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ABSTRACT 

We numerically investigate the linear instability problem of Poiseuille flow in a channel partially filled with a 
porous medium on the bottom side. We are primarily interested in the influence of the interface momentum 
distribution including stress continuity and jump interface conditions. A spectral collocation method is 
applied in solving the fully coupled instability problem arising from the adjacent porous and free channel 
flows. The results show that the “interface stress coefficient” in a negative range has a larger effect on the 
trajectory of the eigenvalues than that in the positive range, especially the most unstable mode. Moreover, 
with a low permeability in the porous region, the interface momentum distribution has less effect on the 
stability of core flow. And when the “interface stress coefficient” is equal to its minimum negative value, the 
flow passing through the channel is at its most stable state. If the “interface stress coefficient” varies in a 
positive range, the degree of fluid stability is predicted to slightly diminish due to stress continuity condition 
at the interface. 
 
Keywords: Porous layer; Linear stability; Interface momentum distribution; Poiseuille flow. 

NOMENCLATURE 

c dimensionless complex phase speed 
cr dimensionless real part of phase speed 
ci dimensionless imaginary part of phase speed 
D d/dy 
Da Darcy number 
hp half height of porous layer 
hf half height of open fluid layer 
k permeability of porous media  
p pressure of porous media, dimensionless 

p  pressure perturbation amplitudes in the y 

direction 

Re Reynolds number 

Rec critical Reynolds number 

 

um the mean velocity 
<u > volume-averaged velocity in the porous 

matrix, dimensionless 
u  velocity perturbation amplitudes in the y 

direction 
U dimensionless laminar profile in the 

unobstructed portion of the channels 
 streamwise wave number  
μ dynamic viscosity 
ρ density 
ε porosity of porous medium 
σ nondimensional permeability 
τ interface stress coefficient 

 

1. INTRODUCTION 

Flow in a porous–fluid system has numerous 
industrial and geotechnical applications and 
consequently has been given much attention in the 
literature, such as hydrogeological systems 
including ground water, oil reservoirs (Berkowitz, 
2002; Coronado & Jetzabeth Ramírez-Sabag, 2008), 
and some industry applications including drying 
systems (Pirasteh et al., 2014), filtration processes 
(Hanspal et al., 2006) and solar air heaters (Singh & 

