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ABSTRACT 

Sediment transport in the aquatic environment is one of the complex two-phase problems in flow mechanics 

and sediment hydraulics. In this study, the interaction between water and sediment is explored using the SPH 

method and developed SPHysics2D in which the pressure values are calculated using the state equation. In this 

study, the non-Newtonian rheological model µ(I)  is used for modeling the sediment phase where it is developed 

based on the properties of granular particles. Also, the effective pressure is used for the study of sediment 

behavior. The method used in this research is compared with the methods used by other researchers. The Owen 

equation is utilized to determine the effect of viscosity within the two-phase area. The developed method is 

evaluated by the dam break on a dynamic bed and then, the experimental model of submerged sediment column 

collapse is investigated in the aquatic environment. The results of the modeling demonstrate the capabilities of 

the developed code for the use in the flow and sediment hydraulics. 

 

Keywords: Rheological model; Owen model; Effective pressure; Dam break with movable bed; Submerged 

column collapse.  

NOMENCLATURE 

𝐶𝐼 constant    

𝐶𝑠 Smagorisky constant  

𝑐0 sound speed 

𝐷 particle diameter 

𝐹 force 

𝑔 gravity acceleration 

ℎ height 

𝐼 inertia 

𝐾 coefficient    

𝑙 length  

𝑚 particle mass 

𝑃 pressure 

𝑃𝑒𝑓𝑓 effective pressure 

𝑃𝑝𝑤 pore water pressure 

𝑅 balance factor 

𝑡 time 

𝑢 velocity 

𝑊 interpolation function 

 

�̇� strain tensor  

𝜇 friction 

𝜐 viscosity 

𝜌 density 

𝜏 shear stress 

 
 

1. INTRODUCTION  

Rapid flow hydraulics on a fluvial bed leads to huge 

changes in the river morphology. River morphology, 

in turn, influences the hydraulic parameters of 

current. Thus, modeling the rapid flow with sediment 

transport is a complicated issue in the fluid 

mechanics. Dam break is known as a rapid flow 

phenomenon accompanied by the huge deformation 

in the water surface profile which induces great 

deformations on the bed. Close interactions exist 

between hydrodynamics, sediment transport and bed 

morphology, Moreover, the nonlinear sediment 

behavior caused by the stress induced by current 

makes the problem more complicated. 

Submerged soil column collapse is an example of 

water–soil interaction problems, which has an 

application in the debris flows (Iverson, 1997), 

landslides (Legros, 2002), sub-marine avalanches 

(Hampton et al., 1996), etc. Since it may have 

harmful impacts on the safety of the underwater 

structures or the geo-morphological changes of 
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waterways, the submerged granular column collapse 

has received particular interest.  

Due to the complex interaction between water and 

solid particles, the process of submerged soil column 

collapse has not yet been well understood in 

comparison with the dry soil column collapse. 

Rondon et al. (2011), Meruane et al. (2010, 2012), 

Savage et al. (2014) recently investigated this issue, 

showing the challenges and developments.  

The mathematical models capable of accurately 

simulating both the bed and water surface profiles 

are limited. Computational Fluid Dynamics (CFD) 

based on the Eulerian approaches has made great 

progresses on modeling two-phase non-Newtonian 

flows. However, the Eulerian and mesh-based 

numerical methods may have difficulties with the 

moving boundaries (Shadloo et al. 2016). 

The Lagrangian method is another approach to 

model the current by solving the Navier-Stokes and 

continuity equations. Smoothed Particle 

Hydrodynamics (SPH) is a mesh-free and fully 

Lagrangian method where the fluid is divided into a 

set of particles interacting with each other (Gingold 

and Monaghan, 1977; Lucy, 1977). The Lagrangian 

methods are widely utilized in modeling the free-

surface flows (Omidvar et al. 2015), wave-body 

interaction (Omidvar et al. 2017), multiphase flows 

(Hosseinkhani and Omidvar, 2018), and non-

Newtonian fluid flows (Shao and Lo, 2003; 

Shakibaeinia and Jin, 2011; Khanpour et al. 2016; 

Omidvar et al. 2018). 

The movement of granular materials and non-

cohesive sediments is accomplished by exceeding 

the shear stress imposed on the particle from a 

threshold value called the yield stress. If the shear 

stress is less than the yield stress, the particle 

remains motionless and the movement is started 

beyond the yield stress. Therefore, the particles can 

be modeled as a non-Newtonian fluid that 

technically has certain viscoplastic behavior. Some 

known viscoplastic models with a particular yield 

stress for the motion threshold are: Herschel-

Bulkley, Cross, Bingham, etc. (Khanpour et al. 

