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ABSTRACT 

The design of contraction pipes for efficient fluid transport and spraying 
applications requires a deep understanding of fluid dynamics and resistance 
characteristics. This study utilizes the infinitesimal element method to analyze the 
fluid motion within the cross-section of a circular contraction pipe and confirms 
that the wall shear stress is a function of the total pressure gradient and pipe 
diameter, in accordance with Stokes’ formula. Numerical simulations are 
employed to investigate the velocity distribution and transverse pressure loss 
pattern across the cross-section of the pipe. By making reasonable assumptions 
and conducting data fitting, we present a semi-empirical model that predicts 
pressure loss and local loss coefficients in small contraction pipes. This model is 
shown to be simpler, more accurate, and broadly applicable, compared with 
existing models. This study provides practical guidance for the design of 
contraction pipes and enhancement of the accuracy of pressure loss calculations, 
which are crucial for optimizing fluid transport systems. 
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1. INTRODUCTION 

 As a primary method of fluid transmission, pipeline-
conveying systems have garnered increasing interest in 
terms of performance optimization and energy 
conservation. The local loss coefficient is a crucial 
parameter representing the energy loss resulting from 
structural variations within the pipeline system, such as 
elbows, valves, and changes in the pipe diameter, while 
the fluid is in motion. The precise assessment of the local 
loss coefficient is important for optimizing pipeline 
design, enhancing fluid transfer efficiency, and curbing 
energy consumption (Liu et al., 2023; Wu et al., 2024). 

The general expression for local loss, resembling 
Darcy’s formula, can be represented as hm=

v2

2g
, where  

is a dimensionless quantity that represents the local loss 
coefficient and v typically denotes the average velocity of 
the inlet pipe (Daugherty et al., 1985). Local losses 
frequently occur in the structural components of pipelines, 
with the internal flow fields in these components being 
highly intricate, rendering the analysis of local losses 
challenging. In most cases, the local loss is determined 
experimentally. Nevertheless, theoretical analysis may be 
feasible for certain variable diameter pipelines under 
suitable assumptions. 

Bae and Kim (2014a, b) conducted a numerical study 
on the turbulent flow in an axisymmetric sudden 
expansion with chamfered edges. They extensively 

explored the correlation between the local loss coefficient, 
Reynolds number, and main geometric parameters. They 
introduced a novel relationship for the local loss 
coefficient during a sudden expansion with chamfered 
edges. In Japan, Iguchi and Ohmi (1986) experimentally 
determined the local loss coefficient for sudden expansion 
and contraction pipelines and proposed an empirical 
relationship equation. Numerous scholars (Scott et al., 
1986; Pak et al., 1990; Badekas & Knight, 1992; Shames, 
1992; Oliveira et al., 1998; Yan & Gu, 2013) have 
conducted substantial research on the local loss 
coefficients of sudden expansion and contraction 
pipelines via experimental or simulation methods. Hence, 
they developed a wide array of effective models and 
empirical formulas (Eq. (1)) that are widely accepted and 
utilized in the field. In addition, Shames (1992) proposed 
another expression (ξ

s
=(

dc
2

d1
2 -1)

2

) of a sudden contraction 
pipe based on experimental results, where dc represents 
the diameter of the vena contraction.  

2
2

1

2

2

1e

d

d


 
= − 
 

 (for sudden expansion) 

or 

2

1

2

2

0.42 1s

d

d


 
= − 

 
 (for sudden contractions) (1) 

Bullen et al. (1988) presented experimental data for  

http://www.jafmonline.net/
https://doi.org/10.47176/jafm.18.6.3249
wxs@ustc.edu.cn


H. Sun et al. / JAFM, Vol. 18, No. 6, pp. 1446-1458, 2025.  

 