Dhiman, 2016). The instability analysis of free fluid 
region and fluid saturated porous region in a 
porous–fluid mechanics has recently been a major 
problem of many researches. By investigating the 
stability of such a system involving fluid flows 
through or over porous materials, its critical Re 
number at given conditions can be obtained, or give 
a prediction for a certain porous media system 
achieving its stable or unstable state by varying 
permeability, momentum transfer at the interface, 
etc. Although the previous researches involve the 
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stability study of channel flows, the mathematic 
models used for describing a fully developed 
laminar flow in a homogeneous porous region or at 
the interface may not be consistent. Beavers and 
Joseph (1967) originally proposed the mathematic 
model at the interface for a porous-fluid channel. 
They put forward a slip velocity concept at the 
interface between the free fluid domain and porous 
domain. Then, Beavers et al. (1973) presented a two 
dimensional Poiseuille flow instability analysis 
applying the proposed interface condition and 
Darcy model in porous layer. They showed that in 
one channel having a porous wall, the porous wall 
is able to decrease the critical Reynolds number 
comparing with impermeable wall, and found the 
theoretical predictions based on the proposed 
condition were in accord with experiment data they 
performed. Chang et al. (2006) studied a Poiseuille 
flow stability problem for a free fluid layer 
overlying a saturated porous layer using Darcy 
model with the slip velocity boundary condition, 
and found out a tri-modal form in the neutral 
curves. These three kinds of modes generally have 
different characteristics of stability, and are caused 
by Poiseuille flow’s shear stress in a fluid region. 
Still, Darcy model fails to figure out boundary 
layers that may lead to the velocity discontinuity at 
the interface. Therefore, Brinkman-extended Darcy 
model was applied in order to solve this problem by 
Vafai and Kim (1990) and Neale and Nader (1974), 
who support the Brinkman-extended Darcy model 
that the shear stress as well as the velocity at the 
interface should be continuous. With the 
sophisticated volume averaging method, Ochoa-
Tapia and Whitaker (1995a, b) established one 
model that the shear stress should be discontinuous 
while the velocity should be continuous, and using 
that interface conditions and the governing 
equations proposed by Whitaker (1996), Tilton and 
Cortelezzi (2006) presented the three-dimensional 
Poiseuille flow stability problem in a porous–fluid 
channel with two porous walls on both sides. They 
discovered that with decreasing the wall 
permeability at a very small value may greatly 
decrease the channel flow’s stability comparing the 
channel flow having impermeable walls. Moreover, 
they continued to analyze the effects of the porosity, 
permeability, the interface stress coefficient, and the 
porous layers’ height, on the symmetric flow’s 
stability with two porous walls on both sides of a 
channel (Tilton & Cortelezzi 2008). Li et al. (2014) 
also applying the equations of Whitaker (1996) for 
the porous region with the interface conditions of 
Ochoa-Tapia and Whitaker (1995a, b), performed a 
coupled flow instability analysis for a porous layer 
placed in the middle of a channel, mainly focused 
on the influence of the porous filling ratio. Then, 
Dai et al. (2015) further performed a linear 
Poiseuille flow instability investigation for the fluid 
saturated multilayer porous media inserted in a 
channel, mainly focused on the influence of porous 
layer number. There were two ways for increasing 
the number of porous layers considered: constant 
Reynolds number condition and constant porous 
filling ratio condition. They observed that both 
conditions have a less stability as the number of 

porous layers increases. At the same number of 
porous layers, the value of critical Reynolds number 
at constant porous filling ratio condition is much 
less than that at constant Reynolds number 
condition. Avramenko et al. (2005) took into 
account both linear Darcy and quadratic 
Forchheimer drag terms in the porous medium. The 
obtained results indicate that both linear and 
quadratic drag terms increase the critical value of 
the Reynolds number. Liu et al. (2008) performed 
the instability of Poiseuille flow in a fluid-porous 
system. They investigated the influence of the depth 
ratio and the Darcy number on the instability of the 
system were, and also compared thoroughly the 
characteristics of the instability of Brinkman’s 
model with that of Darcy’s model. Rosti et al. 
(2015) investigated a turbulent channel flow over 
porous walls using direct numerical simulations 
(DNS). They found that the permeability plays a 
major role in determining the response of the 
channel flow to the permeable wall even it is very 
small. Tryggvason et al. (2016) and Ma et al. 
(2016) also used direct simulation and data driven 
method but to model bubbly flows. Barletta and 
Antonio (2016) analysed the linear stability of the 
basic two-dimensional mixed convection. The 
growth rate and the angular frequency of the 
perturbations were evaluated numerically. Wedin 
and Cherubini (2016) used the asymptotic suction 
boundary layer (ASBL) for investigating two 
permeability models which are the Darcy and the 
Forchheimer models. 

From above references it is noted that although the 
previous researches involve the stability study of 
porous channel flows, the mathematic models used 
for describing a fully developed laminar flow in a 
homogeneous porous region or at the interface may 
not be consistent. Few studies investigate the effect 
of the interface momentum distribution on the linear 
stability characteristics including the velocity 
perturbation, the Orr–Sommerfeld spectrum and the 
critical Reynolds number, and to the best of our 
knowledge, the linear stability problem in an 
asymmetric porous-fluid system has not been 
studied yet. This study aims to indicate the impact 
of the interface momentum distribution on the linear 
stability problem in an asymmetric porous-fluid 
channel which is constructed by a bottom porous 
layer. In order to know how the surface 
characteristics of the porous material in the 
transition layer influences a coupled asymmetric 
porous-fluid flow stability, first, the effect of 
permeability with fixed interface momentum 
distribution coefficient τ =0.0 is studied indicating a 
stress continuity interface condition, and then the 
stress jump effects of varying in interface stress 
coefficient τ =-1.0-1.5 on the velocity perturbation, 
the Orr–Sommerfeld spectrum and the critical 
Reynolds number are discussed. 