2016; Omidvar and Nikeghbali, 2017; Fourtakas 

and Rogers, 2016). Szewc (2017) implemented the 

Cross rheological model in SPH code developed for 

numerical models. He obtained a good agreement 

by comparing with experimental results. Moving 

Particle Semi-implicit (MPS) is another Lagrangian 

model which was applied to model the dam-break 

phenomenon on a moving bed by Fu and Jin (2016). 

The Herschel-Bulkley (HB) rheological model was 

used in the sediment phase. A two-phase water-

sediment model was developed using the Weakly 

Compressible SPH (WCSPH) by Fourtakas and 

Rogers (2016). Khanpour et al. (2016) used the 

WCSPH to model the scouring and flushing 

phenomena. They proposed the Bingham model to 

simulate the behavior of sediment phase. The 

influence of violent water flow on a loose boundary 

was also investigated by Omidvar and Nikeghbali 

(2017) through the SPH model. In this research, the 

Bingham model was considered as the rheological 

model. They could determine the water-solid 

interface using the concentration of solid in each 

section (Nikeghbali and Omidvar, 2018). 

Kheirkhahan and Hosseini (2018) applied the HBP 

(Herschel-Bulkley-Papanastasiou) and µ(I) 

rheological models for simulating the motion of 

granular particles through the SPH model. Also, 

Hosseini et al. (2019) found reasonable 

performance for µ(I) rheological model by 

simulating the dam break and landslide phenomena 

on a moving bed.  

An open-source SPHysics2D code is available for 

modeling Newtonian fluids (Go´mez-Gesteria et al. 

2012). In this research and after Omidvar et al. 

(2018) and Hosseini et al. (2019)”, the µ(I) non-

Newtonian model is used to study the motion of 

particles where the effective pressure of sediment 

phase is calculated in each time step by subtracting 

the water pressure from total sediment pressure. For 

simulating this phenomenon, the gate supporting the 

particles in the reservoir is instantaneously removed 

to study the motion of particles. First, the granular 

dam break phenomenon is studied by numerical 

approach implemented in SPHysics2D code The 

pressure resulting from this method is compared with 

the effective pressure suggested by Fourtakas and 

Rogers (2016), and the results show better 

performance. After ensuring the code function by 

comparing the results of experimental model, the 

code is developed for modeling the dam break on an 

moving bed. In the two-phase models, some 

complicity appears due to the differences in 

viscosity, density and other parameters in two 

phases. Grenier et al. (2009) proposed the relations 

to overcome the singularities concerned to the 

difference in density at the interface of two phases. 

The effect of differences in viscosity of two phases 

at the interfaces is investigated by Owen. All 

modifications by Grenier et al. (2009) and Owen are 

utilized at the interface. 

2. GOVERNING EQUATIONS 

Continuity and momentum equations for fluid flow 

expressed in Lagrangian form are: 

(1) 
𝐷𝜌

𝐷𝑡
+ 𝜌(∇. �⃗� ) = 0 

(2) 𝜌
𝐷�⃗� 

𝐷𝑡
= −𝛻𝑃 + 𝛻𝜏 + 𝐹  

in which, 𝜌  density, �⃗�  is velocity vector, 𝑃  is 

pressure, 𝜏  stress tensor and 𝐹  other body forces 

influencing the movement of flow and 𝑡 is time.  

3. SPH METHOD 

In this method, the particles of fluid behave as 

continuum media, so the governing equations could 

be used for all particles in modeling the movement. 

SPH method is based on the movement of each 

particle influenced by the forces subjected by the 

other particles. This method profits the interpolation 

of integral function 𝑓on the domain of 𝛺, 𝑓 function 

is discrete, using convolution function (Gingold and 

Monaghan, 1977; Nikeghbali and Omidvar, 2018). 
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(3) 

𝑓(𝑥) ≈ < 𝑓(𝑥) >

= ∫ 𝑓(𝑥′)𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′

𝛺

 

Equation (3) converted to Eq. (4) by introducing 

discrete particle approximation, called interpolation 

approximation. 

(4) 

𝑓(𝑥𝑖) =∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

=∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)𝑊𝑖𝑗

𝑗

 

in which 𝑊𝑖𝑗  is interpolation function, ℎ smoothed 

height, 𝑚  and 𝜌  are mass and density of particle, 

respectively. Figure 1 shows the neighbors of 

particle i within the interpolation function. 

 

 
Fig. 1. Neighbors of particle i within the 

interpolation function. 

