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ABSTRACT 

In this paper analytical expressions for time-dependent velocity profiles and pressure gradient are obtained for 
fully-developed laminar flows with given volume flow-rate conditions in circular pipe flows with slip boundary 
conditions. The governing equations are solved analytically using the traditional Laplace transform method 
together with Mellin’s inversion formula. The evolution of velocity profiles and pressure gradient for starting 
and pulsatile flow with slip boundary conditions are analyzed. New simplified expressions and perspectives on 
velocity and pressure gradient for no-slip and slip flows are obtained from the analytical results. New scalings 
in starting and pulsatile flows are proposed for pipe flows with no-slip and slip boundary conditions using non-
dimensional numbers. Special attention is paid to the effect of slip factor and pulsatile flow frequency on the 
time-dependent skin-friction factor. Finally, by using the starting and pulsating flow results, analytical 
expressions of velocity and pressure for arbitrary inflow are obtained by approximating the arbitrary volume 
flow-rate by a Fourier series 

Keywords: Micropipe; Starting flow; Pulsatile flow; Womersley number. 

NOMENCLATURE

c non-dimensional length-scale ratio 
Cf friction coefficient 
Kn Knudsen number 
L mean free path of gas molecule 
p pressure 
r radial distance from center of pipe 
R radius of the pipe 
Re Reynolds number 
t time 
T non-dimensional time scale for oscillatory 

flows 
u axial component of velocity in pipe 
uavg average velocity of axial velocity 
uc axial velocity at the center of the pipe 
ur radial velocity component  
uθ circumferential velocity component 
U velocity scale 

U0 axial velocity for starting flows 
Uc axial velocity for cosine flows 
Us axial velocity for sine flows 
Wo square of Womersley number 
x axial distance of the pipe 
x∗ non-dimensional axial distance of the pipe 

α Womersley number 
β viscous slip coefficient 
η navier length 
ν kinematic viscosity 
ρ density of the fluid 
τ non-dimensional time scale for starting 

flows 
ω angular frequency of oscillation 

1 INTRODUCTION 

The scientific and practical interest to micro-pipe 
flows has constantly increased over the past few 
years. Micro-energy systems and micro-
electromechanical systems are few of the well-

known applications. One of the most useful and well-
known applications is the efficient cooling of chips 
using micro heat pipes. Besides these, they have also 
found applications in bio-engineering systems. Re-
cent experimental studies at nano and micro level 
have shown that the frequently used no-slip 
condition can conditionally breakdown, depending 
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on the  interfacial interaction between the fluid and 
solid surfaces. In such cases, the boundary condition 
can drastically differ from the no-slip boundary 
condition. Aforesaid, boundary condition can 
commonly arise from rarefaction effect and 
superhydrophobicity.  

It has been observed that for Knudsen number (Kn = 
λ/D, where λ is the mean free path and D is the 
characteristic length) in the range of 10−2 ≤ Kn ≤ 
10−1, the flow is essentially governed by Navier-
Stokes equation with slip flow boundary condition. 
Because of wide modern potential applications in 
micro and nano-fluidic systems, the slip boundary 
condition has regained attention from the fluid 
mechanics community. Therefore it is of utmost 
importance to gain a clear understanding of flow 
behavior with slip boundary conditions. 

The concept of partial-slip boundary condition is as 
old as the Navier-Stokes equation itself. Navier, in 
the middle of the nineteenth century, posited a Robin 
boundary condition by relating the wall-velocity to 
the shear-rate at the wall. In Navier’s model, the 
velocity at the solid boundary (slip velocity) varies 
linearly with the magnitude of flow shear-rate at the 
wall as follows: 

௪௔௟௟ݑ ൌ ߟ ቤ
ݑ߲
௪௔௟௟ݕ߲

ቤ ,																																																				ሺ1ሻ 

Where η is the ‘Navier-length’ (commonly called as 
slip-length) defined as the distance into the wall at 
which the fluid velocity extrapolates to zero. 
Maxwell rigorously quantified slip-length for gases 
flowing over a solid wall and the value was found to 
be of the order of mean free path of the fluid. The 
commonly used no-slip and perfect-slip conditions 
are cases with proportionality constant values equal 
to zero and infinity respectively. 

Over the past two decades, the theory of starting and 
pulsating flows with no-slip boundary conditions has 
been a subject of intense research and the theory of 
time-dependent laminar flows has been well 
documented in books by Batchelor (Batchelor, 
1967), Schlichting and Gersten (2016) and Jog 
(2002). The first mathematical solution of 
unidirectional unsteady flow was given by Stokes 
using similarity method by solving the diffusion 
equation during the course of study of pendulum 
friction (Panton, 2013). In Stokes’ study, the 
pressure upstream and downstream of the solid 
surface is kept constant during the motion. Rayleigh 
illustrated the boundary layer character of the Stokes 
flow and creatively used the analytical solution of 
Stokes to derive an approximate expression for skin-
friction on a finite length flat-plate. The essence of 
Rayleigh argument was the idea of replacing the time 
scale with ࣦ  /U, where ࣦ  is the distance from the 
leading edge. Further mathematical extension of the 
Stokes problem is the pressure gradient-driven 
starting flows in long pipes and channels. In such 
cases, the expression for velocity and pressure are 
generally represented by Fourier/Bessel series. 

Two types of procedures are commonly used for 
obtaining the analytical solutions for laminar, fully-
developed pulsatory flows with constant properties. 

In the first category (Fourier transform approach), 
the pressure gradient variation is normally assumed 
a waveform, rep-resented by Fourier series 
(Womersley, 1955; Uchida, 1956; Khan, 2007; 
Majdalani, 2008; Hayat et al. 2010). The most 
influential studies and widely cited works related to 
the first approach are the pipe flow solutions of 
Womersley (1955) and Uchida (1956). Majdalani 
(2008) extended the method proposed by Uchida 
(1956) to channel flows with no slip boundary 
condition. Recently, Ray et al. (2005) obtained the 
analytical solution for different types of pulsation by 
approximating the mass flow-rate by Fourier series. 
In the second category (Laplace transform approach 
(Das & Arakeri, 2000; Brereton, 2000; Muntges & 
Majdalani, 2002; Khaled & Vafai, 2004; Chen et al., 
2008; Hayat et al., 2011; Avramenko et al., 2015), 
the pressure gradient is an unknown parameter and 
the additional condition to solve the governing 
equation is obtained from the time-varying mean 
volume flow-rate. 

Das and Arakeri (2000) successfully applied the 
second method to obtain the transient variation of the 
velocity profile and pressure gradient for different in-
flow configurations. Muntges and Majdalani (2002) 
extended the method suggested by Das and Arakeri 
(2000) for an arbitrary volume flow-rate in channel 
flows. In an interesting study, (Brereton (2000) 
obtained the analytical relation between flow-rate, 
pressure gradient and wall friction for arbitrary 
inflow using Laplace transform methods for channel 
and pipe flows. 