2. GOVERNING EQUATIONS 

The present coupled channel geometry considered 
in the paper is shown in Fig. 1. In Fig. 1, the 
channel is restricted by impermeable walls. A 
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porous layer which is rigid and homogeneous is 
placed on the bottom side of the channel paralleled 
to the impermeable walls. Thus, the channel is 
divided into two layers that are a porous layer 
below and a free fluid layer above. The two layers’ 
heights are defined as 2hf and 2hp, respectively. We 
consider a two dimensional laminar flow, and the 
fluid is incompressible, viscous and Newtonian. 
Both the channel region and the porous region hold 
a laminar, fully developed flow driven by the 
uniform pressure gradient just in x-direction. 

 

2hf  

2hp  

Impermeable wall 

Impermeable wall 

Porous region 

 
Fig. 1. Coupled flow geometry considered. 

 
In the fluid region, the governing equation is 
Navier-Stockes model, while in the porous region, 
the governing equation is the model proposed by 
Whitaker (1996). A length scale can be defined as 
the half-height in fluid region, hf, a time scale is the 
ratio of the half-height to the mean velocity in the 
free fluid layer, hf/um, and the dimensionless 
pressure is p/ρum

2. The formulas for the fluid 
domain and the porous domain then can be 
nondimensional as follows: 

21
,p

t Re


     


u

u u u                               (1) 

0,  u                                                               (2) 

2
2

1 1 1
,

f
p

t Re Re  


    

u

u u   

(3) 

0. u                                                             (4) 

In above equations, the symbols u=[u v]T, ε and p 
represent the fluid velocity in the fluid region or 
porous region, porosity and pressure of porous 
medium. In Eq. (3), the symbols < > and < >f 
represent the superficial volume average and the 
intrinsic volume average, in a relationship of < > 
=ε< >f. The last two terms in Eq. (3) on the right 
side in turn are Brinkman term, which is only 
important near the interfaces in the Brinkman 
boundary layers, Darcy term, which refers to a 
volume-averaged viscous drag. A Reynolds number 
is given as the form of Re = ρumhf/μ for the fluid 
flow in the free fluid layer, in which um, μ and ρ 
symbolize mean velocity in the free channel, 
viscosity, and density of the fluid. The symbol 

σ= / fk h =(Da)1/2 (k refers to the dimensional 

penetrability of the porous material) indicates the 
dimensionless permeability in the porous region. 

In the present paper, we have restricted the study to 
channel flows for not considering the inertial 

influence both in porous region and at the interface, 
and also ignored the convective terms in porous 
region (Tilton & Cortelezzi 2006). 

2.1 Basic Flow 

In this study, we assume a fully developed laminar 
flow in the free fluid layer and porous layer is 
driven by a uniform pressure gradient only in x-
direction, dp/dx. Therefore, the dimensionless 
momentum equation for the open channel fluid 
layer becomes 

2

2
.

d u dp
Re

dy dx
                                                      (5) 

The momentum equation for the porous layer 
becomes: 

2

2 2

1 1
.

f
d u d p

u Re
dy dx 

                       (6) 

The boundary conditions at the impermeable walls 
are 

0u  , 0.u                                                      (7) 

Ignoring the inertial effect in the momentum 
transfer process, but taking account of the 
momentum jump, the interface conditions are 
(Ochoa-Tapia and Whitaker 1995a, b): 

p pf
, u u , 1

.
y y


 
 

  
 

u u
u     (8) 

τ indicates the interface distribution of momentum 
in a porous-fluid system, which is called the 
interface stress coefficient. Ochoa-Tapia and 
Whitaker (1995b) found that the interface stress 
coefficient τ is roughly between −1.0 and 1.5. The 
value of τ mainly depends on the characteristics of 
surface machining at the interface and the porous 
structures varying in the transition layer. 
Additionally, it must usually be determined 
experimentally. 