 

Therefore, main forms of governing equations in 

SPH method are showed in Eq. (5) and Eq. (6). 

(5) 
𝐷𝜌𝑖
𝐷𝑡

=∑𝑚𝑗
𝑗

𝑣𝑖𝑗𝛻𝑖𝑊𝑖𝑗 

(6) 

𝐷�⃗� 𝑖
𝐷𝑡

=
𝐹

𝜌𝑖
−∑𝑚𝑗 (

𝑃𝑖
𝜌𝑖
2
+
𝑃𝑗

𝜌𝑗
2
)

𝑗

𝛻𝑖𝑊𝑖𝑗

+∑𝑚𝑗 (
4υ𝑟𝑖𝑗 . 𝑢𝑖𝑗

(𝜌𝑖 + 𝜌𝑗) (|𝑟𝑖𝑗|
2
+ 𝜄2)

)

𝑗

𝛻𝑖𝑊𝑖𝑗

+∑𝑚𝑗 (
𝜏̅𝑖
𝜌𝑖
2
+
𝜏�̅�

𝜌𝑗
2
)

𝑗

𝛻𝑖𝑊𝑖𝑗  

where 𝑃  is the particle pressure, 𝑣𝑖𝑗  is velocity 

difference of 𝑖  and 𝑗  particles, υ is fluid kinematic 

viscosity, 𝑟𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| , and 𝜄  is announced as a 

very  small value for preventing relation infinity. 

The first term at right side of Eq. (6) is body forces, 

in second term pressure gradient is defined, the third 

term defines viscosity proposed by Morris et al. 

(1997) and the last term is the turbulence stress 

which was applied by the Eq. (7) (Lo and Shao 2002; 

Nikeghbali and Omidvar, 2018; Gómez-Gesteria et 

al. 2012). 

(7) 

𝜏𝛼𝛽

𝜌
= 𝜐𝑡 (2�̇�𝛼𝛽 −

2

3
𝑘𝛿𝛼𝛽)

−
2

3
𝐶𝛪𝛥

2𝛿𝛼𝛽|�̇�𝛼𝛽|
2
 

where, 𝜏𝛼𝛽 is the stress tensor of SPS (Sub-Particle 

Scale), υ𝑡  turbulence viscosity defined in 

Smagorinsky’s model as 𝜐𝑡 = [𝑚𝑖𝑛 (𝐶𝑠𝛥𝑙)]
2|�̇�𝛼𝛽| in 

which the Smagorisky constant is 𝐶𝑠 = 0.12. �̇�𝛼𝛽 is 

shear rate tensor and |�̇�𝛼𝛽|  is second invariant of 

shear rate tensor. 𝑘 is the turbulence viscosity of SPS 

and 𝐶𝛪 = 0.0066 (Nikeghbali and Omidvar, 2018). 

The shear rate tensor is defined by Eq. (8) and its 

second invariant is defined by Eq. (9) (Nikeghbali 

and Omidvar, 2018) 

(8) �̇�𝛼𝛽 = 𝛻𝑢 + 𝛻𝑢
𝑇 

and 

(9) |�̇�| = √
1

2
�̇�𝛼𝛽�̇�𝛼𝛽 

Grenier et al. (2009) proposed an artificial pressure 

for the particles interface with different densities to 

avoid instabilities where the second term in 

momentum equation is replaced by ∑ 𝑚𝑗 (
𝑃𝑖

𝜌𝑖
2
+𝑗

𝑃𝑗

𝜌𝑗
2
+ 𝑅𝑖𝑗)𝛻𝑖𝑊𝑖𝑗  for the interfacial particles with 

different densities. This term is shown by Eq. (10). 

(10) 𝑅𝑖𝑗 = 𝐾 (
𝜌d − 𝜌l
𝜌d + 𝜌l

) |
𝑃𝑖 + 𝑃𝑗

𝜌𝑖𝜌𝑗
| 

where 𝜌d and 𝜌l are equal to reference densities of 

fluids. 𝐾  is a coefficient which is considered 

between 0.01 and 0.1. 

Here, a third-order interpolation function (Hosseini 

et al, 2019) and the repulsive boundary condition 

(Monaghan and Kos 1999; Rogers et al. 2009) is 

used for the wall particles. Moreover, the Predictor-

corrector scheme is used as a temporal scheme 

(Monaghan, 2005).  

4. RHEOLOGICAL MODEL 

Here, we used the µ(I) rheological model to simulate 

the motion of particles, which was first introduced by 

GDR MiDi (2004) and Da Cruz et al. (2005). 

