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ABSTRACT 

This paper presents calculation model enabling determination of the leakage rate in labyrinth seals. Described 
model is based on the Saint-Venant equation. It includes a new type of flow coefficient, which was 
determined based on experimental tests and described depending on the Reynolds number and the radial 
clearance. The structure of this calculation model can be applied to determine the leakage rate in straight 
through, staggered labyrinth seals as well as with various number of clearances. This model enables 
determining distribution of thermodynamic and flow parameters of the gas along the seal length. Results 
obtained from this model were next compared with experimental data for various types of seals. It enabled 
determination of kinetic energy carry-over coefficient in geometries under investigation. The value of this 
coefficient was then compared with the value of the coefficient from the Scharrer’s, Neumann’s and 
Hodkinson’s models. Obtained results indicate that the value of the kinetic energy carry-over coefficient 
depends not only on the seal geometry, but also on the pressure decrease. 
 
Keywords: Labyrinth seal; Leakage; Calculation model; Experiment; Flow coefficient; Kinetic energy carry-
over. 

NOMENCLATURE 

A clearance flow area 
B teeth thickness 
c critical parameter 
c flow coefficient 
C value referring to the clearance 
D diameter of the seal 
e value obtained during the experiment 
H height of the seal segment 
H value obtained from the Hodkinson’s 

model 
i1 diameter of the first inner clearance of the 

staggered seal 
i2 diameter of the second inner clearance of 

the staggered seal 
LP length of the pitch 
LS length of the segment 
max maximum value 
N value obtained from the Neumann’s 

model 
o1 diameter of the first outer clearance of the 

staggered seal 
o2 diameter of the second outer clearance of 

the staggered seal 
p absolute pressure 

RC radial clearance 
Re Reynolds number 
S value obtained from the Scharrer’s model 
Subscripts 
SV theoretical value from the Saint-Venant 

equation 
t number of teeth 
T temperature 
u axial velocity 
v specific volume 

 
m  mass flow 
01 total parameter upstream the clearance 
2 static parameter downstream the clearance  
2s value being the result of the isentropic 

change  
β pressure ratio 
γ kinetic energy carry-over coefficient 
δ relative error 
κ isentropic exponent 
μ dynamic viscosity 
ρ density 
Ψ flow number 

 
 



D. Joachimiak / JAFM, Vol. 13, No. 3, pp. 935-943, 2020.  
 

936 

1. INTRODUCTION 

Labyrinth seals affect significantly the effectiveness 
of fluid-flow machines. Nowadays, there are 
numerous calculation models taking into 
consideration flow coefficients which enable leakage 
estimation. One of the first models describing gas 
flow in a seal, which included constant flow 
coefficient, was developed by Martin (1908). Other 
scientists, Egli (1935), Hodkinson (1939), 
Zimmerman and Wolff (1987), included to their 
models empirically determined flow coefficient and 
the phenomenon of kinetic energy carry-over. 
Another type of calculation models, in which the 
flow in a seal is analyzed tooth-by-tooth, was 
initialized by Neumann Childs and Scharrer (1988) 
and Scharrer (1988). In their models, the flow 
coefficient is a function of pressure distribution in 
the seal, and the kinetic energy carry-over coefficient 
depends on the seal geometry. In the reference paper 
Melnik (2013), the modified Stodola method was 
used to determine the leakage of compressible and 
incompressible liquids in the straight through 
labyrinth seal. Presented model was transformed to 
be used in calculations for groove seals. Another 
group of calculation models are models based on 
friction coefficients determined experimentally for a 
specific seal geometry. Modified Neumann method 
and Moody’s friction-factor model were used in 
reference paper Dereli and Eser (2004). This allows 
the authors to determine the leakage value, the 
pressure distribution and the distribution of gas 
velocity in chambers of the straight through labyrinth 
seal. Gas flow in a short labyrinth seal for relatively 
small pressure drops was described with the use of a 
model based on the friction coefficient, Zhirong et 
al. (2015). This coefficient was determined based on 
experimental data. Presented model accurately 
reflects the value of leakage for a specific type of 
sealing. Model describing the gas flow in the cavity 
seal based on the enthalpy balance equation is 
presented in the paper by Joachimiak and Krzyślak 
(2016). In this model, the gas kinetic energy 
dissipation into heat, being the result of the friction 
between the gas and the wall, was taken into 
consideration. Friction was investigated as the 
modified coefficient based on the Blasius’ equation. 
In their paper Hu et al. (2014), described the flow 
characteristics of straight through and stepped 
labyrinth seals using the friction coefficient. It was 
described by functions of Reynolds and Mach 
numbers, the equivalent diameter and the seal length. 
Similar models are also used in (Hong et al. 2012, 
Kawashima and Asako 2014, Asako et al.2005) for 
describing the gas flow in mini-channels. 