From the above equations, we can get the solutions 
for the laminar velocity in the free fluid layer and in 
the porous layer as: 

2
1 2

2

1
( )

1/ 3
U y c y c

c
  


  y = (-1,1),            (9) 

2

3 4
21/ 3

y y
U c e c e

c

 
  

  


 y =(-hp/hf, hp/hf). (10) 

Where the constant coefficients c1, c2, c3, c4 in Eqs. 
(9) and (10) are achieved through assembling all the 
interface as well as boundary requirements (7) and 
(8). 

Figure 2 shows the basic flow simulation results 
both in porous layer and free fluid layer when σ = 
0.002, ε = 0.6, hf/hp = 1.0, τ = 0.0. In Fig. 2, it is 
noted that the fluid maximum velocity is 1.49884 in 
the free channel layer; the interface velocity is 
0.00464; the Darcy velocity in porous medium is 
5.98608×10-6. The marked velocity values in the 
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three different regions decrease about at most 6 
orders of magnitude along y-direction if inserting 
the porous wall. In order to known clearly how 
certain parameters affect the velocity profiles, 
figure 3 gives the velocity profiles in each region, 
especially at the interface by changing the 
permeability σ and the interface stress coefficient τ. 
It is observed that at a lower permeability σ, 
changing τ has an ignoring effect on velocity 
distribution. Increasing σ increases the boundary 
layer near the interface between the porous and 
fluid regions, leads to a less steep velocity gradient 
near the interface since there is a less sharp and 
sudden variation of permeability σ at the interface 
in a porous-fluid channel. Moreover, at a fixed 
permeability σ, the interface velocity decreases as τ 
increases, and changing the values of τ within a 
scope of negative range may make an obvious 
different velocity profile near the interface than the 
situation of changing the values of τ within a scope 
of positive range. This conclusion can also be 
reflected in part 3. 
 

 

-3

-2

-1

0

1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Darcy velocity=5.98608×10-6 

Interface velocity=0.00464

Maximum velocity=1.49884

U

Y

 Fluid velocity
 Porous velocity

 
Fig. 2. Velocity profiles at Re=2000, ε = 0.6, σ = 

0.002, hf/hp = 1.0, τ = 0.0. 
 
2.2 Perturbation Equations 

Considering two-dimensional perturbation 
equations, the wave-like fluid perturbations in both 
free fluid region and porous region can be expected 
to have identical phase speeds and wave numbers, 
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 
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Where pu~ or fu~ and 
pp or 

fp are the porous or 

free fluid velocity and pressure perturbation 
amplitudes in y-direction. α represents the 
streamwise wave number, and c = cr+ ici represents 
the complex phase speed, in which cr and ci are the 
real part and imaginary part, respectively. The 
perturbed base flow then can be shown in Eq. (12) 
where U means the basic flow in the free channel, 
<U> means the laminar profile in the porous layer: 

ˆ( ) ,

ˆ( ) ,

ˆ( ) ,

ˆ( ) .
f f

U y
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p p x p

p p x p

 
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u u                                         (12) 
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(a) σ= 0.002 
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(b) σ = 0.02 

Fig. 3. Velocity profiles with changing τ under 
different σ at Re=2000, ε = 0.6, hf/hp= 1.0, and 

their corresponding enlarged figures at the 
interface. 

