant relation 

(54) which is purely real and is concur to the results 

by Shankar (2005). In other words, the impacts of 

surfactants and heat do not show at the leading order 

problem O(1) and hence does not give to the 

system’s stability. Thus, in order to discuss the 

stability of the problem, one must determine the first 

correction of c1, which is obtained by solving the 

problem at order O(k). At the O(k) problem, we 

obtain the next relation: 

 

 
24

01
04 2

2
0

02

ˆˆ ( )( )
(1)

( ) ˆ                            + ( ) 0,

e

d yd y
iR c U

dy dy

d U y
y

dy

  
 




 



           (59) 

 
4

1
0 0 04

2

02

ˆ ( ) ˆ(1)

ˆ ( ) ˆ                            + ( ) 0,

e

b

d T y
iP c U T

dy

d T y
y

dy

 


 



              (60) 

1
1 1

ˆ (0)ˆ ˆ(0) 0,       (0) 0,
d

T
dy


                   (61) 





2
1

1 0 02

0 0

ˆ (1) ˆ ˆ( (1)

ˆ ˆ                  + ) 0,

a

b e

d
h U i M T

dy

h T N


 

   

               (62) 

 

3
1

03

0
0 0 0

ˆ ( ) ˆ2 cotβ

ˆ (1) ˆ     (1) 0,e

d y
i h

dy

d
iR c U U

dy




  
     

  

            (63) 

 1 1 0 0 0 1
ˆ ˆˆ (1) 0,c h c U h                                   (64) 

1
0 0 1

1
1 0 1 0

ˆ (1) ˆ( )

ˆˆ            ( ) 0,es

d
c U

dy

ip c hU


  

    

                         (65) 

 1
1 1

ˆ (1) ˆ ˆ (1) 0.i b

dT
B T h T

dy
                                    (66) 

It should be observed from the above analysis that 

the influence of the capillary number expressing the 

impact of surface tension is investigated only in the 

Stokes flow. But in long wave approximation, the 

effect of capillary number manifests at the higher-

order O(k3), which reveals that it does not contribute 

the long wave study but has a good influence in 

stabilizing short wave limit. The solution to (59) that 

satisfies (61)-(63) is taken the form 

3 2
1 1 2

5 40
0 0 0

ˆ ( )

1ˆ           ( ) ,
120 24

e

y a y a y

c
iR h U U y y

  

 
    

 

      (67) 

where, 


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1 1
6 3 2 .
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
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

 

In addition, the solution to (60) that satisfies (61) and 

(66) is given by 

5
1 1 0 0

4 3
0 0 0

3ˆˆ (1) ((
12 5

1
) ) 2 ,
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e b e b
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               (68) 

where, 
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  
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As a special 

case of our model, when no heat transfer, the system 

is reduced to Eq. (67) only, in which a similar 

equation is in the model given by Bhat and Samanta 

(2019). In the following the surface and the 

surfactant modes will be discussed in terms of the 

first-order wave speed c1 

3.2.1   The interface Mode 

As in the O(1) approximation, we use O(k) kinematic 

condition (64) to determine the c1 for the interface 

mode. So, by Substituting (67) into (64), with the 

help of (57), we obtain 

   

 

1 0 0

4 1
2 2

15 2

1 2
       1 cotβ.

2 3

e e

a b b

c iR U iN U

iM T T i

    

   

               (69) 

The first term of Eq. (69) due to the inertial 

influence, has a stabilizing role if 2 +𝑈́0
 ̅̅ ̅< 0, that is, 

as the supposed shear (τs = 𝑈́0
 ̅̅ ̅) expressible versus the 

gravity force is sufficiently strong. The second term 
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shows the impact of surfactant, which can stabilize 

the system as in the equilibrium state of flows under 

gravity domain (Wei (2004); Shankar (2005)) or 

destabilize due to the assumed shears with 𝑈́0
 ̅̅ ̅ = τs(< 

0)(> 0). The third term is due to the Marangoni 

effects, which will be discussed numerically later. 

The last term represents the stabilizing effect due to 

the gravity field. 