Chen et al. (2008) have used the method suggested 
by Das and Arakeri (2000) to circular pipes with slip 
boundary conditions for trapezoidal and starting 
flows. Using Laplace transform method Khaled and 
Vafai (2004) obtained an exact analytical solutions 
of Stokes and Couette flows commenced by 
sinusoidal motion of a wall with slip boundary 
conditions. Recently, many works have been devoted 
to study the effect of dynamic slip boundary 
condition (Kaoullas & Georgiou, 2013; Damianou et 
al., 2014; Kaoullas & Georgiou, 2015) (where the 
slip velocity is a function of previous wall shear 
stress state) on pressure gradient and velocity profiles 
in different flows configurations. 

In an interesting study Avramenko et al., 2015) 
obtained an analytical solution for starting flows with 
slip conditions for pipe and channel flows. To model 
the starting flow, Avramenko et al. (2015) 
represented the pressure gradient term using a 
Heaviside function and solved using Cauchy’s 
residue theorem in conjunction with the Laplace 
transform method. In this work we have considered 
three unsteady flows in a pipe with known inlet flow-
rate (Q (t)) variation than the pressure gradient 
variation which is considered in many other previous 
studies. Defining known time varying volume rate at 
the inlet instead of pressure gradient is beneficial in 
flow conditions where pressure is more laborious to 
measure than volume flow rate. Also, from practical 
point of view, known inlet flow-rate conditions are 
more frequently encountered than the pressure 
gradient variation. Here, the transient behavior of  
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Fig. 1. Schematic depiction of the investigated flow-configurations with boundary conditions. 

 

 

velocity and pressure gradient in pipe flows with slip 
conditions for starting, oscillatory and arbitrary 
inflows are analytically investigated. We use the 
classical Laplace transform method to obtain the 
explicit expressions between the flow variables. Due 
to the captivating applications of hydrophobic 
surfaces associated with the drag reduction, special 
attention is given to the skin-friction factor. 

This paper is organized as follows. The mathematical 
details used for solving the governing equations are 
mentioned in section 2. Solutions to starting, 
pulsating and arbitrary flows are also provided in 
section 2. The results obtained in section 2 are 
analyzed in section 3 where the temporal variation of 
velocity, pressure gradient, skin-friction factor and 
asymptotic nature of the solution for starting and 
oscillatory flow are analyzed. The results are 
summarized in section 4. 

2.  MATHEMATICAL FORMULATION 

A sketch of the unidirectional flow through pipe 
along with the coordinate system employed for the 
present study is shown in Fig. 1. We consider 
incompressible fluid through a pipe (Fig. 1 (b)) with 
radius R. The density, dynamic and kinematic 
viscosities are represented using the symbols ρ, µ 
and ν respectively. Using cylindrical coordinates, (r, 
θ, x), where r = 0 is the axis of the pipe and ur, uθ and 
u are the velocities in r, θ, and x directions 
respectively. We have considered three unsteady 
flow cases (starting, oscillatory and arbitrary) with 
known inlet volume rate as shown in Fig. 1 (a). For 
starting flow the fluid is initially at rest and brought 
into motion at t = 0 in such a way that the velocity 
suddenly jumps to a constant value. The inlet flow 
conditions for starting flow are: 

uavg(t) = 0 for t ≤ 0,                                                 (2) 

          = U0 for t > 0. 

For oscillatory flow the mean inlet velocity is 

represented by sine or cosine function. The inlet flow 
conditions for single-frequency oscillatory flows 
starting from rest are as follows: 

uavg(t) = 0 for t ≤ 0,                                                  (3) 

          = Uc cosωt for t > 0 (for cosine flows),  

          = Us sinωt for t > 0 (for sine flows). 

Here, uavg is the mean velocity at the inlet of the pipe 
and ω is the angular frequency of the oscillation. In 
arbitrary flow case, the mean inlet velocity is varied 
randomly with flow time. To represent a general 
arbitrary inflow, the mean velocity profile is 
approximated by a Fourier series. The arbitrary flow 
consists of mean and fluctuating components as 
follows: 

ሻݐ௔௩௚ሺݑ ൌ ଴ܷ ൅ ∑ ௖ܷ௟ cosሺ݈ݐݓሻ ൅ ∑ ௖ܷ௟ sinሺ݈ݐݓሻ
ஶ
௟ୀଵ

ஶ
௟ୀଵ    

(4) 

The partial slip flow boundary conditions is imposed 
at the wall (Fig. 1 (c)). 

For analyzing the analytical expressions for pressure 
and velocity profiles for starting, oscillatory and 
arbitrary flows with slip boundary conditions, non-
dimensional numbers are defined in the following 
way. The non-dimensional length-scale ratios are 
defined as: 

ܿ ൌ
௥

ோ
	                                                                        (5) 

∗ݔ ൌ
௫

ோ
                                                                        (6) 

The non-dimensional time scales are defined as: 

߬ ൌ
௩௧

ோమ
                                                                            (7) 

ܶ ൌ  (8)                                                                        ݐݓ

Inertia and viscous forces are compared using 
Reynolds number (Re) and Womersley number (α). 
The square of Womersley number is represented 
using the symbol Wo. 
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ܴ݁ ൌ
ଶ௎ோ

௩
                                                                      (9) 

ߙ ൌ ܴට
௪

௩
                                                                    (10) 

଴ܹ ൌ
௪ோమ

௩
                                                                  (11) 

Here, U is the velocity scale. The velocity scale for 
the starting flow is U0 and for oscillatory flow, the 
amplitude of the wave (Uc and Us for cosine and sine 
flows respectively) is used. 

The non-dimensional pressure, pressure gradient, 
Knudsen number and friction factor are defined as: 

∗݌ ൌ
௣

଼ఓ௎/ோ
                                                                 (12) 

ௗ௣∗

ௗ௫∗
ൌ ሺ

ோమ

଼ఓ௎
ሻ
ௗ௣

ௗ௫
                                                         (13) 

݊ܭ ൌ
ఉ௅

ோ
                                                                     (14) 

௙ܥ ൌ െ
ఓ
ങೠ
ങ೤ೢೌ೗೗
భ
మ
ఘ௎మ

                                                              (15) 

Here β is the viscous slip coefficient and L is the 
mean free path of a gas molecule. 

2.1   Solution of the Governing Equation 

Here, we consider incompressible, fully-developed 
transient flow with constant thermo-physical 
properties in an infinitely long circular pipe with zero 
swirl (ur = uθ = 0). 