 

Substitute the formula (12) into the Eqs. (1)-(4), the 
resulting perturbation equation for the free fluid 
layer can be derived as (in which both labels " D " 
and " ' " mean d/dy): 

     .0~)D(
1

''D 22222 



  yv

Rei
UcU f


  (13) 

While the flow stability model for the porous layer 
can be deduced as: 
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
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By taking the momentum transfer Eq. (8), the 
interface boundary conditions coupling, fv~ , and 

pv~ can be deduced as follows (Tilton and Cortelezzi 

2006, 2008): 
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The boundary stability equations at the 
impermeable walls can be given as: 

.0
~

~,0
~

~ 
dy

vd
v

dy

vd
v p

p
f

f
                         (17) 

The above Eqs. (13) - (17) are the coupled linear 
instability models in the porous-fluid system, and a 
spectral collocation method is applied to work out 
the stability problem. 

Here, we present a spectral collocation method 
based on Chebyshev polynomials and apply it to the 
Orr-Sommerfeld equation. This method is applied 
extensively to compute the flow stability 
characteristics, and is highly accurate. For 
simplicity, we discuss the case where hf =hg. The 
problem in the channel region is solved with respect 
to the axes with origin located on the channel 
centreline, while the problem in porous region is 
solved with respect to coordinate system with 
origins located midway between the interface and 
the impermeable wall. 

We expand the perturbation amplitude functions fv  

and pv  in Chebyshev series, 

   
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f n n
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v y a T y

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

  .           (18) 

The derivatives of fv  and pv  are obtained by 

differentiating the above expansions, for example, 

the second derivatives of fv  and pv  are 
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

   (19) 

and similarly for the fourth derivative, then we 
make above equations satisfy the Orr–Sommerfeld 
Eqs. (13) and (14) at the Gauss–Lobatto collocation 
points yj = cos (jπ/N), where j = 0,…, N. Thus, two 
generalized eigenvalue problems are formed 

Aa=cBa, Ee=cσ2Be                                             (20) 

and the compound matrix equation for the 
eigenvalue c and the eigenvectors a and e is 

2

0 0

0 0
c


     

     
     

A a B a

E e B e
.                     (21) 

The above Chebyshev series (18) and (19) are also 
satisfied the boundary stability Eqs. (15)-(17) and 
then obtained eight boundary conditions are 
imposed by using eight rows of the compound 
matrix Eq. (21). The generalized eigenvalue 
problem can now be worked out following the 
procedure by Schmid and Henningson (2001). 

3. COUPLED STABILITY ANALYSES 

The coupled linear instability problem of a 
Poiseuille flow passing through a channel with a 
porous layer at the bottom is shown in this part. To 
investigate the impact of interface momentum 
distribution, we first present the linearized 
instability analysis at the interface stress coefficient 
τ = 0, and then, we present the stability analysis by 
varying the interface stress coefficient τ from -1.0 to 
1.5, since the value of the interface stress 
coefficient τ should be decided by the experiment 
due to different porous surface characteristics. 
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Fig. 4. Eigenvalues at Re = 3000, σ= 0.02,  = 0.6, 
τ = 0.0, α=1.0, hp = 0.25hf for a channel with the 

lower and upper porous layers. 
 

3.1 Validation  

Figure 4 shows the comparison the eigenvalues of 
this study and the study performed by Tilton and 
Cortelezzi (2008) with the considered parameters 
σ= 0.02, Re = 3000,  = 0.6, τ = 0.0, α=1.0, hp = 
0.25 hf. A good agreement is observed between 
these solutions, indicating that the calculated results 
of this study are credible. 