The relation between the shear and the normal stress 

in this model is defined by Eq. (11) (Xu and Jin, 

2016). 

(11) 𝜏 = 𝜇𝑝 

where 𝜇 is the coefficient of friction, 𝜏 is the shear 

stress and 𝑝  is the normal stress. Here, 𝜇  is 

dependent on the inertia according to Da Cruz et al. 

(2005): 

(12) 𝐼 =
|�̇�|𝐷

√𝑝/𝜌𝑠
 

where |�̇�| is the shear rate, 𝐷 is the particle diameter, 

𝑝  is the pressure and 𝜌𝑠  is the density of particle. 

Moreover, Eq. (13) presents the value of friction 

coefficient 𝜇 (Jop et al. 2005). 
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Fig. 2. A view of normal and shear stresses supported by different phases in a saturated soil. 

 

 

(13) 𝜇 = 𝜇𝑠 +
𝜇2 − 𝜇𝑠
1 + 𝐼𝑜/𝐼

 

𝜇𝑠 , 𝜇2  and 𝐼𝑜  are the parameters related to each 

material and is determined in the lab (Xu and Jin, 

2016; Kheirkhahan and Hosseini, 2018). 

Applying Eq. (11) in two and three dimensions 

results in Eq. (14) which relates shear stress to 

pressure. 

(14) 𝜏𝛼𝛽 =
𝜇(𝐼)𝑝

|�̇�|
�̇�𝛼𝛽 = 𝜂�̇�𝛼𝛽     ,   𝜂 =

𝜇(𝐼)𝑝

|�̇�|
 

which is practically found according to the 

experimental data and numerical models. The 

proposed regularization method of Papanastasiou 

(Papanastasiou, 1987) transposed to the 𝜇(𝐼) 
rheology (Chauchat and Médale, 2014).  

(15) 

𝜂𝑟

= 𝜇𝑠𝑝
1 − 𝑒

−|�̇�|
𝛼𝑟
⁄

|�̇�|
+

(𝜇2 − 𝜇𝑠)𝑝

𝐼𝑜√𝜙𝑝 + |�̇�| + 𝛼𝑟
 

where 0.6 ≤ 𝜙 ≤ 0.65, 𝛼𝑟  is a small parameter to 

avoid zero value in the denominator and 𝑝  is the 

confining pressure (stress between granular 

particles). In the saturated soils, the effective 

pressure (𝑃𝑒𝑓𝑓) appears in the µ(I) relation. In this 

research, 𝜙  and 𝛼𝑟  are 0.62 and 0.000001, 

respectively (Chauchat and Médale, 2014; Xu and 

Jin, 2016).  

The apparent viscosity (𝜂) for each particle depends 

on the position and the pressure term, as discussed 

above, and hence, the viscosity is relevant to each 

particle. Thus, the mean harmonic viscosity 

expressed by Eq. (16) gives more appropriate value 

for the viscosity (Hosseini et al. 2019): 

(16) 𝜂𝑖𝑗 = 𝜂𝑗𝑖 ≅
2𝜂𝑖𝜂𝑗

𝜂𝑖 + 𝜂𝑗
 

where subscript 𝑖  refers to the main particle and 𝑗 
refers to the particle situated within the kernel 

(interpolation function) radius. For the particles 

belonging to the interface, the calculation of some 

parameters such as viscosity of mixture becomes 

difficult. The Owen equation allows to calculate the 

mixture viscosity considering the solid concentration 

described as below (Hosseini et al. 2019): 

(17) 
𝜈𝑚𝑖𝑥 =

𝜈𝑓𝑙𝑢𝑖𝑑

1 + 𝐶
𝜌𝑠
𝜌𝑓

 

(18) 𝐶 =
∑ 𝛿𝑠𝑓𝑊𝑖𝑗𝑗≠𝑖

∑ 𝛿𝑠𝑓𝑊𝑖𝑗𝑗≠𝑖 + ∑ (1 − 𝛿𝑠𝑓)𝑊𝑖𝑗𝑗≠𝑖

 

where 𝜌𝑠, 𝜌𝑓 and 𝐶 are the water density, sediment 

density and concentration of solid, respectively 

(Hosseini et al. 2019). Eq. (18) is used to determine 

the viscosity in two-phase mixture, where 𝛿𝑠𝑓  is 

replaced by zero for fluid and one for solid.  

5. PRESSURE CALCULATIONS  

The application of the WCSPH method is an 

approach to determine the pressure using the state 

equation defined as follows (Gingold and Monaghan, 

1977; Monaghan, 1994; Khanpour et al. 2016). 