In the absence of body forces, the momentum 
equation in the cylindrical coordinate system reduces 
to: 

డ௨

డ௧
ൌ െ ଵ

ఘ

డ௣

డ௫
൅ ሺడߥ

మ௨

డ௥మ
൅ ଵ

௥

డ௨

డ௥
ሻ                                  (16) 

The boundary conditions are as follows: 

,ݎሺݑ 0ሻ ൌ ,ሺܴݑ			,0	 ሻݐ ൌ െܮߚ
ݑ߲
ݎ߲

			ܽ݊݀
.ሺ0ݑ߲ ሻݐ

ݎ߲
ൌ 0 

(17) 

׬ ,ݎሺݑߨ2 ሻݐ
ோ
଴ ݎ݀ ൌ ଶܴߨሻݐ௔௩௚ሺݑ ൌ ܳሺݐሻ           (18) 

Taking the Laplace transform of the governing 
equation (Eq. 16) and the boundary conditions (Eqs. 
17 and 18) yield: 

݀ଶݑതሺݎ, ሻݏ

ଶݎ݀
൅
1
ݎ
,ݎതሺݑ݀ ሻݏ

ݎ݀
െ
ݏ
ߥ
,ݎതሺݑ ሻݏ

ൌ
1
ߤ
̅݌݀
ݔ݀

െ
1
ߥ
,ݎതሺݑ 0ሻ 

(19) 

,തሺܴݑ ሻݏ ൌ െ െ ܮߚ
,തሺܴݑ߲ ሻݏ

ݎ߲
,		 

			
,തሺ0ݑ߲ ሻݏ

ݎ߲
ൌ 0,										ܽ݊݀ 

න തݑݎߨ2
ோ

଴
ݎ݀ ൌ  .ଶܴߨሻݏത௔௩௚ሺݑ

By applying the transformed boundary conditions, 
the solution of the subsidiary governing equation is 
obtained as follows: 

,ݎതሺݑ ሻݏ 	ൌ .ሻݏ௔௩௚ሺݑ	 ,ݎሺ̅ߦ  ሻ                                   (20)ݏ

where, 

,ݎሺ̅ߦ ሻݏ ൌ
ூబ൫஻√௦൯ା௄௡൫஻√௦൯ூభ൫஻√௦൯ିூబ൫஺√௦൯

ூబ൫஻√௦൯ା௄௡൫஻√௦൯ூభ൫஻√௦൯ି
మ಺భ൫ಳ√ೞ൯

ಳ√ೞ

            

The inverse Laplace transform is calculated using 
Mellin’s inverse formula. 

,ݎሺݑ ሻݐ ൌ
ଵ

ଶగ௜
׬ ሻݏത௔௩௚ሺݑ
ఊା௜ఠ
ఊି௜ఠ ,ݎሺ̅ߦ  (21)             ݏሻ݁௦௧݀ݏ

The above complex integral is evaluated using the 
Cauchy residue theorem. 

The pressure gradient obtained from the Eqs. 19 and 
20 is written as follows, 

ௗ௣̅

ௗ௫
ൌ

ି௦ఘ௨ഥೌೡ೒ሺ௦ሻሾூబ൫஻√௦൯ା௄௡൫஻√௦൯ூభ൫஻√௦൯ሿ

ூబ൫஻√௦൯ା௄௡൫஻√௦൯ூభ൫஻√௦൯ି
మ಺భ൫ಳ√ೞ൯

ಳ√ೞ

           (22) 

The time-varying pressure gradient is obtained by 
taking the inverse Laplace transform of Eq. 22. 

2.2    Starting Flows 

By taking the Laplace transform of Eq. 2 and 
substituting into Eq. 21, followed by the inverse 
Laplace transform and simplification (the derivation 
is described briefly in the Appendix), the solution for 
the velocity profiles are given by: 

௨ሺ௥ሻ

௎బ
ൌ 2 ቂ

ሺଵି௖మሻାଶ௄௡

ଵାସ௄௡
ቃ ൅ 2∑ ݁ିఔ೙

మఛीሺν, Kn, rሻ.ஶ
௡ୀଵ   

(23) 

where, 

ीሺν, Kn, rሻ ൌ ቂ
௃బሺ௖ఔ೙ሻା௄௡ఔ೙௃భሺఔ೙ሻି௃బሺఔ೙ሻ

ሺଵାଶ௄௡ሻఔ೙௃భሺఔ೙ሻା௄௡ఔ೙
మ௃బሺఔ೙ሻ

ቃ          (24) 

here, νn, n = 1,2,3...,∞ are the zeros of KnνJ1(ν) + 
J2(ν) = 0.  J0, J1 and J2 denote Bessel functions of the 
first kind, of order zero, one and two respectively. 

The analytical expressions for pressure gradient are 
obtained by taking the Laplace transform of Eq. 2 
and substituting into Eqs. 22, followed by the in-
verse Laplace transform. After simplification the 
solutions yield: 

ௗ௣∗

ௗ௫∗
ൌ െ ଵ

ଵାସ௄௡
൅ ଵ

ସ
∑ ݁ିఔ೙

మఛࣨሺν, Knሻ.ஶ
௡ୀଵ               (25) 

where, 

ࣨሺν, Knሻ ൌ ቂ
ఔ೙൫ఔ೙௄௡௃భሺఔ೙ሻି௃బሺఔ೙ሻ൯

ሺଵାଶ௄௡ሻ௃భሺఔ೙ሻାఔ೙௄௡௃బሺఔ೙ሻ
ቃ                  (26) 

2.3   Oscillatory Flows 

The solution for velocity profiles are calculated by 
taking the Laplace transform of Eq. 3 and 
substituting into Eq. 21, followed by the inverse 
Laplace transform calculation. After simplification, 
the velocity profiles for the cosine flow are as 
follows: 

௨ሺ௥ሻ

௎೎
ൌ Ը ቂ݁௜ఠ௧ԭሺߙ, ,݊ܭ ሻݎ ൅

2∑ ఔ೙ర

ఔ೙
రାௐబ

మ
ஶ
௡ୀଵ ݁ିఔ೘

మ ఛीሺν, Kn, rሻቃ                           (27) 

Here νa = ߙ௜

య
మ  and α is the Womersley number. For 

sinusoidally varying mean flow, the velocity pro-
files yield (the derivation is described briefly in the 
Appendix): 
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௨ሺ௥ሻ

௎೎
ൌ Ը ቂെ݅݁௜ఠ௧ԭሺߙ, ,݊ܭ ሻݎ ൅

2∑
ఔ೙మௐబ

ఔ೙
రାௐబ

మ
ஶ
௡ୀଵ ݁ିఔ೙

మఛीሺν, Kn, rሻቃ                             (28) 

ԭ	ሺα, Kn, rሻ ൌ ቂ
௃బሺ௖ఔ೙ሻା௄௡ఔೌ௃భሺఔೌሻି௃బሺఔೌሻ

௃మሺఔೌሻା௄௡ఔೌ௃భሺఔೌሻ
ቃ                (29) 