3.2 For the Interface Momentum 
Distribution Coefficient τ = 0 

Figure 5 shows the movement of the eigenvalues in 
the Orr-Sommerfeld spectrum with increasing the 
permeability from 0.0002 to 0.02 for Re = 2000,  = 
0.6, τ = 0.0, hf/hp = 1.0. It is observed that three 
branches of circled eigenvalues are located in Fig. 4 
called wall modes, porous modes and centre modes 
as referred to Tilton and Cortelezzi (2006) earlier. 
Although the locations of these eigenvalues have an 
overall similar with the results of Tilton and 
Cortelezzi (2006) and Li et al. (2014), the numbers 
and the trajectories of the all wall modes (including 
upper and lower wall modes) are indeed different 
under a same parameters condition for Re = 2000,  
= 0.6, τ = 0.0, hf/hp = 1.0, σ =0.0002-0.02. Tilton 
and Cortelezzi (2006) investigated the flow 
instability analysis considering a channel having 
two porous walls on the both sides. They observed 
that as increasing the permeability, the upper wall 
modes had only one path line and the two new 
lower wall modes were induced. However, Li et al. 
(2014) analyzed the stability results of a channel 
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inserted one layer porous medium at the centre. 
They found that with increasing the permeability, 
the upper wall modes had but two path lines, and 
two new lower wall modes were also induced. With 
our present studied channel having only one porous 
wall at the bottom, note that when increasing σ 
=0.0002-0.02, the upper wall modes had only one 
path line, and only one new lower wall mode 
labeled 1 is induced in Fig. 5. The perturbation of 
this mode labeled 1 is shown in Fig. 6, and note that 
the perturbations near the interface have a higher 
frequency oscillation. 
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Fig. 5. Trajectory of the eigenvalues by varying 
σ= 0.0002 - 0.02 when Re = 2000,  = 0.6, τ = 0.0, 

hf/hp = 1.0. 
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Fig. 6. Perturbation of the mode labeled 1 for 
Re=2000, σ = 0.02, τ = 0.0, ε = 0.6, hf/hp = 1.0. 

 
One of the possible reasons for the different 
numbers and the trajectories of the wall modes is 
the different studied geometries of the channels. 
Since the movements of the wall modes absolutely 
are affected by the interfaces characteristics, not 
only the number of porous layers of the channel, but 
also the location of porous layers can result in the 
different interfaces characteristics. It shows that 
based on the present geometry, if increasing one 
porous wall up of the channel, to be the channel 
having two porous walls, will make only the 
number of the upper wall modes increase one; while 
if changing the location of the porous layer from the 
bottom of the channel to the middle of the channel, 
the number of the upper and lower wall modes will 

both increase one. Also note that there are little 
variations of the porous modes or the centre modes 
whether to change the position or the number of the 
porous layer. 

3.3 For the Interface Momentum 
Distribution Coefficient τ = -1.0-1.5 

If the interface momentum distribution impact on 
the flow instability of the current channel needs to 
be further investigated, we give the simulation 
results for the interface stress coefficient, τ, in the 
range of τ = -1.0-1.5 as following, which contains 
the continuity and dis-continuity effects of the 
interface momentum distribution. 

Figure 7 shows the results of the eigenvalues 
trajectory by varying τ= -1.0 - 1.5 holding the 
constant Re = 2000,  = 0.6, σ= 0.02, hf/hp = 1.0. 
Figure 8 is the corresponding results under the same 
parameters but Re = 3000. Note that both in Figs. 7 
and 8, changing the interface momentum 
distribution coefficient from -1.0 to 1.5, 
significantly may affect the trajectories of the wall 
modes, especially the most unstable mode of the 
lower wall modes. It can be seen that these wall 
modes have obvious movements on the spectrum by 
varying τ= -1.0 - 1.5, but when the coefficient  
changes from -1.0 to 0.0, the trajectories of these 
modes are more obvious than the corresponding 
situation that when the coefficient  increases from 
0.0 to 1.5, the locations of these modes vary very 
small or almost no change. This is just consistent 
with the conclusion obtained from the above Fig. 3, 
namely basic flow solution by varying the 
coefficient  from -1.0 to 0.0 shows an even more 
obvious difference than the situation by increasing 
the coefficient  from 0.0 to 1.5. It can be further 
considered that in the range τ= -1.0-0.0, the 
interface momentum distribution have a larger 
effect on the trajectory of the eigenvalues in Orr–
Sommerfeld spectrum. In addition, it is interesting 
to observe that there are two modes labeled 1 and 1' 
in Fig. 7 (a) and Fig. 8 (a) respectively can never 
get the results of τ= 0.0, and as the coefficient τ 
varies from -1.0 to 1.5, the two labeled wall modes 
both move facing to their respective porous modes, 
but finally arrive at different distribution locations. 
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Fig.7. (a) Trajectory of the eigenvalues by 

varying τ= -1.0 (circled) - 1.5 when Re = 2000,  = 
0.6, σ= 0.02, h/hp = 1.0 (b) A larger 

version of porous modes. 
 