1447 

NOMENCLATURE 

A1 area of the smaller pipe  u horizontal pulsation velocity 

A2 area of the larger pipe  ui velocity of the micro element 

C1, C1, C2, 

Gb,k,  
fluent parameters 

 
v vertical pulsation velocity 

d1 diameter of the smaller pipe  V average velocity in the pipe  

d2 diameter of the larger pipe 
 

P 
static pressure difference between the two ends 

of the micro element 

hm head loss 
 

Pt 
total pressure difference between the 

contraction pipe 

k1 
assumed coefficients between the 

dimensionless parameters u /𝑢̅ and y/r 

 
r 

radius difference between the two ends of the 

micro element 

k2 assumed coefficients between l and r 
 

S 
area difference between the two ends of the 

micro element 

l Prandtl mixing length 
 

x 
thickness of the micro element in the x 

direction 

Ps static pressure in the pipe  Greek symbols 

Ps0 inlet static pressure in the pipe   angle of contraction and expansion of the pipe 

Psi 
micro element cross section static 

pressure in the pipe 

 
 wall shear stress 

Pt total pressure in the pipe  v viscous shear stress 

Pt0 inlet total pressure in the pipe  t Reynolds stress 

R inlet radius of the contraction pipe   coefficient of air viscosity 

Re Reynolds number of the fluid in the pipe   air density 

S0 inlet area of the pipe   local loss coefficient 

Sx outlet area of the pipe 
 

max 
local loss coefficient (divided by the larger pipe 

dynamic pressure) 

u0 inlet velocity of the contraction pipe 
 

min 
local loss coefficient (divided by the smaller 

pipe dynamic pressure) 

u̅ average velocity    

 
the variation of the pressure loss coefficient with inlet 
sharpness and compared it with the approximate data, 
showing significant differences at higher sharpness values. 
Hooper (1981, 1988) proposed numerous empirical 
formulas for pipe dimensional changes, such as sudden 
contraction and expansion as well as gradual contraction 
and expansion. They obtained these formulas by dividing 
the asymptotic microdivision into individual 
microelementary sudden contraction pipes and then 
integrating the loss coefficient of the gradual contraction, 
as shown in Eq. (2). However, the local loss coefficient 
obtained using this method only correlates with the 
contraction angle, which is an imperfect representation. 
The local loss coefficient also depends on the geometric 
parameters (Gosteev et al., 2018) (which can be expressed 
as the ratio of the diameters on both sides of the reducer 
to the contraction angle).  

( )

( )

1.6sin
2

sin
2

   0 α 45

     45 α






  
  

 
= 

      

＜ ＜

＜ ＜180

 (2) 

A widely employed expression for the local loss 
coefficient of a contraction pipe is given by Eq. (3) 
(Rennels, 2022). The equation illustrates a positive 
correlation between the local loss coefficient of the 
contraction pipe and Darcy friction factor when the 
pipeline operates under standard conditions. It also 
elucidates the connection between the local loss 
coefficient and pipeline size. 

2

1

2

A
1

8sin A






  
 = −  
     (3) 

However, calculating the Darcy friction factor, 
particularly for turbulent flows, requires the use of 
empirical formulas (Yogaraja et al., 2021) or Moody’s 
charts (Daugherty et al., 1985; Brown, 2002), which can 
introduce significant errors. 

In terms of measurement techniques, instruments 
such as rotational viscometers and rheometers (Abou-
Kassem et al., 2023) are used for stress analysis, whereas 
pressure sensors (Xu et al., 2024) and pitot tubes are used  
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Fig. 1 Model of a circular gradual contraction pipe 
 

to measure the pipe pressure. However, a nonuniform 
velocity distribution within pipes can lead to an uneven 
pressure distribution, revealing the limitations of these 
methods. 