The analytical expressions for pressure gradient are 
obtained by taking the Laplace transform of Eq. 3 
and substituting into Eq. 22, followed by the inverse 
Laplace transform calculation. After simplification, 
the solutions for pressure gradient for cosine flow 
yield as follows: 

ቀ
ௗ௣∗

ௗ௫∗
ቁ
௖
ൌ ቈԸ ቂ

௜ௐబ

଼
݁௜ఠ௧࣫ሺߙ, ሻ݊ܭ ൅

ଵ

ସ
∑ ఔ೙ర

ఔ೙
రାௐబ

మ
ஶ
௡ୀଵ ݁ିఔ೙

మఛࣨሺν, Knሻቃ቉                              (30) 

For sinusoidally varying mean flow, the expressions 
for pressure gradient are: 

ቀௗ௣
∗

ௗ௫∗
ቁ
௦
ൌ Ը ൤ௐబ

଼
݁௜ఠ௧࣫ሺߙ, ሻ݊ܭ െ

ଵ

ସ
∑

ఔ೙ೈబ
మ

ఔ೙
రାௐబ

మ
ஶ
௡ୀଵ ݁ିఔ೘

మ ఛࣨሺν, Knሻ൨                               (31) 

where, 

࣫ሺα, Knሻ ൌ ቂ௃బ
ሺఔೌሻି௄௡ఔೌ௃భሺఔೌሻ

௃మሺఔೌሻା௄௡ఔೌ௃భሺఔೌሻ
ቃ                              (32) 

2.4   Arbitrary Flows 

The solution for velocity profiles for arbitrary flow is 
calculated by taking the Laplace transform of Eq. 4 
and substituting into Eq. 21, followed by the inverse 
Laplace transform calculation. The complete 
solution is obtained by adding the solutions of mean, 
cosine and sine terms. The solutions of the mean 
component are given by: 

ሻݎଵሺݑ ൌ ܷ0 ൥2൭
൫1െ ܿ2൯൅ ݊ܭ2

1൅4݊ܭ ൱ ൅ 2෍ ݁െ2߬݊ߥीሺν,Kn, rሻ
∞

݊ൌ1

൩	 

	ሺ33ሻ 

ቀ
ௗ௣భ

∗

ௗ௫∗
ቁ
௣
ൌ ቀ

௎బ
௎ೝ೘ೞ

ቁ ቂെ
ଵ

ଵାସ௄௡
൅

ଵ

ସ
∑ ݁െ2߬ࣨ݊ߥሺν, Knሻ∞
݊ൌ1 ቃ  (34) 

These solutions are same as the starting flow 
solutions derived in the previous section (Eqs. 23, 
25). 

The solutions for velocity for cosine and sine flows 
are: 

ሻݎଶሺݑ ൌ Ը∑ ௖ܷ௟			ሾ݁௜௟ఠ௧ԭሺߙ, ,݊ܭ ሻݎ
ஶ
௡ୀଵ ൅

2∑
ఔ೙ర

ఔ೙
రା௟మௐబ

మ ݁
ିఔ೙మఛीሺν, Kn, rሻஶ

௡ୀଵ 	ሿ																										(35) 

ሻݎଷሺݑ ൌ Ը∑ ௦ܷ௟			ሾെ݅݁௜௟ఠ௧ԭሺ݊ܭ,ߙ, ሻݎ
ஶ
௟ୀଵ െ

2∑
ఔ೙మ௟ௐబ

ఔ೙
రା௟మௐబ

మ ݁
ିఔ೙మఛीሺν, Kn, rሻஶ

௡ୀଵ 	ሿ																											(36) 

The multiple frequency solutions for cosine and sine 
flows in equations are the linear summation of the 
single-frequency solutions derived in the previous 
section (Eqs. 27 and 28). 

The solutions for pressure gradient for cosine and 
sine flows are: 

ቀ
ௗ௣మ

∗

ௗ௫∗
ቁ
௖
ൌ Ը∑ ቀ

௎೎೗
௎ೝ೘ೞ

ቁஶ
௟ୀଵ ൈ ൤

௜௟ௐబ

଼
݁௜௟ఠ௧࣫ሺߙ, ሻ݊ܭ ൅

ଵ

ସ
∑ ఔ೙ర

ఔ೙
రା݈2ௐబ

మ
ஶ
௡ୀଵ ݁ିఔ೙

మఛࣨሺν, Knሻ൨																														(37) 

൬
ଷ݌݀

∗

∗ݔ݀
൰
௦
ൌ Ը෍൬ ௦ܷ௟

௥ܷ௠௦
൰

ஶ

௟ୀଵ

ൈ ൥
݈ ଴ܹ

8
݁௜௟ఠ௧࣫ሺߙ, ሻ݊ܭ

െ
1
4
෍

௡ଶ݈ߥ ଴ܹ

௡ସߥ ൅ ݈ଶ ଴ܹ
ଶ

ஶ

௡ୀଵ

݁ିఔ೙
మఛࣨሺν, Knሻ൩ 

(38) 

where Urms is the root mean square of the amplitudes 
of mean, cosine and sine functions defined as: 

௥ܷ௠௦ ൌ ට௎బ
మା∑ ௎೎೗

మ ା∑ ௎ೞ೗
మಮ

೗సభ
ಮ
೗సభ

ଶூ೘ೌೣାଵ
																																				(39) 

Here, lmax is the number of Fourier coefficients used 
for representing the arbitrary inflow. The complete 
solution is obtained by: 

ሻݎሺݑ ൌ ሻݎଵሺݑ	 ൅	ݑଶሺݎሻ ൅  (40)																										ሻ,ݎଷሺݑ

∗݌݀

∗ݔ݀
ൌ
ଵ݌݀

∗

∗ݔ݀
൅
ଶ݌݀

∗

∗ݔ݀
൅
ଷ݌݀

∗

∗ݔ݀
																																								ሺ41ሻ 

3.1   Starting Flow: Temporal Variation of 
Velocity Profiles, Skin-Friction Factor and 
Pressure Gradient 

The velocity distribution derived for starting flows 
(Eq. 23) has steady (first term) and transient parts 
(second term). The steady-state velocity profiles vary 
quadratically with wall normal distance. 