For the porous modes surrounded by a rectangular 
in Fig. 7 (a) and Fig. 8 (a) respectively, we see that 
as Re increases, the quantity of the porous modes 
increases, and the porous mode having a maximum 
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value of the imaginary part of phase speed, ci, gets 
larger. However, as the coefficient τ increases, the 
quantity of the porous modes keeps the same, and 
the locations seem little or no change both in Fig. 7 
(a) and Fig. 8 (a) which differ with the wall modes 
above mentioned. To observe clearly, we make 
Figs. 7 (b) and 8 (b) which are the larger 
version of these porous modes in Figs. 7 (a) and 8 
(a). It can been observed that in Fig. 7 (b), each 
porous mode has an overall upward movement as 
increasing the value of τ, while in Fig. 8 (b), on the 
contrary, each porous mode overall moves 
downward. In addition, the porous modes in Figs. 7 
(b) and 8 (b) also share a certain 
same characteristic. That is the porous mode would 
overlap and may hard to be distinguished visually 
as the coefficient τ varies from -1.0 to 1.5. 
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Fig. 8. (a) Trajectory of the eigenvalues by 

varying τ= -1.0 (circled) - 1.5 when Re = 3000,  = 
0.6, σ= 0.02, hf/hp = 1.0 (b) A larger 

version of porous modes. 
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(a) Labeled 1 at τ= -1 in Fig.7  
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(b) Labeled 1' at τ= -1 in Fig.8 (a) 
Fig. 9. Perturbations of the labeled wall modes at 

different Re. 
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(a) At τ= -1  
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(b) At τ=0 
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(c) At τ=1.5 
Fig. 10. Perturbations of the labeled 2 modes in 

Fig.7 (b). 
 

Figure 9 further illustrates the perturbations, 

rv~ (dashed line), iv~ (dotted line), | v~ |(solid line),  of 

the wall modes labeled 1 and 1' at τ= -1(red circled), 
the trajectories of which can never get the results of 
τ= 0.0 in Fig. 7 (a) and Fig. 8 (a) at different Re. We 
note that the amplitudes of the perturbations in Fig. 
9 (a) occur near two kinds of interface, one is 
between a fluid layer and a porous wall 
(permeability wall), the other is between the fluid 
layer and the impermeability wall. But the 
perturbation in Fig. 9 (b) near the interface which is 
between the impermeable wall and the free fluid 
region hardly can be seen, and the oscillation 
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frequency of the perturbation near the interface 
which is between the free fluid region and porous 
region has an obvious decrement in comparison 
with that situation in Fig. 9 (a). 

Figure 10 illustrates the perturbations, rv~ (dashed 

line), iv~ (dotted line), | v~ |(solid line), of the porous 

modes labeled 2 at τ= -1, 0, 1.5 in Fig. 7 (b). Note 
that these perturbations occur both in the porous 
region and also near the interface between the 
porous domain and the free fluid domain. These 
modes’ perturbations in the porous region oscillate 
at a higher frequency than that near the interface 
which can be ignored with respect to the 
perturbations in porous region. Comparing with the 
examples of τ= -1 and τ=1.5, the amplitude of the 
perturbation velocity at τ=0 in porous region has a 
reduction trend, but has an increase near the 
interface. 
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Fig. 11. The relationships between σ and Rec 

under different τ conditions. 
 