Models enabling the determination of the pressure 
drop in the straight through labyrinth seal were 
presented in the paper by Asok et al. (2007). 
Analysis concerned the relation between the 
chamber size, the teeth shape and the leakage. The 
paper presented semi-theoretical model based on 
two coefficients of virtual cavity velocity and the 
vortex loss coefficient. 

Leak-tightness of the seal depends on such features 
of the seal geometry as pitch, length and height of 

the chamber (Zhang et al. 2014, (Yuan et al. 2015), 
Wang et al. 2007, Joachimiak and Krzyślak 2019, 
Szymanski et al. 2018, Lampart, 2009). Of 
significant impact on the seal leak-tightness is its 
wear, Joachimiak and Krzyślak (2017). 

Calculation model which can be applied in a 
straight, staggered seal is presented in this paper. In 
part one of this paper, a method for determining the 
flow coefficient cSV based on experimental tests for 
the model gas flow through one clearance is 
presented. This coefficient was defined as the ratio 
of gas mass flow obtained from the experiment to 
gas mass flow resulting from the Saint-Venant 
equation. Next part of this paper comprises the 
description of the calculation model based on the 
Saint-Venant equation. This model includes the 
flow coefficient cSV, which in turn enables the real 
flow conditions occurring in clearances of multi-
tooth seals to be taken into consideration. The last 
part of this paper includes results of the 
experimental tests and of calculations made with the 
use of the model for straight and staggered seals of 
various number of teeth. The kinetic energy 
carryover coefficient γ for geometries being 
investigated was determined. 

2. STAND FOR EXPERIMENTAL TESTS 

Experimental tests were conducted on the test stand 
shown in Fig. 1. Test stand (Fig. 1.) consists of a 
compressor, a main tank, a regulator valve and the 
sealing system. Sealing system consists of the body 
and the insert (internal part) placed centrically in 
the body on which the investigated geometry is 
located. 

 
Fig. 1. Diagram of a test stand for labyrinth 

seals, 1 - compressor, 2 - main tank, 3 - regulator 
valve, inlet channel, 4 - orifice, 5 – body with 

labyrinth seal, 6 – measurement system. 
 
 

The measurement of the mass flow was performed 
with the use of an orifice. Measuring stand was 
equipped with the absolute pressure transmitters 
having the measurement range of 0-5x105 Pa and 
the measuring accuracy of ±0.25% as well as with 
pressure difference transmitters having the 
measurement range of 0-0.25x105 Pa and the 
measuring accuracy of ±0.2%. Gas temperature was 
measured by T-type thermocouples.  

3. METHOD FOR DETERMINING THE 

FLOW COEFFICIENT BASED ON 

EXPERIMENTAL TESTS 

To determine the flow coefficient for labyrinth 
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seals, some experimental tests were conducted on a 
model geometry composed of one tooth with a 
radial clearance of RC (Fig. 2). 
 

 
Fig. 2. Geometry of the representative gap for 

determining the coefficient cSV . 
 
Mass flow, pressure and gas temperature upstream 
and downstream the clearance were measured 
during the experiment. Dimensions of the analyzed 
radial clearances are summarized in table 1. 
 

Table 1 Geometry dimensions 

Mark Name Size [mm] 

D Diameter of the seal 150 

H 
Height of the seal 

segment 
10 

B Disc thickness 1 

RC Radial clearance 

0.362 
0.542 
0.752 
1.067 

1.5485 
2.058 

 

 
Fig. 3. Scheme of gas flow in the annular gap, 

RC – radial clearance, RCmin – minimum cross-
section of the gas flow. 

 

The flow coefficient takes into consideration 
phenomena occurring at the inflow to the clearance 
(gas acceleration), in the clearance (occurrence of 
boundary layer on the surface of the body and at the 
tooth back, flow contraction) and phenomena 
occurring downstream the clearance (formation of 
the gas flux of a high velocity and the occurrence of 
dissipation vortex behind the tooth). 