The evolution of the transient part of the velocity 
profiles with flow-time (τ = 0.05, 0.1, 0.2 and 0.3) for 
two Knudsen numbers (Kn = 0 and 0.1) are shown in 
Fig. 2. The transient part of the velocity profiles are 
positive in the near-wall region and negative at the 
center of the geometry. For Kn = 0 (no-slip boundary 
condition), the velocity distribution (Figs. 2 (a) and 
(b)) is similar to that of the suddenly blocked flow 
solution derived by Weinbaum and Parker 
(Weinbaum and Parker (1975)). The transient 
velocity profiles decay with flow-time and flow 
reaches the steady-state as τ approaches 0.3. Hence, 
the steady-state solutions with slip boundary 
conditions are as follows(for τ ≥ 0.3): 

௨ሺ௥ሻ

௎బ
ൌ 2 ቂ

ሺଵି௖మሻାଶ௄௡

ଵାସ௄௡
ቃ                                             (42) 

The steady-state center velocity (uc) is obtained by 
substituting c = 0 respectively. The expressions 
obtained are: 

௨೎
௎బ
ൌ 2 ቂ

ଵାଶ௄௡

ଵାସ௄௡
ቃ                                                                (43) 

The steady-state wall velocity (uwall) is obtained by 
substituting c = 1. The expressions obtained are: 

ቀ
௨ೢೌ೗೗
௎బ

ቁ ൌ ቂ
ସ௄௡

ଵାସ௄௡
ቃ                                                  (44) 

The evolution of velocity profiles for Kn = 0.05 are 
shown in Figs. 3 (a) and (b). Velocity is non-
dimensionalized using information from the steady-
state solution. Due to the decaying nature of the 
transient part, the center velocity increases with 
flow-time as shown in Fig. 3. The velocity profile 
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(a)    
 

(b)    
Fig. 2. Evolution of transient part of the velocity; 

(a) Kn = 0 (b) Kn = 0.1. 
 

attains steady-state at τ ≈ 0.3. At τ equals to 0.3, the 
velocity profiles become parabolic. It is interesting 
to note that velocity profiles become independent 

of Knudsen number at location c =
ଵ

√ଶ
. Comparison 

between the velocity profiles for different Knudsen 
numbers at τ = 0.1 is shown in Fig. 3 (b). A fair 
collapse of velocity profiles is observed near the 
wall proximity even at τ = 0.1. At later flow-time 
(τ ≥ 0.2), all cases collapse into a single parabolic 
curve. In order to get further insight into the 
development of the velocity profile, the temporal 
variation of boundary layer thickness (δ) is plotted 
as shown in Fig. 4. Here, boundary layer thickness 
is defined as the distance away from the wall at 
which velocity is 99 percent of center velocity. 
Boundary layer thickness increases with increase 
in flow-time as shown in Fig. 4. The value of δ is 
lower for slip flows compared with no-slip 
conditions. 

The steady-state expressions for velocity profiles 
(Eq. 42) are used to calculate the steady-state skin-
friction factor (Cf ). The expression obtained is: 

C௙ ൌ
ଵ଺

ோ௘ሺଵାସ௄௡ሻ
												                                          (45) 

This equation (Eq. 45) is same as the expression 
obtained by Avramenko et al. (2015), Eq. (87)) for 
the limiting value of skin-friction factor. 

Fig. 5 shows the temporal variation of the center 
velocity and skin-friction factor for four different 
Knudsen numbers (Kn = 0, 0.01, 0.05 and 0.1). The 
center velocity increases with flow-time as shown in 
Fig. 5 (a). Center velocity attains a constant value at 
τ ≈ 0.2. 

Temporal variation of the skin-friction factor with 

flow-time is shown in Fig. 5 (b). The skin-friction 
factor is highest during the starting time, decreases 
with flow-time and eventually attains a constant 
value at τ ≈ 0.2. In Fig. 5 (b), the temporal variation 
of skin-friction factor is similar to the spatial 
variation at the entrance of the pipe flows. 
 

 

(a)    
 

(b)    
Fig. 3. (a) Velocity profiles at different flow-time 
at Kn = 0.05, (b) Velocity profiles for different 

Kn values at τ = 0.1. 
 
 

 
Fig. 4. Temporal variation of boundary layer 

thickness. 
 

We now seek to calculate the hydrodynamic entry-
length (Lh), using Rayleigh argument, by replacing 
the t by Lh/U0. Since skin-friction factor attains a 
constant value at τ ≈ 0.2, we write: 

ఔ௅೓
௎బோమ

ൎ 0.2																																										                        (46) 

௅೓
ଶோ
ൎ 0.05ܴ݁					                                                       (47) 

This is near to the experimentally observed 
hydrodynamic entry-length value (Durst et al. 2005). 
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(a)         
 

(b)        
Fig. 5. (a) Temporal variation of center velocity; 

(b) Temporal variation of skin-friction factor. 
 

 
Fig. 6. Temporal variation of non-dimensional 

pressure gradient. 
 

Temporal variation of pressure gradients is shown in 
Fig. 6. The pressure drop is highest at the begining 
of the flow. Pressure gradient attains a steady- state 
value at τ ≈ 0.2. The steady-state value is: 

ቀௗ௣
∗

ௗ௫∗
ቁ ൌ െ ଵ

ሺଵାସ௄௡ሻ
																																                      (48) 

Furthermore, by combining the Eqs. 42 and 48, ex-
pressions for velocity profiles in terms of pressure 
gradient are obtained as follows: 

ሻݎሺݑ ൌ െ ோమ

ସఓ
	ௗ௣
ௗ௫
ሺ1 െ ܿଶ ൅                (49)																	ሻ݊ܭ

3.2   Oscillatory flows: Temporal Variation 
of Velocity Profiles, Skin-Friction Factor 
and Pressure Gradient 

The velocity distribution derived for single-
frequency oscillatory flows (Eqs. 27 and 28) consist 
of an oscillatory part (first term) and decaying part 
(second term). As in the starting flows, the 
contribution from the second term to the total 
velocity is negligible at τ ≈ 0.3. Hence for τ ≥ 0.3, 

௨

௎೎
=	Ըൣ݁௜ఠ௧ԭሺߙ, ,݊ܭ  ሻ൧                                           (50)ݎ

=	cosሺ߱ݐሻԸሾԭሺߙ, ,݊ܭ ሻሿݎ െ sinሺ߱ݐሻԱሾԭሺߙ, ,݊ܭ   ሻሿݎ
௨

௎ೞ
=	Ըൣെ݅݁௜ఠ௧ԭሺߙ, ,݊ܭ                                      (51)	ሻ൧ݎ

=sinሺ߱ݐሻԸሾԭሺߙ, ,݊ܭ ሻሿݎ ൅ cosሺ߱ݐሻԱሾԭሺߙ, ,݊ܭ    ሻሿݎ

The spatial variation of real and imaginary values of 
g with Womersley number for Kn = 0 and 0.1 are 
shown in Figs. 7 and 8 respectively. Here, the real 
part profiles of G are the velocity profiles for cosine 
flows, when cos(ωt) = 1 (T = 24,ߨπ,...) and for sine 

flows, when sin(ωt) = 1 (T =  
గ

ଶ
,	
ହగ

ଶ
,...). 

The imaginary part profiles of g are the velocity 
profile for cosine flows, when sin(ωt) = −1 (T =  
ଷగ

ଶ
,	଻గ
ଶ

,...). and for sine flows when cos(ωt) =1(T = 

 (...,4π,ߨ2

 

(a)         
 

(b)        
Fig. 7. Spatial variation of the real and 

imaginary part of फ with Womersley number for 
Kn = 0. 