Ayas et al. (2021) introduced an approximate method 
based on the Metzner and Reed theory (1955) to estimate 
the loss coefficients of noncircular ducts with an error 
margin of less than 5%, compared with traditional 
methods. Sobieski (2024) employed numerical simulation 
approaches via the k–ω shear stress transport (SST) 
turbulence model to investigate pressure losses in pipes of 
various cross-sections, and they derived an empirical 
relationship between the loss coefficient and Reynolds 
number, demonstrating high accuracy and reliability. Yao 
et al. (2019) utilized the building block approach to 
calculate the pressure losses in contraction–expansion 
pipes, achieving a relative error within 15%. 

In summary, the numerical simulation method has a 
certain degree of reliability. Thus, this study focuses on 
gradual contraction pipes and aims to establish a local loss 
model by combining theoretical analyses with numerical 
simulations to address the need for a more efficient, 
convenient, and highly accurate local loss coefficient. 

2. THEORETICAL MODEL 

The simplified model of the circular axisymmetric 
contracting pipe flow shown in Fig. 1 makes several key 
assumptions to facilitate the analysis. These assumptions 
are crucial for simplifying the problem and deriving 
meaningful insights regarding fluid flow behavior. Each 
assumption is explained as follows. 

1) Incompressible Fluid: The assumption of an 
incompressible fluid implies that the fluid density remains 
constant throughout the flow field. This assumption 
simplifies the mathematical description of the flow by 
eliminating the need to consider changes in density with 
respect to time, which is expressed as dρ/dt=0.  

2) Constant Flow: This assumption implies that flow 
properties, such as pressure, velocity, and density, at any 
given point in the fluid do not change with time. That is, 
the flow is assumed to be in a steady state with no time-
dependent fluctuations in the flow field. This assumption 
simplifies the governing equations and allows for a time-
independent analysis of the flow behavior. 

3) Neglecting Gravity: By ignoring the effects of 
gravity, the model assumes that gravitational forces have 
a negligible impact on the flow behavior being studied.  

4) Smooth and No-slip Boundary Conditions: The 
assumption that the pipe wall is smooth implies that there 

are no rough elements that could affect the flow. 
Additionally, the assumption of a no-slip boundary 
condition implies that the fluid in direct contact with the 
pipe wall has the same velocity as the wall itself.  

These assumptions collectively facilitate the setup of 
a simplified model for analyzing circular axisymmetric 
contracting pipe flows and thus enable the derivation of 
theoretical solutions that provide insights into flow 
behavior under idealized conditions. 

Consider a small section of the contraction pipe, as 
shown in Fig. 1, as a microelement body. The force 
analysis was primarily affected by the positive fluid stress 
on the two end faces, positive and shear stresses on the 
control body wall surface, and average static pressure 
everywhere. If the average static pressure on the left side 
of the control body is Ps, the right side is (Ps-P), the wall 
surface is Ps, and the wall shear stress is , then the motion 
equation of the control body can be derived. 

( ) ( ) ( ) ( )
22P P P S cos P S sin Vs s s i

u
r r r u

x
     


− −  −  −   −   = 


  

(4) 
The wall contact area of this control body is S, as 

shown in Eq. (5). 

( )
1 1 2

S 2 2
2 sin 2 sin sin

r r- r r
r r r r


 

  


 =  −  −  =   (5) 

Then, Eq. (4) can be simplified to give: 

2P 2 V i

u
r r x u

x
   


 −  = 

  (6) 

The control body volume V can be expressed as 
(V=πr2x) and (r=x·tan). As the fluid was 
incompressible, the flow rates in each section were equal. 