Mass flow flowing through the annular clearance 
depends on total parameters of gas upstream the gap 
p01, T01 and the static pressure in the space 
downstream the gap p2. One of the parameters 
describing the mass flow is the pressure ratio 

upstream and downstream the clearance determined 
as: 

2

01

p

p
   (1) 

Theoretical mass flow is determined by the Saint-
Venant equation (Trütnovsky, 1964) 

01 01  SV Cm A p    (2) 

where the surface area of the flow in the clearance 
can be determined as 

 22π
2

4CA D D RC       (3) 

Equation (2) includes the flow number Ψ 
(Trütnovsky, 1964), value of which depends on the 
type of the gas. Gas is described by the isentropic 
exponent κ and gas constant R. For the subcritical 
air flow, 0.5283  . flow number is of the form 
(Trütnovsky, 1964) 

   
2 κ+1

κ κ
κ

 2  
κ-1

      
 (4a) 

For the supercritical flow, 0.5283   

κ+1

κ-12
κ  

κ+1
    
 

 (4b) 

Flow coefficient for gas flowing through the 
clearance was defined as the ratio of mass flow 
obtained from the experiment 

em  to mass flow 

resulting from the Saint-Venant equation 
SVm  (2)  

e
SV

SV

m
c

m





 (5) 

Mass flow determined by the Saint-Venant equation 
depends on, among other, total parameters of gas 
upstream the clearance and on static parameters 
downstream the clearance. To apply the coefficient 
cSV in multi-tooth segments, one should know the 
total pressure before each tooth and the static 
pressure behind each tooth. To determine these 
pressures, one should analyze flow conditions in 
each chamber and in each clearance. If one-
dimensional models are used, there arises a problem 
in which the variation of thermodynamic and flow 
parameters along the segment length should be 
determined. 

We propose in this paper a variation of the flow 
coefficient depending on the Reynolds number and 
the radial clearance RC. 

 ,SVc f Re RC  (6) 

Reynolds number is related to thermodynamic 
parameters of gas at the outflow from the clearance, 
with the assumption of the isentropic change  
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1

κ
01

01

2

2RCu
Re

p
v

p



 
 
 

 (7) 

where the gas velocity in the clearance is 
determined from the Saint-Venant equation  

0.5
κ-1

κ
2

01 01

01

κ
2 1
κ-1

p
u p v

p

  
             

. (8) 

Values of the flow coefficient cSV were determined 
for the clearance heights under consideration (table 
1) based on experimental tests.  

4.  RESULTS OF EXPERIMENTAL TESTS 

OF FLOW COEFFICIENT CSV  

In this paper, we present a method of determining 
the flow coefficient for conditions where gas 
flowing into the clearance has negligible velocity. 
In this situation, the gas velocity in the clearance 
results from the pressure gradient. This creates ideal 
conditions of gas flow in the clearance being 
characterized by the lowest mass flow. Obtained 
values of the flow coefficient for the geometry 
described in table 1 are presented in the function of 
the Reynolds number (Fig. 4). 

 

 
Fig. 4. Values of the flow coefficient cSV in the 
function of the Reynolds number for radial 

clearances RC from 0.362 to 2.058 mm. 

 
The flow coefficient has the highest value for the 
radial clearance of 0.362 mm. For greater 
clearances, flow coefficients csv reach increasingly 
lower values. 

Each curve presented in Fig. 4 was approximated by 
the polynomial of the following form 

( )k
SV k

k

c a Re  (9) 

The determined flow coefficient cSV was next 
applied in the model described below.  

5. CSV CALCULATION MODEL 

Calculation model is based on the Saint-Venant 
equation (Joachimiak et al. 2012). This equation 
determines the mass flow flowing through i-th 

clearance 

0.5
2 1+κ

κ κ
1 1κ

2
κ-1

i i i
i Ci

i i i

p p p
m A

v p p
 

  
                  

  (10) 

where the flow surface area in i-th clearance is 
described by the formula 

 22 2 2
4Ci i i iA D D RC
        (11) 

After the function of the mass flow  1,i i im p p  (Eq. 