 
For no-slip flows (Kn = 0), at low-Womersley 
numbers, the real part of ԭ varies parabolically with 
radius. At low-Womersley number, the viscous force 
completely dominates the flow and the profiles are 
similar to the steady-state solution (Hagen-Poiseuille 
solution). With an increase in Womersley number, 
the real part of ԭ profile gets flattened as shown in 
Fig. 7 (a). At high-Womersley number, inertia force 
dominates at the central core region, whereas the 
viscous force dominates near the wall proximity. The 
value at the center of the pipe approaches unity as 
Wo→ ∞. The spatial variation of imaginary values of 
is shown in Figs. 7 (b). Similar to the real part, the 
profiles get flattened with an increase in Womersley 
number. The value of the imaginary part of G at the 
center of the pipe approaches zero as Wo → ∞. 

Similar to the Kn = 0 case, the value of the real part 
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profiles of ԭ at the center of the pipe decreases with 
increase in Womersley number for Kn = 0.1(Fig. 8 
(a)). However, here, the value on the wall increases 
with Womersley number and both the center and 
wall values approach unity as Wo → ∞. The spatial 
variation of the imaginary part for Kn = 0.1 case is 
shown in Fig. 8 (b). At low-Womersley number, the 
levels remain small. At relatively high-Womersley 
number, the values of the imaginary part of ԭ are 
high near the wall proximity. 

 

(a)         
 

(b)        
 

Fig. 8. Spatial variation of the real and 
imaginary part of फ with Womersley number for 

Kn = 0.1. 
 

At low-Womersley number, the maximum velocity 
is observed at the center of the pipe. With an increase 
in Womersley number, the maximum velocity 
location moves towards the wall as shown in Fig. 7. 
Here, the distance from the wall where the magnitude 
of velocity is maximum is denoted by the symbol δm 
(see Fig. 7 (a)). The variation of δm with Womersley 
number is shown in Fig. 9. Depending on the value 
of δm, the flow has been classified into low-
Womersley number region (I), medium-Womersley 
number region (II) and high-Womersley number 
region (III) as shown in Fig. 9. For high-Womersley 
number cases, setting inertia and viscous forces 
equal to each other at the location δm yields: 

߱ݑ ൎ ߥ
௨

ఋమ
                                                                (52) 

ஔ೘
ோ
ൌ ஼಼೙

ఈ
                                                                   (53) 

where CKn is a function of Knudsen number. Here, 
the values of CKn=0 and CKn=0.1 are approximately 
3.24 and 2.63 respectively. At high-Womersley 

number cases, δm ∝ 
ଵ

ఈ
 as shown in Fig. 9. 

 

 
Fig. 9. Variation of δm with Womersley number 

for Kn = 0 and 0.1. 
 

The value of function ԭ at the center of the pipe are 
obtained in the following form by substituting c = 0 
Respectively: 

ԭሺߙ, ,݊ܭ ݎ ൌ 0ሻ=ቀ
ଵା௄௡ఔೌ௃భሺఔೌሻି௃బሺఔೌሻ

௃మሺఔೌሻା௄௡ఔೌ௃భሺఔೌሻ
ቁ                   (54) 

The variation of ԭ (α,Kn,r = 0) with the Womersley 
number for Kn = 0 and 0.1 is shown in Fig. 10 
respectively. The value of the functions at Kn = 0.1 
always lies below the Kn = 0 curve. The limiting 
value of functions ԭ (α,Kn,r) as Womersley number 
approaches zero is calculated and obtained as 
follows: 

lim
ఈ→଴

ԭ	ሺKn, rሻ =2 ቂ
ሺଵି௖మሻାଶ௄௡

ଵାସ௄௡
ቃ                              (55) 

 

 
Fig. 10. G (α,Kn,r = 0) as functions of 

Womersley number for Kn = 0 and 0.1. 
 

This value is same as the steady-state velocity 
solution obtained in the previous section (Eq. 42).  

The instantaneous skin-friction factor is (for τ > 0.3): 

Ը	௙௖=ܥ ൤݁௜ఠ௧
ସ

ோ௘

ఔೌ௃భሺఔೌሻ

൫௃మሺఔೌሻା௄௡ఔೌ௃భሺఔೌሻ൯
൨        

Ը	௙௦=ܥ ൤െ݁௜ఠ௧
ସ

ோ௘

ఔೌ௃భሺఔೌሻ

൫௃మሺఔೌሻା௄௡ఔೌ௃భሺఔೌሻ൯
൨                         (56) 

The lower limiting value of skin-friction factor is: 

lim
ఈ→଴

௙௖ܥ ൌ lim
ఈ→଴

௙௦ܥ ൌ 
ଵ଺

ோ௘ሺଵାସ௄௡ሻ
        

The variation of the skin-friction factor of sine flow 
at T = 

గ

ଶ
 with Womersley number is shown in Fig.11 

As expected, the Cf value for slip flow (Kn = 0.1) is 
less than that in no-slip conditions (Kn = 0). At low-
Womersley number, the value is equal to the steady-
state solution. The skin-friction factor increases with 
an increase in Womersley number. 
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Fig. 11. Variation of skin-friction with Wo for Kn 

= 0 and Kn = 0.1 at T = 
࣊

૛
 for sine flow. 

 

(a)         
 

(b)        
Fig. 12. Temporal variations of non-dimensional 
pressure gradient; (a) cosine flow (b) sine flow. 

 

The evolution of non-dimensional pressure gradients 
for cosine flows for Wo = 1 is shown in Fig. 12 (a). 
A large pressure drop is observed at the beginning of 
the flow. A phase-lag between the pressure gradient 
and flow velocity, analogous to the voltage and 
current in a capacitor involving AC circuit is also 
observed. The evolution of non-dimensional 
pressure gradient for sine flows is shown in Fig. 12 
(b). Unlike the cosine flow, here the flow evolves 
smoothly from rest and exhibits pure oscillatory 
behavior from the beginning itself. The expressions 
for pressure gradient for cosine flow (for τ > 0.3) are 

ቀ
ௗ௣∗

ௗ௫∗
ቁ
௖
ൌ Ը ቂ

௜ௐబ

଼
݁௜ఠ௧࣫ሺߙ,  ሻቃ                       (57)݊ܭ

=	ௐబ

଼
 

ሾെsinሺ߱ݐሻԸሾ࣫ሺ݊ܭ,ߙሻሿ െ cosሺ߱ݐሻԱሾ࣫ሺߙ,  ሻሿሿ݊ܭ
The expressions for pressure gradient for sine flow 
are: 

ቀ
ௗ௣∗

ௗ௫∗
ቁ
௦
ൌ Ը ቂ

ௐబ

଼
݁௜ఠ௧࣫ሺ݊ܭ,ߙሻቃ	                            (58) 

=	
ௐబ

଼
ሾcosሺ߱ݐሻԸሾ࣫ሺߙ, ሻሿ݊ܭ െ sinሺ߱ݐሻԱሾ࣫ሺߙ,  ሻሿሿ݊ܭ

Furthermore, the expressions for velocity profiles in 
terms of pressure gradient are obtained in the fol-
lowing form: 

ሻݎሺݑ ൌ ௜

ఠఘ
ቀௗ௣
ௗ௫
ቁ ቂ1 െ ௃బሺ௖ఔೌሻ

௃బሺఔೌሻି௄௡ఔೌ௃భሺఔೌሻ
ቃ                    (59) 

3.2.1   Low-Womersley Number Flows 

An ascending series solution of velocity profiles for 
low-Womersley number flows in terms of 
trigonometric functions and Wo is obtained in the 
following way. 