3.2.2   The Surfactant Mode 

As mention above in the case of surfactant mode, we 

substitute Eq. (58) into Eq. (67), once obtain 

  2
1 0 0 1

1 ˆˆ ˆ .
2

eiN U h y                     (70) 

In addition, by using Eq. (54) into Eq. (61), yields 

0 0 1
ˆˆ .eiN U h                                   (71) 

This implies that 

1
ˆ 0.                                   (72) 

Eq. (72) for the surfactant, mode means that there is 

no flow at O(k). As given in O(1) issue, the c1 for the 

diffuse surfactant mode is obtained by the O(k) 

surfactant relation Eq. (65). By substituting Eq. (71) 

in Eq. (65), we have 

1
10 0

1 0
0

( )
( 2 ).

2

e es
e es

i N U P U i
c N U P

U


  

   


   (73) 

Since from the assumption that c = cr + ici = c0 + kc1, 

we conclude that the system is stable (unstable) if 

Im(c1) < 0 (> 0). Thus from Eq. (69), the system is 

stabilized if 𝑈́0
 ̅̅ ̅ >

2

𝑁𝑒𝑃𝑒𝑠
  and the motion will be 

destabilized if 𝑈́0
 ̅̅ ̅>

2

𝑁𝑒𝑃𝑒𝑠
 . In addition, we note that for 

the insoluble surfactant when surface diffusion is 

supposed to be ignored Ds = 0, the system is stable 

(unstable) if 𝑈́0
 ̅̅ ̅< 0 (> 0), which coincide with the 

result given by Wei (2004). It is apparent from Eq. 

(73) that when there is no imposed shear stress, the 

surfactant mode is then switched off and the only 

affected mode in this case is the interface mode 

(Kwak and Pozrikidis (2001), Wei (2004); Iqbal 

(2013)). 

3.3   Marginal State Representation 

In this section, our main purpose is to illustrate the 

impact of such physical dimensionless numbers as 

Marangoni, elasticity and Reynolds numbers on the 

stability process in the concept of neutral curves. In 

the marginal state, the neutral lines split up stable 

motion from the unstable ones. Mathematically, the 

neutral instability line is acquired by performing the 

constraints of stability for the linear growth rate of 

Im(c1) = 0. As a condition of the instability of 

surfactant mode is obtained from Eq. (73), so that 

τ 1
0s

e
es

N
s P

                                  (74) 

in which positive growth rate occurs, due to the 

presence of the shear stress that imposed at the 

surface. That is in the marginal state the critical value 

of the surfactant Péclet number is given by 

2
.

τces
s e

P
N

                                 (75) 

It is obvious from Eq. (75) that the critical surfactant 

Péclet number is depending only at the surface 

surfactant, and the imposed shear stress, while the 

Reynolds number does not play any role in the 

surfactant mode. However, the system will grow 

exponentially with time and the surfactant mode 

becomes unstable if Pes > Pesc . 

In the interface mode Eq. (69) is involved to obtain 

exact analytical expressions of the critical 

Marangoni, elasticity and Reynolds numbers, which 

outlined respectively as 

 
2

20cotβ (15 8 )(2 τ )
,

15 (1 )

e e s
ac

i i

N R
M

B B 

  



            (76) 







2

2

1
8 (2 τ )

15((1 ) (2 τ )

         20cotβ (10 (2 τ ) 40cotβ

          15 ) 20cotβ 8 (2 τ ) ,

ec e s

i s

i e s

a i e s

N R
B

B R

M B R

 
 

   

   

  (77) 

 

 



2

2

5
4cotβ (2 τ )

8(1 ) (2 τ )

            8cotβ 3 6 (2 τ )

            +4cotβ 3 (2 τ )

ec e s

i s

i a e s i

e s

R N
B

B M N B

N

  
 

    

 

(78) 

In the limiting case of Ma → 0, τs → 0, and Bi → 

0, the critical Reynolds number Rec coincides with 

that mentioned in paper Blyth and Pozrikidis 

(2004), while as Ne → 0 i.e., there is no insoluble 

surfactants contaminated the surface of the film we 

reached the result of Smith (1990) and Samanta 

(2014). Furthermore, in the absence of heat 

transfer, it recovers the result reported by Bhat and 

Samanta (2019). In Figs. 5-7, numerical 

calculations for Eqs. (76)-(78) are made to 

illustrate the graphical results for the marginal 

curves which separate the firm regions from the 

unsettled motions. That is the area below each 

curve of these figures satisfied the condition Im(c1) 

< 0, and hence it represents stable regions. On the 

other hand the relation Im(c1) > 0 is satisfied in the 

planes above each line of these graphs and thus we 

have unstable modes. Fig. 5(a) illustrates the 

neutral stability curves for the case of β = π/4, τs = 

3 and Re = 2 and several values of elasticity number 

Ne = 0.9, 1, 1.1 and 1.2. It is worth mentioning to 

observe that the increase of Ne quantity leads to a 

shrinkage of the area of unstable long wave case. 