10) is expanded into the Taylor series for the 

pressure  1,i ip p   relative to the pressure upstream 

the tooth pi and downstream the tooth pi+1, we have 

     
1 1, ,

1!
i i i

i i i i i i

i

p p m
m p p m p p

p 

 
  



 
     

   2 2
1 1

2
11! 2!

i i i ii i

i i

p p p pm m

p p
 



  
 

 

    

    22 2
1 1 1 1

2
1 1

...
1!1! 2!

i i i i i ii i

i i i

p p p p p pm m

p p p
   

 

   
  

  

   

     
 

1 1
1

1 0

,
! !

k l ln k
i i i i

i i i
k l

p p p p
m p p

k l l



 


 

 
  


 

  

  
 

( )
1

k l l
i i

nk l l
i i

m m
R

p p






 


 
 

  

(12)

 

In further analysis the approximation of the function 

 1,i i im p p  to first derivatives was used. Ignoring 

derivatives of higher order, having significantly 
lower values than the first order derivatives, results 
in linearization of the Sain-Venant equation (Eq. 
(10)), which can be noted in the following form 

     
1 1, ,

1!
i i i

i i i i i i

i

p p m
m p p m p p

p 

 
  



 
   

 

 1 1

11!
i i i

i

p p m

p
 



 


 

 
(13) 

Hence, after transferring  1,i i im p p     to the left-

handed side of the Eq. (13), we have 

   1 1
, ,

i i i i i i
m p p m p p     

 
   1 1

11! 1!
i i i ii i

i i

p p p pm m

p p
 



  


 

  

 
(14) 

Equation (14) describes the change of the mass flow 
of gas flowing through i-th clearance 

   1 1, ,i i i i i im p p m p p      resulting from the change 

in the pressure upstream i ip p   and downstream 

1 1i ip p    clearances. This dependence can be noted 

as exact differential of the mass flow in i-th 
clearance relative to the pressure upstream pi and 
downstream pi+1 clearances: 
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1

1

i i
i i i

i i

m m
dm dp dp

p p 


 
 
 
 

  (15) 

Partial derivatives included in Eq. (15) are of the 
following form: 

κ-2 2 1 κ+1

κ κ κ κ

2κ-2 2 κ+1 κ+1

κ κ κ κ

2κ-2 κ+1

2 κ κ

κ
2
κ-1 R

,

i Ci
i i 1 i i 1

i

0

i i 1 i i 1

m A
p p p p

p

1

T

p p p p

 

 

 
     





 (16) 

2κ-2 2-κ κ+1 1

κ κ κ κ

2κ-2 2 κ+1 κ+1

κ κ κ κ

2 κ+1

2 κ κ

κ
2
κ-1 R

.

i Ci
i i 1 i i 1

i 1

0

i i 1 i i 1

m A
p p p p

p

1

T

p p p p

 


 

 
     





  (17) 

Equation (15) describes the change in the mass flow 
flowing through the clearance resulting from the 
change in pressure upstream and downstream the 
clearance. Equation (15), transformed to finite 
increments, has the following form: 

1

1

i i
i i i

i i

m m
m p p

p p 


 
    

 
 

  (18) 

Vector of differences between finite increments of 
mass flows can be written as follows: 

1
1 1

1 1

1
2

2

i i i
i i i i

i i i

i
i

i

m m m
m m p p

p p p

m
p

p


 

 






   
        

   





  
 


  (19) 

for 1, , 1i n   

Based on the system (n – 1) of Eq. (19), the system 
of linear equations can be created as 

Δ = ΔC p M  (20) 

where  

Ci,j = 1

1 1

i i

i i

m m

p p


 

  
 

  

 
  (21) 

for j = i and i = 1, 2, …, n-1 

Ci,j = 1

2

i

i

m

p









  (22) 

for j = i+1 and i = 1, 2, …, n-2 

Ci,j = i

i

m

p





  (23) 

for j = i - 1 and i =  2, 3, …, n-1.  
Remaining elements of the matrix C are zero. 

From Eq. (19), the vector of pressure increments Δp 

 1 2 1Δ
T

np p p    p    (24) 

where 
1i i ip p p    .  

as well as the vector of mass flow differences  

1 2 1Δ M M M
T

n     M   
 

(25) 

were isolated. 

Vector of mass flow differences is determined 
based on Eq. (10). 

1i i im m     M    (26) 

To determine the vector of pressure increments Δp, 
some iterative calculations are carried out. 