ቀ
௃బሺ௖ఔೌሻା௄௡ఔೌ௃భሺఔೌሻି௃బሺఔೌሻ

௃మሺఔೌሻା௄௡ఔೌ௃భሺఔೌሻ
ቁ ൌ ܽ଴ ൅ ܽଵݒ௔ଶ ൅ ܱሾߥ௔ሿଷ          

Where, 

ܽ଴ ൌ
2ሺ1 െ ܿଶሻ ൅ ݊ܭ4

1 ൅ ݊ܭ4
 

ܽଵ ൌ
3ܿସሺ1 ൅ ሻ݊ܭ4 െ 4ܿଶሺ1 ൅ ሻ݊ܭ6 ൅ ሺ1 ൅ ሻ݊ܭ8

24ሺ1 ൅ ሻଶ݊ܭ4
 

௨

௎೎
ൌ ܽ଴ cosሺ߱ݐሻ ൅ ଴ܹܽଵ sinሺ߱ݐሻ                       (60) 

௨

௎ೞ
ൌ ܽ଴ sinሺ߱ݐሻ െ ଴ܹܽଵ cosሺ߱ݐሻ                       (61) 

For Wo < 1, the center (c = 0) and wall velocity (c = 
1) are: 

௨೎
௎೎
ൎ ቀ

ସ௄௡ାଶ

ସ௄௡ାଵ
ቁ  ሻ                                            (62)ݐሺ߱ݏ݋ܿ

௨೎
௎ೞ
ൎ ቀ

ସ௄௡ାଶ

ସ௄௡ାଵ
ቁ  ሻ                                              (63)ݐሺ߱݊݅ݏ

௨ೢೌ೗೗
௎೎

ൎ ቀ
ସ௄௡

ସ௄௡ାଵ
ቁ            (64)																																	ሻݐሺ߱ݏ݋ܿ

௨ೢೌ೗೗
௎ೞ

ൎ ቀ
ସ௄௡

ସ௄௡ାଵ
ቁ  ሻ                                        (65)ݐሺ߱݊݅ݏ

3.2.2   High-Womersley Number Flows 

For high-Womersley number cases, the profiles are 
similar to the Stokes solution of impulsively start 
flat-plate. The viscous effects are limited to a region 
of thickness δ close to the wall. The variation of 
boundary layer thickness with Womersley number is 
shown in Fig. 13. Here, the boundary layer thickness 
is defined as the distance away from the wall at 
which the velocity is 101 percent of the center 
velocity (see Fig. 7 (c)). Since this flow condition is 
satisfied at multiple locations, the location near the 
center is selected as δ. Here, the boundary layer 
thickness is proportional to the inverse of Womersley 

number (δ ∝ 
ଵ

ఈ
 ) as shown in Fig. 13 (a). Boundary 

layer thickness gets reduced with an increase in 
Womersley number and approaches zero as Wo → ∞. 

The following form of the asymptotic expansion of 
Bessel function (Watson (1995)) is used to calculate 
the limiting value of ԭ (c, Kn,r), as x → ∞ 

ሻݔ௡ሺܬ ൌ ሺ
ଶ

గ௫
ሻ
భ
మሾcos	ሺݔ െ

ଵ

ଶ
ߨ݊ െ

గ

ସ
ሻሿ                         (66) 

The limiting value of the function ԭ (c,Kn,r) is: 

lim
ఈ→ஶ

ԭሺܿ, ,݊ܭ ሻݎ ൌ 1 ൅ 0݅                                         (67) 

hence for Wo → ∞, the center and wall velocity are 

௨೎
௎೎
ൎ

௨ೝൎೃ
௎೎

ൌ  ሻ                                             (68)ݐሺ߱ݏ݋ܿ
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௨೎
௎ೞ
ൎ

௨ೝൎೃ
௎ೞ

ൌ                                               (69)	ሻݐሺ߱݊݅ݏ

 

 

 
Fig. 13. Variation of boundary layer thickness 

with Womersley number at T = 
࣊

૛
 for sine flows. 

 

3.3 Arbitrary Inflow: Temporal Variation of 
Velocity and Pressure Gradient 

The evolution of velocity and pressure gradient for 
an arbitrary inflow and comparison with the results 
of Das and Arakeri (Das and Arakeri (2000)) are 
illustrated in Figs. 14 and 15. A trapezoidal piston 
motion (Up) is represented using Fourier series as 
shown in Fig. 14 (a). Here, two hundred (lmax = 200) 
Fourier terms are used to represent the trapezoidal 
function. A closeup view of the fitted curve is shown 
in the inset of Fig. 14 (a). The fitted curve has large 
oscillations near the jump (Gibbs phenomenon). The 
transient variation of pressure gradient is shown in 
Fig. 14 (b). Because of the small mismatch between 
the trapezoidal and fitted curve, non-dimensional 
pressure gradient exhibits more oscillations near the 
jump. 

The velocity profiles during different phases of the 
piston motion are shown in Figs. 15 (a) - (d). The 
solutions obtained during accelerating (Fig. 15 (a)), 
constant velocity (Fig. 15 (b)), decelerating (Fig. 15 
(c)) and zero velocity (Fig. 15 (d)) phases match with 
the solutions of Das and Arakeri (Das and Arakeri 
(2000)) as shown in Figs. 14 and 15. 

4.  CONCLUSION 

New analytical solutions with slip conditions for 
starting, oscillatory and arbitrary flows are obtained 
in terms of Bessel functions for micro-pipe flows. 
The scaling laws associated with starting and 
oscillatory flows are provided whenever possible 
using Knudsen, Reynolds and Womersley numbers. 
Effects of dimensionless numbers of friction factor, 
boundary layer thickness and entry-length are also 
examined. 