Thus, the effect of increasing elasticity parameter 

or surfactant is to stabilize the fluid motion. On the 

other hand, in view of the horizontal axis of the 

Biot number, it obvious that at any one of the four 

neutral curves, when the Biot number increases, 

this leads to an extension in the regular area below 

the curve, which confirms the stabilizing influence 

of the Biot number obtained before in the case of 

stokes flow. 
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Fig. 5. Neutral lines in the Mac −Bi plane for a 

system having the parameters β = π/4, τs = 3: 

Part (a) variation of Ne, with Re = 2, Part (b) 

changing of β, with Ne = 3, Part (c) variation of 

Re, with Ne = 2. 

 
Fig. 5(b) shows the marginal stability curves for 

several values of the angle of inclination at the 

same system considered in Fig. 5(a), where β = 

π/6, π/4, π/3 and π/2 corresponding to the solid, 

dashed, dotted and dotted-dashed curves 

respectively. It can be observed that increasing 

values of the angle of inclination have a 

destabilizing effect. In part (c) of the graph 5, the 

behavior of the critical Marangoni number is 

illustrated as a function of the Biot number for 

several values of the Reynolds number. It is clear 

that the increase of Reynolds number values lead 

to an extension of the region of a skittish long 

wave, which shows that the Reynolds number has 

a destabilizing effect on the motion of the 

interfacial waves based on the selected values of 

the physical parameters. 

 

 

 

 

 
Fig. 6. Critical elasticity parameter Nec to long 

wave versus the shear stress τs, for a system 

having the same physical parameters as 

mentioned in Fig. 5 with Bi = 2 Part (a) changing 

in Re, with Ma = 20, Part (b) variation of Ma, with 

Re = 3, Part (c) alteration of Bi, with Ma = 2. 

 

In Fig. 6, the plane (Nec − τs) through the parts (a-c) 

is divided by the neutral lines to regular and unsteady 

regions which are achieved by the validity of the 

factor Im(c1)= 0. In part (a) of this graph the values 

1, 2, 3 and 4 are selected for Reynolds number 

correspond to the continuous, dashed, dotted and 

dashed-dotted curves respectively. It is evidenced by 

the inspection of Fig. 6(a), for the previous input 

parameters, the critical elasticity number and the 

shear-imposed stress decreased as the Reynolds 

number increased, this shows that an increase in the 

Reynolds number has a destabilizing effect. The 

examination of change of the Marangoni number in 

the stability domain is shown in Fig. 6(b), when the 

values of the Marangoni number are increased from 

1 to 10 for the sake of comparison. 
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Fig. 7. The graph is drawn for Rec versus τs, 

according to the transition lines given from 

condition (78), for the same system set in Fig. 5, 

where variation of Ma, Bi and Ne for the partition 

(a), (b) and (c) respectively. 

 

It is observed that increasing Marangoni number 

results in increasing the firm areas under the curves, 

which stabilizes the system in turn confirms the 

significantly stabilizing influence of Marangoni 

number. Fig. 6(c) represents the neutral stability, 

when the values of the Biot number are stepwise 

increased from 0.1 to 0.7 for the sake of comparison. 

It is observed that increasing the Biot number results 

in decreasing the unsteady areas above the curves, 

which stabilizes the motion of the film. On the other 

hand, since the Biot number measures the heat 

transfer mechanism at the free surface, this means 

that the fluid system is more stable if the heat is 

allowed to escape from the fluid film to the 

surrounded air. In addition, when Bi = 0 the surface 

is thermally insulated and thus the free surface is the 

most unstable case since the whole transport of 

temperature in the system is still inside the fluid film. 