2 2

0 R riu u =  

( )

2 2

0 0

22

R R

R tan
i

u u
u

r x 
= =

−
 (7) 

Therefore, we can obtain: 

( )

2 4

0

5

2 R tan

R tan

uu
u

x x






=

 −
 (8) 

The final simplification gives: 
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( )

2 4

0

5

2 R tanP 2

R tan R tan

sdP u

x dx x x

 

 


= − = +

 − −
 (9) 

According to Bernoulli’s equation: 

2 2

0 0

1 1
P P P

2 2
s si i tu u + = + + 

 (10) 
Here 𝑃𝑡  denotes the full pressure loss. Therefore, 

the expression of the average static pressure of the cross-
section 𝑃𝑠 can be obtained as follows: 

4
2

0 0 4

1 R
P P 1 P

2
si s tu

r


 
= + − −  

   (11) 

Differentiating by x yields: 

( )

2 4

0

5

P 2 R tan

R tan

s td dP u

dx dx x

 


= −

−
 (12) 

Combining Eq. (9) with Eq. (12), we obtain: 

2 2

R tan

tdP

dx x r

 


= − = −

−  (13) 

Alternatively： 

2

tdPr

dx
 = −

 (14) 

These results indicate that the fluid wall shear stress 
in the contraction pipe satisfies Stokes’ formula 
(Daugherty et al., 1985): 

2

Gr
 =

 (15) 

However, G in Eq. (15) is not constant and represents 
the total pressure gradient. 

P
G t tdP

x dx


= = −
  (16) 

This theoretical derivation and the following 
numerical simulation are validated against each other. 

3. NUMERICAL SIMULATION 

3.1 Modeling and Mesh Independence Analysis 

Fluent is a computational fluid dynamics (CFD) 
software package that is used worldwide and allows for 
the simulation of complex flows encompassing both 
incompressible and highly compressible regimes. Fluent 
offers various physical models to address diverse physical 
problems (Yan et al., 2012). In this study, Ansys Fluent 
2019R3 was employed to perform numerical simulations. 

The initial stage involves the construction of a three-
dimensional pipe model, as depicted in Fig. 2(a). The pipe 
model featured an inlet diameter of 0.63 m and length of 
3 m for the contraction section. Moreover, both before and 
after the contraction section, the model featured a 
rectification section measuring 1 m in length. This model  

 

(a) 

 

(b) 

Fig. 2 (a) Front view of the 3D model constructed in 

the simulation. (b) Mean pressure of the cross-section 

at x=1 m for the grid independence test 
 

is a simplified version of a turbofan fire cannon 
manufactured by a company. Parallelepiped mesh 
rendering was selected for a more accurate pipe flow 
simulation. 

To ensure that the numerical results were not artifacts 
of grid resolution, a mesh independence study was 
conducted for the contraction pipe flow case with a 3° 
contraction angle (denoted by ) and an inlet velocity of 
20 m/s. We assessed the impact of varying the grid size on 
the simulation results by focusing on the total pressure at 
the pipe outlet as a primary metric. 

The study involved a series of simulations with grid 
sizes ranging from 7 to 40 mm, with each having a 
different number of grid cells. The results indicated that 
when the grid size was finer than 11 mm (the number of 
cells exceeded one million), the outlet pressure showed 
negligible variation (Fig. 2(b)), suggesting that the flow 
field was well-resolved at this grid density. To ensure a 
conservative and accurate simulation, we selected a grid 
size of 10 mm for our numerical simulations to provide 
robust grid resolution while maintaining computational 
efficiency. This choice of grid size allows for a reliable 
representation of the flow dynamics within the contraction 
pipe, as evidenced by a mesh independence study. 

Furthermore, we calculated the required first 
boundary layer grid thickness for the case in which y+ was 
between 30 and 300. The calculation indicated that the 
first layer grid thickness (∆y =

y+

u*
 ) should be between 

0.63 and 6.3 mm. Consequently, we added five layers of 
boundary layer grids with an expansion ratio of 1.2 near 
the walls. The grid thickness of the first layer was 
calculated to be approximately 1.552 mm, which is 
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sufficient to satisfy the precision requirements. 

3.2 Simulation Settings 

In Fluent, the pressure-based solver was utilized, the 
k–ε realizable turbulence model (Shih et al., 1995; 
FLUENT User’s Guide, 2019; Liu et al., 2021) was 
chosen for the flow model, and the standard wall function 
was applied. The transport equations for turbulent kinetic 
energy and its dissipation rate in this model are provided 
below. 