Initially, the expressions for velocity profiles, 
pressure gradient and wall shear stress for starting 
flows are analyzed. The flow solution has two parts: 
the first part is steady and the other is the transient 
part. It is observed that the transient part decays at τ 
≈ 0.3, and the flow attains a steady-state when τ > 
0.3. Expressions for velocity profile in terms of 
pressure gradient for steady flows in a manner 
similar to the Hagen-Poiseuille equation are obtained 

for pipe flows with slip boundary conditions. The 
solutions are compared with previously published 
analytical solutions. Simplified expressions for slip-
length are obtained for steady conditions. 

 

(a)         

 

(b)        
Fig. 14. Validation of analytical solution; (a) 

normalized piston velocity (b) Temporal 
variation of pressure gradient. 

 
For oscillatory starting flow (sine/cosine flows), 
the solution consists of two parts: the first part is 
pure oscillatory and the other part is the transient 
decaying part. Asymptotic behavior of the 
solutions is obtained. A solution for the steady part 
of the starting flow is regained by limiting the 
Womersley number to zero. Flow is classified into 
three regions: low-Womersley number flow (I), 
medium Womersley number flow (II) and high-
Womersley number flow (III) by quantifying the 
maximum velocity location. For viscous 
dominated low-Womersley number cases (I), the 
maximum velocity is always observed at the center 
of the geometry and a simplified series solution 
predicts the flow behavior. For high-Womersley 
number flow conditions, the viscous effects are 
confined near the vicinity of the solid surface. The 
variation of boundary layer thickness with 
Womersley number is analyzed. As Womersley 
number approaches infinity, the solutions become 
independent of viscosity and oscillate like a plug 
flow. In region III the maximum velocity location 
and boundary layer thickness are proportional to 
the inverse of Womersley number for pipe flows 
with slip conditions. 

Finally, a more general case with an arbitrary inflow 
is analyzed. The solutions obtained are compared 
with the existing expression of velocity and pressure 
gradient available in the literature. 
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(a)         
 

(b)         
 

(c)         
 

(d)         
Fig. 15. Validation of analytical solution (velocity 

profiles); dashed line: analytical solution, solid 
line: (a) accelerating phase, (b) constant velocity 
phase, (c) decelerating phase, (d) zero velocity 

phase. 
APPENDIX 

Calculation of Inverse Laplace 
Transform: Starting Pipe Flows 

Inverse Laplace transform is evaluated using 
Mellin’s inverse formula (Eq. 21) together with 
Cauchy’s Residue theorem. Taking the Laplace 
transform of Eq. 2 we get: 

ሻݏ௔௩௚ሺݑ ൌ
௎బ
௦

                                                           (70) 

The velocity profiles are obtained by combining the 
residues at the poles of the integrand and given by: 

,ݎሺݑ ሻݐ ൌ ∑ residues	of	poles	of	ሺ ௎బ
௦
,ݎሺ̅ߦ   (ሻ݁ௌ௧ݏ

(71) 

The residue at z = z0 for a pole of order n is given by: 

௭ୀ௭బ|ݏܴ݁ ൌ
ଵ

ሺ௡ିଵሻ!

ௗ೙షభ

ௗ௭೙షభ
ሾሺݖ െ ሻሿ|௭ୀ௭బݖ଴ሻ௡݂ሺݖ       (72) 

Using this expression, the residue at s = 0 is obtained 
in the following form: 

଴ݏܴ݁ ൌ 2 ଴ܷ ቂ
ሺଵି௖మሻାଶ௄௡

ଵାସ௄௡
ቃ                                        (73) 

The other singular points are the zeros of 

൯ݏ√ܤ଴൫ܫ ൅ ൯ݏ√ܤଵ൫ܫ൯ݏ√ܤ൫݊ܭ െ
2

ݏ√ܤ
൯ݏ√ܤଵ൫ܫ

ൌ െܬଶሺݒሻ െ  ሻݒଵሺܬݒ݊ܭ

If νn are the zeros of this expression, then sn = − 
௩೙మ

஻మ
 

are the poles. These are simple poles. For a first order 
pole at z = z0 and with the function f written in the 

form f = 
ேሺ௭ሻ

஽ሺ௭ሻ
, the residue is

ேሺ௭బሻ

஽ᇱሺ௭బሻ
. Residues at each of 

these poles are obtained as follows: 

௡ݏܴ݁ ൌ 2ܷ଴݁ିఔ೙
మఛीሺν, Kn, rሻ                                (74) 

The solution is obtained by combining the single 
residue (Res0) and all the Resn. 

Calculation of Inverse Laplace Transform: 
Sinusoidal Sine Flows in Pipes 

By taking the Laplace transform of Eq. 3 we get: 

ሻݏ௔௩௚ሺݑ ൌ
௎ೄఠ

௦మାఠమ                                                     (75) 

Applying Cauchy’s Residue theorem to Eq. 21, 

,ݎሺݑ ሻݐ ൌ ∑ residues	of	poles	of	ሺ ௎ೄఠ

௦మାఠమ ,ݎሺ̅ߦ ሻ݁ݏ
ௌ௧)  

(76) 

Here, s = iω and s = −iω are poles of order 1. The 
residue at s = iω is: 

Res୧ன ൌ ቂെ
௜௎ೞ
ଶ
݁௜ఠ௧ ቀ

௃బሺ௖ఔೌሻା௄௡ఔ್௃భሺఔೌሻି௃బሺఔೌሻ

௃మሺఔೌሻା௄௡ఔ್௃భሺఔೌሻ
ቁቃ  (77) 

where iνa = α݅
భ
మ. Similarly, the residue at s = −iω is: 

Resି୧ன ൌ ቂ
௜௎ೞ
ଶ
݁ି௜ఠ௧ ቀ

௃బሺ௖ఔ್ሻା௄௡ఔ್௃భሺఔ್ሻି௃బሺఔ್ሻ

௃మሺఔ್ሻା௄௡ఔ್௃భሺఔ್ሻ
ቁቃ	(78) 

Where iνb = αሺെ݅ሻ
భ
మ. It can be proved that ࣬(Resiω 

)=࣬ሺRes−iω). The other singular points are the zeros 
of 

൯ݏ√ܤ଴൫ܫ ൅ ൯ݏ√ܤଵ൫ܫ൯ݏ√ܤ൫݊ܭ െ
2

ݏ√ܤ
൯ݏ√ܤଵ൫ܫ

ൌ െܬଶሺݒሻ െ  ሻݒଵሺܬݒ݊ܭ

If νn are the zeros of this expression, then sn = −
ఔ೙మ

஻మ
 

are the poles. These are simple poles. Residues at 
each of these poles are obtained as follows: 

௡ݏܴ݁ ൌ
ିଶ௎ೞఔ೙ర

ఔ೙
రାௐబ

మ ݁
ିఔ೘మ ఛीሺν, Kn, rሻ                             (79) 



Anek. V. Pillai and K. V. Manu / JAFM, Vol. 13, No. 3, pp. 1015-1026, 2020.  
 

1026 

The solution is obtained by combining the residues 
Resiω, Res-iω and all the Resn 
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