The effects of shear-imposed stress on the critical 

Reynolds number for the Marangoni, Biot and 

elasticity numbers are established in the three parts 

of Fig. 7 respectively. The numerical calculations of 

the stability pictures that are shown in these parts, 

illustrated that all the three dimensionless numbers 

have the same influence on the stability behavior of 

the movement of the liquid film, which confirms the 

results obtained in Fig. 5 and 6. On the other hand, it 

is observed from Fig. 7 (c) that critical Reynolds 

number enlarged by the increasing of the elasticity 

number, while the opposite is true for increasing in 

the shear-imposed stress. This shows that the 

imposed shear stress plays a destabilizing role, while 

the surface surfactant has a stabilizing influence on 

the long-wave surface mode. In the absence of heat 

transfer, a similar result was reported by Bhat and 

Samanta (2019), in their study of the effect of shear-

imposed on a contaminated falling film. 

 

 
 

 
Fig. 8. Neutral stability lines for long waves in 

the Nec − τs plane, with Bi = 0 for the system 

parameters as considered in Fig. 6 Part (a) 

variation of large inclination angle Re = 0. Part 

(b) variation of variation of small inclination 

angle Re = 5000. 

 

Numerical computations at various of the inclination 

angle for zero and high Reynolds number are 

presented in the two parts of Fig. 8. The neutral 

stability curves for long wave approximation are 

illustrated in the plane Nec − τs. For larger angles, that 

drawn in Fig. 8(a) numerical estimations reveal that 

the neutral lines for the limiting case at Re = 0 are 

increased due to an increase in small slope in the film 

plane. Also, it is observed from this graph that the 

critical elasticity number enhanced by the increase of 
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the slope angle, while the converse holds for growing 

the shear-imposed stress. This shows that there is a 

stabilization effect of the inclination angle and a 

destabilizing one on the regime. In Fig. 8(b) a small 

stepwise of increasing inclination angles at a high 

Reynolds number Re = 5000, the inspection of this 

shows that both of critical elasticity number and the 

shear-imposed stress extended due to enlarging in the 

slope angle, indicating the stable role of both, in 

which, the higher value of the Reynolds number has 

led to a shift in the role of shear stress from instability 

to stable. The considered numerical applications 

have shown that the film flow is sensitive to the 

substrate geometry (for example the angle of 

inclination), Marangoni parameter expressing the 

impact of thermal surface tension, Biot number, 

Reynolds number and surfactants through elasticity 

number. 

4. CONCLUSIONS 

In the present study, the free surface motion of a 

viscous liquid thin layer down an oblique heated 

plane is carried out. The free surface is subjected to 

additional fixed, shear stresses induced by an air-

flow and insoluble surfactants are also presented on 

the air-liquid interface. The couple effects of 

temperature and surfactant concentration gradient on 

the surface tension are taken into account, in which 

the surface tension of the fluid is assumed to vary 

linearly on surfactant concentration and temperature. 

Depending on the linear stability problem, the exact 

analytical solutions for the Stokes flow (Re → 0) and 

the long-wave approximation (k → 0) are derived. 

The stability conditions and the marginal lines are 

sketched and discussed. The underlying mechanisms 

of the stability behavior by the surfactant Péclet 

number, the Reynolds number, the Marangoni 

number, the surface tension through the capillary 

number, as well as the angle of inclination are 

considered and elucidated in detail. 

Our results reveal that, the surfactant through the 

elasticity number and heat transfer mechanism at the 

free surface act as a stabilizer, while the Marangoni 

number has a destabilizing behavior on the 

movement of the fluid film. In the stabilization of 

long wave, the converse relation between the effect 

of Biot and Marangoni numbers is cleared. The angle 

of inclination and the surfactant Péclet number as 

well as the Reynolds number have destabilizing 

effects. The concentration of insoluble surfactant and 

the heat transfer process at the air-liquid interface 

have stabilizing impacts while the shear stress 

imposed by the air destabilizes the surface when it 

flows along the positive direction (down-hill). 

Finally, the results illustrated in this work can serve 

as a beneficial guide in developing the full stability 

configuration and it is interested in the oil burners, 

metal powder production, the spray coating process, 

and in microchips fabrication. 
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