To obtain more insight into how the flow instability 
is affected by different values of interface 
momentum distribution coefficient, τ, we depict 
such figure as Fig. 11. Figure 11 indicates the 
behavior of critical Reynolds number, Rec, against 
permeability, σ, at constant  = 0.6, hf/hp = 1.0 for τ 
= -1, 0, 1.5. In Fig. 11, with the increase of 
permeability, the value of Rec decreases whatever 
the value of τ is. The critical Reynolds number 
under a small permeability is sensitive and a 
remarkable drop can be observed, and if the value 
of permeability is small enough, the value of critical 
Reynolds number almost overlap together under the 
three different τ conditions. However, when the 
permeability begins to increase, the value of Rec for 
τ = -1 becomes greater than the other two cases that 
τ = 0 and τ = 1.5, and the growth degree may further 
increase by increasing the permeability. The 
phenomenon is similar with the situations which is 
little differences existing for the basic flow and the 
trajectories of the eigenvalues between τ = 0 and τ = 
1.5. But when we enlarge certain regions of the two 
curves for τ = 0 and τ = 1.5, find that the critical 
Reynolds number for τ = 1.5 is slightly greater than 
the situation for τ = 0. Above all, it indicates that, 
for a channel with a bottom porous medium having 
a low permeability, the interface momentum 
distribution has less effect on the flow stability. 

While further increasing the permeability, the 
interface momentum distribution begins to 
influence the flow stability, especially when τ = -1, 
in which case the fluid passing through the present 
channel owns the greatest stability, and the fluid 
stability for τ = 1.5 is slightly better than the 
situation of τ = 0. For the decrease in critical 
Reynolds number with increasing τ at a fixed 
permeability σ, one possible explanation is the 
decrease in interface velocity as increasing τ, which 
can be seen in Fig.3 showing the variations of 
interface velocity with changing τ. 

4. CONCLUSION 

The effect of the interface momentum distribution 
(including stress continuity and jump interface 
conditions) was investigated using spectral 
collocation method on the stability of Poiseuille 
flow for a channel partially obstructed by a 
permeable porous layer on its bottom plate. In order 
to investigate the effect of the interface 
characteristics on the stability picture of the main 
flow, we first present linearized instability results 
for an interface stress coefficient of τ = 0 which 
corresponds to stress continuity at the interface. To 
study the jump effect of the interface momentum 
distribution, we then present linearized stability 
results by changing the interface momentum 
distribution coefficient, τ.  

It is predicted that the interface momentum 
distribution in a negative range has a larger effect 
on the trajectory of the eigenvalues than that in the 
positive range, especially on the trajectory of the 
most unstable mode of the upper wall modes and 
the lower wall modes. Moreover, with a low 
permeability in the porous region, the interface 
momentum distribution has less effect on the main 
flow stability, while further increasing the 
permeability, the interface momentum distribution 
begins to influence the flow stability, especially at τ 
= -1, in which case the fluid flow passing through 
the present channel owns the greatest stability, but 
the fluid stability degree for the interface 
momentum distribution varying in a positive range 
is slightly to be distinguished from that stress 
continuity interface condition. 
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APPENDIX: THE LAMINAR VELOCITY 

PROFILE 

The determination of constant coefficients c1, c2, c3, 
c4 in Eqs.s (9) and (10) is given as follows for 
laminar velocity profile in the porous-fluid channel. 
To obtain coefficient values, we first make AC* = 
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B by assembling the boundary and interface 
conditions (7) and (8), then the matrixes as follows 
can be obtained. 

1 1 0 0

1 1 a b

A a b
1 / /

0 0 b a

   
 

 
    

  
  
  
 

 

 Τ2 2B 1 1 2 /          

where p

f

h
a

h




  , p

f

h
b

h




   .From matrixes 

A and B, we can obtain the matrix of C* = ( c1
*, c2

*, 
c3

*,c4
*)T with C* =A-1B. Finally the constant 

coefficients 

1 1c c ,
2 2c c , 3

3
21 / 3

c
c

c






, 4
4

21 / 3

c
c

c






in 

Eqs. (9) and (10) can be achieved, and these 
constant coefficients c1, c2, c3, c4 vary by 
substituting different parameters. 
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