M

D
G G Y

D

t
k b

j k j

k k

t x x


  



   
= + + + − −  
      

2

1 2 1 3 b

D
C S C C C C

D kk

t

j jt x x
 



   
    

 

   
= + + − +  
  +   

 (17) 

In the given context, C1= max [0.43, 


+5
] ,  =

Sk

ε
 , 

Gk  represents the turbulent energy generation term 
resulting from the mean velocity gradient, Gb  signifies 
the turbulent energy generation term derived from 
buoyancy, and YM denotes the impact of compressible 
turbulent pulsation expansion on the total dissipation rate. 
Constants 𝐶1  and 𝐶2  are defined, and 𝜎k  and 𝜎 
represent the turbulent Prandtl numbers for the turbulent 
kinetic energy and dissipation rate, respectively. In Fluent, 
the values are set as follows (Launder & Spalding, 1972; 
Wilcox, 1994): 𝐶1=1.44, 𝐶2=1.9, 𝜎k=1.0, and 𝜎=1.2. 

The boundary conditions were meticulously defined 
to ensure the accuracy and reliability of the simulation 
results. The inlet velocity was calculated based on a 
summary of the turbulent velocity distribution inside a 
pipe by Štigler (2014), and the expression was formulated 
as 20.0375 [m·s^-1]·(1-((sqrt(x·x+y*y))/0.315 
[m^1])^1066). The inlet had a hydraulic diameter of 630 
mm. The outlet was specified as a pressure outlet with a 
gauge pressure of 0 Pa and set against an ambient pressure 
of 101,325 Pa, representing standard atmospheric 
conditions. All walls were modeled as fixed, no-slip 
boundaries to accurately represent the fluid–structure 
interactions. 

In this study, the ambient pressure at the exit was 

chosen as the boundary condition to simplify the analysis 
of the flow within the contraction pipe. This approach is 
prevalent in the literature (Sobieski, 2024) and allows for 
a clear examination of the impact of contraction on flow. 
The constraints of other boundary conditions may 
introduce additional variables that complicate the 
interpretation of the influence of contraction on the flow. 
Although we acknowledge that this condition may not 
reflect all realistic scenarios, it provides a controlled 
environment for studying the primary effects of 
contraction. 

The SIMPLE method was employed owing to its 
effectiveness in solving the incompressible flow equations. 
A time step of 0.0001 s was selected to ensure numerical 
stability, per the CFL condition, which is crucial for the 
transient simulation of the flow within a contraction pipe. 
The total simulation time was set to 0.5 s, corresponding 
to 5000 time steps, based on a convergence study that 
indicated that this duration was sufficient for the flow to 
reach a statistically steady state. 

To ascertain the attainment of a steady state, we 
monitored the key flow variables and their residuals. The 
flow was considered to have reached a steady state when 
these variables exhibited minimal variation between 
consecutive time steps and the residuals converged toward 
zero. A grid independence study was conducted to ensure 
that the chosen grid size was appropriate for capturing 
flow features without excessive computational costs. 

4. ANALYSIS OF THE RESULTS 

4.1 Contraction Pipe (= 3°, 𝒖𝟎=20 m/s) 

Based on the transient simulation results for an inlet 
velocity of 20 m/s and a contraction angle of 3° (Fig. 3), 
several observations can be made. The velocity magnitude 
contours display a symmetrical and periodic flow pattern 
within the contraction section, indicating stable and 
repeatable flow behavior. The static pressure contours 
display a gradual pressure decrease along the contraction 
section, which is indicative of turbulent pressure loss and 
wall shear stress under the no-slip condition at the wall. 
Our study specifically addresses these losses, which are  

 

Fig. 3 Velocity and static pressure contours of the contraction pipe with an inlet velocity of 20 m/s and a 

contraction angle of 3° 
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Fig. 4 Scatterplot of contraction pipe 2/r (-dP/dx) 

with respect to x 
 

critical to understanding the performance of contraction 
pipes under turbulent flow conditions. 