(19) 𝑃𝑖 = 𝐵 ((
𝜌𝑖
𝜌𝑜
)
𝛾

− 1) + 𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

In Eq. (20), 𝛾 is constant and equal to 7, 𝜌𝑜  is the 

reference density, 𝜌𝑖 is the particle density, and 𝐵 =
𝑐𝑜
2𝜌𝑜/𝛾. 

For improving the calculation of pressure along the 

solid phases, Colagrossi and Landrini (2003) 

proposed to add 𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  term to the state 

equation. By introducing 𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  term, the 

pressure of the water column above the solid particle 

will be added to the pressure calculated from the state 

equation. In this paper, the 𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  term is 

considered.  

6. EFFECTIVE PRESSURE 

Based on the Terzaghi's theory, when a saturated soil 

is subjected to the normal and shear stresses (Fig. 2), 

the stresses corresponding to each phase are as 

follows: 

Water does not support any shear stress, but it 

supports part of the normal stress called pore 

pressure. Effective pressure, total pressure 

subtracted by pore pressure, refers to part of the 

normal stress supported by the solid structure of the 

soil. Based on the Mohr-Coulomb relation, the 

effective pressure is converted to the shear stress 
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available in the soil, which resists to the shear stress. 

It should be noted that the sediments start moving if 

the total shear stress is more than the threshold stress. 

As shown in Fig. 2, the pressure supported by the 

solid structure is calculated by subtracting the pore 

pressure from the total pressure. During the 

calculating process, the pore pressure is subtracted 

from the total pressure to obtain the effective 

pressure for solid particles, which can be introduced 

into the rheological equation (Eq. (15). In this paper, 

two methods are employed to determine the pore and 

effective pressures: the method developed by 

Fourtakas and Rogers (2016) and the method 

developed in this research. Fourtakas and Rogers 

(2016) proposed the following equation for the 

effective and pore pressures:  

(20) 𝑃𝑒𝑓𝑓 = 𝑃𝑡 − 𝑃𝑝𝑤 

where: 

(21) 𝑃𝑝𝑤 = 
𝑐𝑜
2𝜌𝑜𝑤
𝛾

((
𝜌𝑖𝑡
𝜌𝑜𝑡
)
𝛾

− 1) 

and 𝑃𝑒𝑓𝑓  is the effective pressure, 𝑃𝑡  is the total 

pressure from the state equation (Eq. (20)) for the 

solid phase and 𝑃𝑝𝑤 is the pore pressure. 𝜌𝑖𝑡 and 𝜌𝑜𝑡 

are the density of solid particle and reference density 

of the saturated soil, respectively. Other parameters 

were previously described.  

The method developed in this research is founded on 

the concept of stresses induced on a saturated soil 

body. Based on the schematic view of the column of 

water and sediment shown in Fig. 3, the pressure 

imposed on the sediment particles situated at the 

distance ℎ2 under the water-sediment interface and 

water depth ℎ1is defined by Eq. (22): 

(22) 𝑃𝑡 = 𝑃𝑤 + 𝑃𝑠𝑎𝑡 = 𝛾𝑤ℎ1 + 𝛾𝑠𝑎𝑡ℎ2 

where 𝛾𝑠𝑎𝑡  and 𝛾𝑤  are the specific gravity of 

sediment and water, respectively.  𝑃𝑤  is the water 

pressure on the interface. The effective density of 

sediments is calculated by Eq. (23). 

(23) 𝛾𝑒𝑓𝑓 = 𝛾𝑠𝑎𝑡 − 𝛾𝑤 

Combining Eq. (22) and Eq. (23) leads to Eq. (24):  

(24) 

𝑃𝑡 = 𝑃𝑤 + 𝑃𝑠𝑎𝑡
= 𝛾𝑤ℎ1 + (𝛾𝑒𝑓𝑓 + 𝛾𝑤)ℎ2
= 𝛾𝑤(ℎ1 + ℎ2)⏟        

𝑃𝑝𝑤

+ 𝛾𝑒𝑓𝑓ℎ2⏟  
𝑃𝑒𝑓𝑓

 

where the effective pressure is obtained from Eq. 

(25). 

(25) 𝑃𝑒𝑓𝑓 = 𝑃𝑡 − 𝑃𝑝𝑤 

In the above equation, 𝑃𝑡  and 𝑃𝑝𝑤  are the pressure 

obtained from the numerical analysis and the pore 

water pressure, respectively. The shear stress is 

supported only by the solid portion of water-

sediment mixture, which is related to the effective 

pressure exerted on the particle. Thus, the effective 

pressure can be introduced into the rheological 

models.  