In the first iteration, a linear distribution of pressure 
p is assumed. In subsequent iterations, the vector p 
is corrected by the resultant vector of pressure 
increments Δp. Distribution of pressure p rearranges 
itself so that there exist the same mass flow in each 
clearance. 

In the next step of the iterative process, vectors u 
and Re described by the following formulae 

0.5
κ-1

κ
1κ

2 1
κ-1

i
i i i

i

p
u p v

p


  
             

 (27) 

1

κ

1

2 i i
i

i
i

i

RC u
Re

p
v

p





 
 
 

 (28) 

are generated. 

For each clearance, the flow coefficient cSV which 
depends on radial clearance and the Reynolds 
number is determined. This coefficient is described 
by formula (9). For radial clearances other than 
those given in table 1, the coefficient cSV is 
interpolated. 

Vector of mass flow differences in Eq. (25) is 
corrected by the vector of flow coefficients cSV. 

S V S V 1 1i i i i ic m c m   M    (29) 

Iterative calculations are completed when the 
highest value of the component of the relative 
differences of mass flow vector is lower than or 
equal to the assumed accuracy of calculations ε 

1

1

max max i i
i

i i
i

m m

m
 




 M

 


 (30) 

This model is programmed in the Fortran language. 

Presented model with the flow coefficient cSV 
includes real flow conditions in seal clearances. 
Ideal conditions for gas velocity reduction in seal 
chambers are assumed in this model. It allows to 
determine the minimum theoretical value of leakage 
in seals of various geometries for radial clearance 
ranging from 0.362 to 2.058 mm. The advantage of 
the presented model is the fact that it can be used to 
determine theoretical value of leakage in the 
straight through and staggered seals where gas is 
flowing into axial direction. In the next part of this 
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paper results obtained from the CSV model and 
from experimental tests are compared with results 
obtained from other models described in source 
literature. 

6. ANALYSIS OF EXPERIMENTAL TESTS 

AND CALCULATIONS RESULTS 

Model CSV described herein includes conditions of 
gas flow through the clearance, presented by the 
coefficient cSV. In real conditions, the gas velocity 
in the labyrinth seal upstream the gap is higher than 
the velocity assumed in model tests (Chapter 3).  It 
results from the gas expansion in the preceding gap 
and incomplete dissipation of kinetic energy in the 
chamber upstream the gap. Hence, the mass flow 
for multi-tooth seals obtained from the experiment 

em  should be higher than the one obtained from the 

model CSV
CSVm . 

e CSVm m    (31) 

Calculation model presented in this paper enables 
determining the kinetic energy carry-over 
coefficient  γCSV between the gaps. This coefficient 
is defined as the ratio of the mass flow obtained 
from the experiment to the mass flow from the 
model CSV 

CSVγ e

CSV

m

m





  (32) 

In the next part of the paper the coefficient γCSV 
obtained from the CSV model will be compared 
with Scharrer’s, Neumann’s and Hodkinson’s 
models. The coefficient value in Scharrer’s model is 
described by the following equation: 

 

0 5

S

1

1

.

Si

 
         

(33) 

where
 

8 52

7 23S

.

LP - B RC .
 


. 

Coefficient in the Scharrer’s model includes 
features of the seal geometry such as the radial 
clearance RC, pitch LP and the thickness of teeth B, 
whereas the value of the coefficient γN in the 
Neumann’s model (Childs & Scharrer, 1986) 
depends on the pitch LP and the height of the 
clearance RC. 
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where   2
1 1 16 6N . RC / LP

     

The value of the kinetic energy carry-over 
coefficient γH in the Hodkinson’s model 
(Hodkinson, 1939), similarly as in the Neumann’s 
model, depends on the radial clearance and the 
length of the pitch. 
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1
1

0 02
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t RC / LP .
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 
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(35) 

Tests were conducted for the geometry of straight 
through seals of various number of teeth (Fig. 5 (a), 
Table 2) and for the staggered seals composed of 
twenty teeth (Fig. 5 (b), Table 3).  

 

 
a) 

 
b) 

Fig. 5. Examined seal geometries a) straight 
through b) staggered. 