Other potential pressure losses, such as those owing 
to vortex shedding, compressibility effects, and secondary 
flow effects, could occur under different flow conditions 
but were not included in our model. These phenomena are 
beyond the scope of this study and are centered on the 
internal flow behavior within the contraction section. 

In conclusion, the results indicate that the designed 
contraction section functioned effectively under the 
specified conditions, displaying a stable flow pattern with 
pressure losses predominantly caused by turbulence and 
wall shear stress. Although other factors could have 
contributed to the pressure losses in more complex 
scenarios, they were not considered in this study. 

The cross-sectional profiles were generated at various 
points along the contraction pipe. The total pressure in 
each section was recorded and differentiated, and the wall 
shear stress was measured. A plot comparing (-dP/dx) 
against (2/r) was constructed. As illustrated in Fig. 4, 
strong agreement between (-dP/dx) and (2/r) was 
observed, indicating the suitability of Stokes’ formula. 

Figure 5(a) illustrates the velocity distribution across 
the contraction pipe section at an angle of 3 °with an initial 
velocity of 20 m/s, which is consistent with Kao et al. 
(2017)’s results. The near-wall velocity was made 
dimensionless using Nikolas (1933)’s method for a fully 
turbulent smooth pipe flow. The y-axis represents the 
cross-sectional velocity u divided by the average cross-
sectional velocity 𝑢̅ (y=u /𝑢̅), and the x-axis denotes the 
distance from the wall y divided by the section radius r 
(x=y/r). The dimensionless velocity plots for each section 
exhibited significant consistency, allowing for delineation 
into three zones (Fig. 5(b)).  

In zone I, the velocity gradient (viscous sublayer) 
adheres to Eq. (18), where k1 is the hypothesis coefficient: 

1

u y
k

ru
=   (18) 

Zone II is a transition zone in which velocity  

 

(a) Cross-sectional velocity distribution at different 

locations of the contraction pipe 

 
(b) Dimensionless velocity distribution of the cross-
section at different locations of the contraction pipe 

 
Fig. 5 Velocity distribution of the cross-section at 

different locations of a contraction pipe with an inlet 
velocity of 20 m/s and a contraction angle of 3° 
 

increases as a certain function. 

Zone III is a core zone in which velocity either 
stabilizes or exhibits slow growth. 

The shear stress in the x-direction consists of the 
viscous shear stress determined by the velocity gradient of 
the time-averaged velocity u in the y-direction and the 
turbulent pulsation shear stress (i.e., Reynolds stress) 
determined by the pulsation velocity. 

( )v t

du
u v

dy
      = + = + −

 (19) 

In theory, near the wall, the velocity gradient is higher, 
and turbulent fluctuations are less pronounced, indicating 
that viscous shear stress should prevail, whereas Reynolds 
stress plays a secondary role. However, for an inlet 
velocity of 20 m/s and a contraction angle of 3 °, Fig. 5 (b) 
shows that the velocity gradient near the wall can be 
described by Eq. (20), where k1 is a dimensionless 
coefficient. 
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Fig. 6 Comparison of the magnitudes of the shear 

stress and viscous shear stress on the wall of the 

contraction pipe with an inlet velocity of 20 m/s and a 

contraction angle of 3° 
 

2

1 01

3

Rk uk uu

y r r


= =


 (20) 

 
Therefore, the viscous shear stress was obtained as: 

2

1 0

3

R
v

k u

r


 =

 (21) 

A linear fit of the dimensionless velocity near the wall 
in Fig. 5 (b) yields the following expression:  

29.66262
u y

ru
=   (22) 

Figure 6 shows a histogram displaying the wall shear 
stress and viscous shear stress near the wall of the 
contraction pipe. The total wall shear stress at the 
contraction pipe wall significantly surpasses the viscous 
shear stress component, which contributes less than 4% of 
the total, indicating that the wall turbulent pulsation shear 
stress dominates in the contraction pipe. 