 
Fig. 3. A schematic view of water-sediment 

system. 

7. RESULTS AND DISCUSSION  

In this paper, the granular dam break experimental 

data has been utilized to investigate the application 

of the rheological model. The dam break problem on 

a movable bed is simulated to simulate where the 

performance of the modified model with a proposed 

effective pressure is shown and compared with other 

data. 

7.1   Modeling the Movement of Grains 

In this paper, the verification test for the numerical 

method based on the viscoplastic model is done 

using the experimental data published by Lajeunesse 

et al. (2005), where the granular dam break 

phenomenon is studied in laboratory for the glass 

balls with 𝐷 = 1.15𝑚𝑚 , 𝜌𝑜 = 2500 𝑘𝑔/𝑚
3  and 

𝜃 = 22𝑜. The granular dam break is investigated by 

considering the following parameters: 𝑎 = ℎ𝑜/𝑙𝑜 

and 𝑡∗ = √ℎ𝑜/𝑔, where the parameters are related to 

the initial height (ℎ𝑜) and initial length (𝑙𝑜) of the 

particle mass in the reservoir. The initial height to 

initial length ratio (𝑎) is an effective parameter in the 

motion of particles. For the same 𝑎 but different ℎ𝑜 

and 𝑙𝑜, the results for the motion pattern of particles 

are identical. For the verification test, the 

experimental data for 𝑎 = 0.6 and 𝑙𝑜 = 0.053 𝑚 are 

compared with the numerical results. In the 

numerical model, the distance between the particles 

in x and z directions is defined as 2mm, which 

resulted to 3816 particles. The time taken for the 

simulation was 4412 seconds in a computer with 

Windows 10/CPU Intel core i7 6800K/RAM 16GB. 

A schematic view of the rectangular reservoir is 

presented in Fig. 4. The materials are lean on a gate 

in the right side of the figure. The granular dam break 

is ensured by instantaneously moving the gate 

upward. The values corresponding to µ(I) model are: 

𝐼𝑜 = 0.279 , 𝜇𝑠 = 𝑡𝑎𝑛 20.90°  and 𝜇2 = 𝑡𝑎𝑛 32.76° 
(Lajeunesse et al. 2005; Xu and Jin, 2016). 

According to Kheirkhahan and Hosseini (2018), the 

velocity of gate opening is considered 0.8 m/s. In 

Fig. 5, the free surface of the wave in both 

experimental and numerical models produced from 

the granular dam break is compared for different 

times. The numerical results are consistent with the 

experimental data. 

In Fig. 6, the position, velocity and pressure of 

particles are presented for different times. As shown 

in the figure, the motion of particles is started from 

the lowest point in the vicinity of the gate.  
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Fig. 4. A sketch view of reservoir and initial positions of granular particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison the free surface of granular body in both experimental and numerical model. 

 

 

Afterwards, the motion is developed by sliding the 

upper particles on the lower particles. In each time, 

the upper particles have the maximum velocity, and 

some particles situated between the bed and the left 

vertical wall remain motionless. The particles 

support the maximum pressure. It is concluded that 

the numerical model can simulate the motion of 

particles. As shown in Fig. 5, the particles subjected 

to the maximum pressure have the maximum shear 

strength. The particles are enclosed between the bed, 

the left wall and the upper mass. This behavior is 

relevant to the motion of the granular mass. The 

movement of granular body is started from the lower 

part of mass where the particles have the maximum 

velocities. As seen in the figure there is a gap 

between the leading edge particle and the boundary. 

The reason might be due to lack of particles in the 

kernel support and the repulsive force exerted by the 

boundary particles. 

Figure 7 shows the values of the apparent viscosity. 

As seen in the figure, the viscosity values vary in soil 

mass due to non-Newtonian behavior of particles, 

and the particles move in the places where these 

values are lower. In the latest time, the viscosity of 

the entire mass reaches a value that resists the forces 

penetrating the particle, and the particles stop 

moving. 

7.2   Water- Sediment Two-Phase Modeling 

of Dam Break on a Loose Boundary Grains 

By ensuring the performance of the numerical model 

in modeling the movement of granular materials, its 

performance for the two-phase model is investigated. 

Here, we use the experimental data of Spinewine 

(2005) for the validation. The rheological parameters 

of sediments are: 𝜌𝑠 = 2683 𝑘𝑔/𝑚
3 , 𝐷 =

1.82 𝑚𝑚 , 𝐼𝑜 = 0.279 , 𝜇𝑠 = 𝑡𝑎𝑛 30.5°  and 𝜇2 =
𝑡𝑎𝑛 51.3° (Spinewine, 2005; Xu and Jin, 2016) and 

the fluid phase consists of water with specific density 

1000𝑘𝑔/𝑚3  and the kinematic viscosity equals to  
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Fig. 6. Position of particles and pressure (Right) and velocity magnitude (Left) for different times. 