 
In straight through seals, there occurs a high 
velocity of gas flowing through the upper part of the 
seal chambers which affects significantly the seal 
leakage. Staggered seals have more complicated 
geometry. Teeth of the staggered seal are placed on 
the shaft and on the body of the device. Such seals 
are characterized by lower gas velocity between 
gaps and more complicated gas swirl in chambers. 
That is why they are tighter than the straight 
through seals. 
 
Table 2 Geometries of straight through segments 
of the radial clearance RC = 0.362, 0.542, 0.752 
mm, being included in the experimental tests. 

Constant dimensions of the seal are: the 
diameter D = 150 mm, chambers height H = 10 

mm and the thickness of teeth B = 1 mm 

Geometry 
Teeth 

number 
t 

Pitch 
LP 

[mm] 

Seal 
length LS 

[mm] 

4t 4 10 31 
6t 6 6 31 
11t 11 3 31 

4t_PL30_
RC0.362 

4 30 91 

 

Values of the kinetic energy carry-over coefficients 
were determined based on the models described 
above and next compared with results obtained 
based on experimental tests and from calculations 
made with the use of CSV model. Figure 6 presents 
results for the straight through seal of the clearance 
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height of RC = 0.542 mm and the teeth number of 
4, 6 and 11 (Table. 2).  
 

Table 3 Geometries of staggered seals for teeth 
number t = 20, pitch LP = 10, thickness of teeth 

B=1 mm and chambers height H=10 mm and the 
seal length LS = 191 mm, being included in the 

experimental tests 

Geometry 
Do1 

[mm] 
Do2 

[mm] 
Di1 

[mm] 
Di2 

[mm] 

20t_RC0.5 120 138.98 139.93 120.97 

20t_RC0.7 120 138.59 139.93 121.39 

20t_RC1 120 137.99 139.93 121.99 

 

 
Fig. 6. Values of coefficients γ obtained from the 

analyzed models for segments of straight 
through seals having 4, 6 and 11 teeth. 

 

Values of the kinetic energy carry-over coefficients 
obtained from the CSV model depend on the 
pressure pin/pout ratio. Therefore, in Fig. 6, values γ 
are presented by the range. It results from this 
figure that the number of seal teeth influences 
significantly on the γ value. The greater is the 
number of teeth, the shorter are chambers. It results 
in greater intensity of the kinetic energy carry-over 
which in turn causes the growth of γ. For the 
segment comprising 4 and 6 teeth, Neumann’s and 
Hodkinson’s models give comparable values of the 
kinetic energy carry-over coefficient.  

Range of results from the CSV model include lower 
values than these obtained from the Neumann’s 
model, Eq. (34), and the Hodkinson’s one, Eq. (35). 
The value of the kinetic energy carry-over 
coefficient calculated with the use of the Scharrer’s 
model, Eq. (33), is included in the range of results 
obtained from the CSV model. For the segment 11t, 
with short chambers, the highest value of γ was 
obtained from the Neumann’s model and it 
amounted ca. 2.6. Slightly lower value was obtained 
from the Hodkinson’s model, amounting to 2.35. 
Neumann’s and Hodkinson’s models brought 
extortionate values of the kinetic energy carry-over 
coefficient when compared with the Scharrer’s 
model since they did not take into account the tooth 
thickness (Fig. 6). 

Scharrer’s model, unlike other models discussed 
herein, takes into account the tooth thickness what 
influences significantly on the accuracy of the 
determined coefficient γ. Therefore, it could be 
stated that it is the most precise model among these 

cited, which was also investigated in this paper 
(Joachimiak & Krzyślak, 2019). Values of the 
kinetic energy carry-over coefficient in the 
Scharrer’s model for geometries 4, 6 and 11t are 
within the range of values obtained from the CSV 
model. Further in this paper coefficients γ obtained 
based on experiments and the CSV model will be 
compared with the Scharrer’s model. 

 

 
a) 

 
b) 

 
c) 

Fig. 7. Values of the kinetic energy carry-over 
coefficient γ for the straight through labyrinth 

seal of the number of teeth of 4, 6 and 11t for a) 
RC = 0.362, b) RC = 0.542, c) RC = 0.752 mm. 

Full line denotes data obtained from tests, 
broken line denotes data calculated as per 

Scharrer Eq. 33. 
 