The k–ε realizable turbulence model provides a 
detailed and precise simulation of the flow field, which 
serves as a benchmark for the accuracy of our analytical 
predictions. Concurrently, we applied Prandtl’s mixing 
length theory to estimate the Reynolds stress. The purpose 
of discussing both methods is to provide a comprehensive 
view of the problem in which the CFD simulations set a 
standard for accuracy and the analytical model offers a 
practical and simplified alternative for use in quick 
assessments. 

The Prandtl mixing length theory relates the pulsation 
velocity either in the direction of the flow or vertically to 
the gradient of the time-averaged velocity via the 
introduction of a distance l at each point. The pulsation at  

a point can be expressed as (u~l
𝜕𝑢

𝜕𝑦
 ). According to the 

continuity equation for incompressible fluids, the vertical  

pulsation velocity v caused by the horizontal velocity u 

possesses an equal magnitude but opposite sign to u,  

which can be represented as (v~ - l
𝜕𝑢

𝜕𝑦
 ). Therefore, the 

Reynolds stress can be formulated as follows (Daugherty 

et al., 1985): 

2

2

t

u
u v l

y
  

 
 = − =  

   (23) 

Prandtl assumed l=k·y based on experimental 
observations and a magnitude analysis. However, in this 
case, Prandtl's assumption regarding the mixing length l 
does not apply because the Reynolds stress at the wall 
remains dominant. Reflecting on the simulation data, it is 
valuable to initially assume that l=k2·r, which enables the 
calculation of the Reynolds stress (Eq. (24)) via 
combination with Eq. (22). 

2 2 2 4

1 2 0

4

R
t

k k u

r


 =

 (24) 

Neglecting the viscous shear stress, the wall shear 
stress was approximately equal to the Reynolds stress, 
which thereby allowed the wall shear stress to be 
expressed as  

1

r4
. Using an inlet velocity of 20 m/s and 

a contraction angle of 3° for the contraction pipe as an 
example, the wall shear stress was plotted as a function of 
r, as shown in Fig. 7. 

Figure 7(a) displays the alignment of the wall shear 
stress with y=A×x-4 (coefficient of determination: 
R2=0.99813) and the reliability of the assumed mixing 
length l=k2·r. 

To further analyze the pressure loss coefficient of the 
contraction pipe, the average total pressure of the cross-
section of the contraction pipe was studied, leading to the 
derivation of Eq. (25) via the combination of Eqs. (13) and 
(24): 

( ) ( )

2 2 2 4 2 2 2 4 2 2 2 4 5

1 2 0 1 2 0 1 2 0

5 55

P 2 R 2 R 2 R tan2

R tan R / tan

td k k u k k u k k u

dx r r x x

   

 

−

= − = − = − = −
− −

 

 (25) 

The average total pressure of each section along the 
axis of the contraction pipe was initially determined and 
differentiated in the x-direction to obtain 

dPt

dx
. Figure 7(b) 

illustrates the total pressure gradient and corresponding 
fitted curve. The graph demonstrates that the total pressure 
loss gradient satisfies the criterion 

dPt

dx


1

r5
 , and the 

coefficient of determination (R2=0.99892) indicates 
excellent agreement, further confirming the reliability of 
the assumption of l=k2·r. 