 

 

 

 

 

 

 

 

 

Fig. 7. Apparent viscosity changes for different times. 

 

 
Fig. 8. A sketch view of Spinwine's setup. 

 

 

10−6𝑚2/𝑠 . The saturated sediments are distributed 

in the bottom of flume with 6m length and 0.1m 

height. The length and depth of water in reservoir are 

0.35m and 3m, respectively. The schematic view of 

experimental setup is shown in Fig. 8. For the 

numerical simulation, the effective pressure is 

determined by two approaches; the method proposed 

by Fourtakas and Rogers (2016) and the method 

developed in this research, described in section 6. 

The distance between the particles is 0.01 m in the  

t=0.15s t=0.25s 
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t=0.25s t=0.5s 

t=0.75s t=1s 

           
Fig. 9. Influence of pressure modification on the solid phase for SPH formulations without back 

pressure (left) and modified method in this research (right). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Comparison the position of particles between the experimental, developed model in this 

research and the model proposed by Fourtakas and Rogers (2016) (up to down, respectively). 
 

 

numerical model, which leads to 33708 particles. In 

order to simulate 1.1 seconds of the phenomenon in 

the physical model, the numerical simulation times 

were 3130 and 2868 seconds for the method 

developed in this research and the Fourtakas and 

Rogers (2016) method, respectively. 

Figure 9 shows the model modified in this research 

(right) and the SPH formulations without back 

pressure (left) for determining the pressure in solid 

phase for the first time step in the upstream reservoir. 

As presented in the figure, in the unmodified model 

(up), there is a discontinuity in the boundary of two 

phases, and hence, this problem is compensated by 

the method developed for computing the pressure. 

By adding the supplementary pressure term, the 

pressure is modified in the body of two phases, 

which corresponds to the reality. 

In Fig. 10, the water surface and bed deformation in 

the experimental and two numerical models prepared 

by two modification approaches for the pressure of 

solid phase are compared at different times. As 

presented in the figure, the wave formed in the start 

of motion leads to a gross erosion on the loose 

boundary. This influence is observed in the 

experimental and numerical models. The eroded 

materials are transported by water and deposited  
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t=0.25s 

t=0.5s 

t=0.75s 

t=1s 

Table 1 Error values in different models. 

1s 0.75s 0.5s 0.25s time 

0.0788 0.089 0.0504 0.0338 Current model (33708 particles) 

Rx for water 

free surface 

0.0787 0.0885 0.0504 0.0337 Current model (133303 particles) 

0.1273 0.101 0.0982 0.0829 Developed model (Fourtakas and Rogers, 2016) 

- 0.094 0.0831 0.078 Ran et al. (2015) 

0.1091 0.0649 0.0772 0.0342 Current model (33708 particles) 

for sediment  xR

surface 

0.109 0.0649 0.0771 0.0342 Current model (133303 particles) 

0.1603 0.1115 0.1346 0.1278 
Developed model using 

(Fourtakas and Rogers, 2016) 

- 0.1412 0.1014 0.045 Ran et al. (2015) 

 

 

downstream, as they compensate the height and 

velocity of negative wave formed by dam break. In 

this figure, the position of particles, dam break wave 

and its influences on the loose boundary are 

presented at different times. We conclude that both 

methods for modification of the pressure provide 

acceptable results, but the method developed in this 

research is more accurate than the method proposed 

by Fourtakas and Rogers (2016). 

Figure 11 shows the velocity values along the flow 

where, initially, the sediment transport is as high as 

the velocity. As time passes and the water velocity is 

decreased, the erosion is decreased and the water 

movement does not cause significant changes in the 

sediment surface. 

The superiority of the developed method for 

modifying the pressure in this research is shown in 

Fig. 12. This figure presents a comparison between 

the water surface and sediment surface in the 

experimental model and three numerical models. The 

method developed in the present study gives better 

results in comparison with the Fourtakas and Rogers 

(2016) method and Ran et al. (2015) model. 

Moreover, it is shown that the present relation for the 

effective pressure show better performance than the 

effective pressure suggested by Fourtakas and 

Rogers (2016). This may be due to the larger and 

unphysical effective pressure in the latter which 

causes a larger shear stresses and larger bed erosion. 