Figure 7 presents results obtained for straight 
through segments of the radial clearance RC = 
0.362, 0.542 and 0.752 and of 4, 6, 11 teeth. The 
lower is the parameter γ, the better conditions for 
kinetic energy dissipation are observed in the given 
seal. For the straight through seals, the lower 
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boundary value of γ is 1. This value indicates that 
the kinetic energy is not carried over gaps of the 
seal. The value of γ close to 1 was obtained for the 
test geometry 4t_L30_RC0.362 (table 2), having the 
pitch of a significant length L = 30 mm (Fig. 7 (a)). 
When the parameter γ>1, it means that there is 
incomplete kinetic energy dissipation in chambers 
of the seal.  

Values of the coefficient γCSV obtained from tests 
are similar to the value of the coefficient from the 
Scharrer’s model (Fig. 7). In the latter model, 
values γS do not depend on the pressure ratio. For 
segments 4, 6, 11t of the analyzed radial clearances, 
the parameter γS has almost linear course. The 
lowest values of γ were obtained for four-tooth 
segments with the narrowest clearance. 

Value of γ for a given number of teeth depends 
mainly on the extent of wear. The greater is the 
height of the clearance, the greater is value of γ, and 
the drop of γ in the function pin/pout is more 
noticeable (Fig. 6 (b), (c)). For geometries under 
consideration (4, 6 and 11t), the value of γ is 
affected significantly by the length of the seal pitch. 
The shorter is the pitch (Table. 2), the greater is the 
value of parameter γ.  It results from the occurrence 
of high gas velocity between gaps. To estimate the 
change of γCSV of the investigated geometries 
depending on the clearance height, values of this 
coefficient (Fig. 8) were collated for the geometries 
4-11t under consideration depending on the radial 
clearance RC for pin/pout = 2. Kinetic energy carry-
over coefficient for geometry 4t (Δγ = 0.15) 
increases slightly as a result of increasing radial 
clearance RC. Greater increase (Δγ = 0.29) was 
observed for geometry 6t, and the greatest one – for 
geometry 11t of the smallest pitch (Δγ = 0.64), what 
is presented in Fig. 8. 

 

 
Fig. 8. Kinetic energy carry-over coefficient γCSV 

for seal of 4, 6 and 11t teeth depending on the 
radial clearance RC for the pressure ratio 

 pin/pout = 2. 
 
Figure 9 presents values of the kinetic energy carry-
over coefficient for a staggered seal composed of 
twenty teeth. Parameter γCSV for the segment 
20t_RC0.5 is almost constant in the investigated 
range of pressure drop and amounts approx. 1.4. 
Respectively, for clearances 0.752 and 1, the 
parameter γCSV has increasingly lower values. 

In the case of the staggered seal, for the greater 
radial clearance (RC = 0.5, 0.7 and 1 mm), 

reduction of the parameter γCSV was observed, hence 
the effect of kinetic energy carry-over decreases 
(Fig. 9). 

 

 
Fig. 9. Values of the kinetic energy carry-over 
coefficient γ for the staggered labyrinth seal 
composed of twenty teeth depending on the 

pressure ratio pin/pout for RC = 0.5, 0.7 and 1 mm. 
 

7. CONCLUSION 

The presented calculation model is based on the 
Saint-Venant equation. It includes experimentally 
determined flow coefficient cSV. This coefficient 
takes into account the contraction of flow. Defining 
the flow coefficient cSV as the function of the radial 
clearance RC and the Reynolds number Re allows 
for unambiguous determination of its value in 
multi-tooth segments. It means that this model can 
be used for geometries of segments of straight and 
staggered seals of various number of teeth and axial 
direction of gas flow. Presented model enables 
determination of theoretical, minimum gas mass 
flow in multi-tooth segments of a wide range of 
radial clearance. Value of this flux results from the 
assumption of the gas expansion in gaps and total 
dissipation of kinetic energy in seal chambers. 
Comparing the value of real mass flow with the 
value obtained with the use of calculation model 
enables determination of the segment leakage rate 
and determination of the kinetic energy carry-over 
coefficient for the investigated geometries. 

Presented model creates a new method for 
determination of the kinetic energy carry-over 
coefficient which depends not only on the seal 
geometry but also on the pressure drop of gas in the 
seal. 

Therefore, the mass flow determined with the use of 
our model is the measure of theoretical seal 
tightness. Proposed model allows for determining 
the distribution of pressure and other parameters 
along the segment length. 
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