An error analysis is used for investigating the 

performance of models. Rx error scale is determined 

by Eq. (35): (Shakibaeinia and Jin, 2011): 

(35) 𝑅𝑥 =
∑ (∆𝐻)𝑖

2𝑁
𝑖=1

∑ (𝐻)𝑖
2𝑁

𝑖=1

 

In this relation, ∆𝐻  is the difference between the 

experimental free surface and the free surface of 

models and 𝐻 is the height of particle mass in the 

experimental model. The error values are shown in 

Table 1 for different time steps. As shown in the 

table, the error values for the present model are 

insignificant compared to those suggested in the 

Fourtakas and Rogers (2016) model. For the 

convergence test, the particle spacing of 0.005m with 

133303 particles is applied and the results are shown 

in Table 1.  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11. Velocity magnitude u(m/s) for different 

times. 

 

7.3   Submerged Column Collapse 

Here, the two-phase model of sediment transport is 

modeled in water where the numerical results  are 

compared with the experimental data of Rondon et 

al. (2011). The schematic of the problem is shown in 

Fig. 13 where the sediment phase starts after the 

sudden removal of the gate. Here, ℎ𝑜 = 4.8 𝑐𝑚, 𝑙𝑜 =
6 𝑐𝑚 , ℎ𝑓 = 10 𝑐𝑚  and 𝑙𝑓 = 24 𝑐𝑚  where the dry 

density, bulk density and internal friction angle are 

2500 kg/m3, 1825 kg/m3 and 24.6°, respectively. The 

values in the rheological model are 𝐼𝑜 = 0.279, 𝜇𝑠 =
𝑡𝑎𝑛 24.6° and 𝜇2 = 𝑡𝑎𝑛 37.1° (Rondon et al. 2011; 

Xu and Jin, 2016). 

Also, a mixture of water and Ucon oil 75H90000 

from Dow was used in the experimental model with 

density of 1000 kg/m3 and viscosity of 0.012 Pa.s 

which was also used in the numerical model (Rondon 

et al. 2011). 

The initial particle spacing is 0.001m, which leads to 

the total particle of 48283. 
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Fig. 12. Comparison water surface and sediment surface in experimental and numerical models for 

different times. 
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Fig. 13. A sketch view of reservoir and initial positions of particles. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14. Particle positions (left) and velocity magnitude u (m/s) (right) for different times. 
 

Figure 14 shows the particle position and the 

velocity values along the fluid flow (u) at different 

times. As seen, initially, the particles begin to move 

and interacts with the soluble particles due to the 

weight of the particles and as a result of the 

pressure. Then, as time passes, the motion of 

particles is decreased and eventually, the sediment 

particles stop moving. 

Figure 15 shows the surface of the sediments in the 

present study and the experimental model together 

with the numerical models of Savage et al. (2014) 

and Wang et al. (2017) at different times. As seen, 

the present study gives better results for the free 

surface model in comparison with the other 

numerical results. 

8. CONCLUSION 

This study aims to model the motion of non-cohesive 

particles in the absence and presence of water by 

SPH method. A non-Newtonian viscoplastic 

rheological model is implemented in SPHysics code. 

Some modifications are made to model the 

movement of the granular embankment via its own 

weight. The results showed that a good agreement is 

obtained by comparing the results with the 

experimental benchmark. Using the Owen equation 

and mean harmonic viscosity, the dam break 

movement phenomenon can be modeled in the same 

manner as the reality. The movement of granular 

materials in the presence of water is investigated by 

a two-phase model implemented in SPHysics2D  

t=40s 

t=50s 

t=100s 

t=80s 
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Fig. 15. Comparison sediment surface in experimental and numerical models for different times. 

 

 

code. One of the interesting subjects in the behavior 

of saturated granular material is supporting the 

stresses imposed on a saturated body consisted of 

different phases. The modification of effective 

pressure on the granular material is made by two 

approaches. One approach was proposed by 

Fourtakas and Rogers (2016). The other approach 

was developed in this research which is consistent 

with the soil mechanics rules. The dam break 

phenomenon on an erodible bed is investigated by 

two approaches for determining the effective 

pressure in solid phase and compared with the 

experimental results reported by Spinwine (2005). 

In all times, the developed approach gives more 

adequate results for the experiments. Finally, the 

experimental model of submerged sediment mass 

collapse was modeled in the aquatic environment 

and the results of present study was compared to 

those of the experimental model and numerical 

studies of other researchers. The results showed 

that the developed model can be reliably used for 

simulating the sediment-containing models and 

analyzing the soil and hydraulic engineering. 
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