The total pressure expression was obtained by 
integrating Eq. (25): 

( )

2 2 2 4 5 2 2 2 4

1 2 0 0 1 2

5 4

P 2 R tan R
P C

2 tan (R tan )R / tan

t
t

d k k u u k k

dx xx

  

 

−

= = − = −
−−

 
 

 (26) 

Therefore, the total pressure loss (Eq. (27)) can be 
expressed as the total pressure difference between the inlet  
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(a) 

 

(b) 

Fig. 7 (a) Variation of shear stress at the wall with 

radius r of the contraction pipe with an inlet velocity 

of 20 m/s and a contraction angle of 3°. (b) Gradient 

of total pressure loss along the x-direction of the 

contraction pipe with an inlet velocity of 20 m/s and a 

contraction angle of 3°  
 

and outlet of a contraction pipe: 

( )

( )2 2 2 4 42 2 2 4
0 1 20 1 2

0 4 40

RR
P P P 1

2 tan 2 tanR tan

x

t t tx

u k k ru k k

rx



 

  −
  = − = − =
 − 

 (27) 

Based on the general expression of local loss 
following the Cauchy formula (Brown, 2002) 
(P=·

1

2
u2), the contraction pipe pressure loss coefficient 

can be expressed as given in Eq. (28). Here, max was 
obtained by dividing the dynamic pressure of the large 
pipe, whereas min was obtained by dividing the dynamic 
pressure of the small pipe. 

22 2 2 24

01 2 1 2
max 4 22
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P SR
1 1

1 tan tan S
2

t
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k k k k

ru


 

  
= = − = −  

   
  

22 2 2 24

1 2 1 2
min 4 22

0

P S
1 1

1 tan R tan S
2

t x

x

k k k kr

u


 

  
= = − = −  

   
  (28) 

Equation (28) is similar to Eq. (3) in that it 
demonstrates the specific relationship between the local 
loss coefficient of the contraction pipe and pipe structure. 
Next, it is necessary to discuss the specific influential 
parameters k1 and k2. 

4.2 Relationships Between k1, k2, and Inlet Velocity (Re) 

The method of controlling variables was employed to 
analyze the effect of the inlet Reynolds number on k1 and 
k2. Specifically, the process involved maintaining a 
constant pipe contraction structure (with a fixed 
contraction angle of 3° and constant length of 3 m) and 
adjusting the Reynolds number by varying the inlet 
velocity. Table 1 lists 10 different operating conditions 
with varying Reynolds numbers. 

Based on previous research, two critical aspects must 
be analyzed: obtaining the linear distribution of the 
velocity near the wall and the gradient of the axial total 
pressure variation under each condition. These factors 
enable the determination of specific k1 and k2 values at 
different inlet velocities. 

Figure 8 illustrates the specific value of k1 in the linear 
distribution expression of the viscous sublayer velocity 
for different initial inlet velocities obtained via linear 
fitting (only four sets of typical values are presented). 
However, the specific value of k2 was indirectly obtained 
based on the fitted relational equation for the axial full 
pressure gradient. Figure 9 depicts the variations in k1 and 
k2 at different inlet velocities, indicating that k1 is 
independent of the initial velocity, whereas k2 decreases 
with larger initial velocities within the studied range. 
Because k2 is dimensionless and can be physically 
interpreted as the distance traveled by a fluid microcluster 
before dissipation, it is closely linked to the Reynolds 
number. These results motivated the direct exploration of 
their relationships. Figure 9 demonstrates that k2 sharply 
decreases as Re decreases for Re < 100000, whereas k2 
slowly decreases as Re increases for Re > 100000. 

 

Table 1 Simulated working conditions with different inlet velocities at a contraction angle of 3° 

Group Inlet velocity（m/s） Re Volume flow rate (m³/s) 

1 0.1 4.322×103 0.031 

2 0.2 8.643×103 0.062 

3 0.5 2.161×104 0.156 

4 1 4.322×104 0.312 

5 2 8.644×104 0.623 

6 5 2.161×105 1.559 

7 10 4.322×105 3.117 

8 15 6.483×105 4.676 

9 20 8.644×105 6.234 

10 28.49 1.229×106 8.881 
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(a) u0=0.1 m/s 

 

(b) u0=20 m/s 

Fig. 8 Velocity distribution of each section at different 

inlet velocities for a contraction angle of 3°. Only two 

sets of typical values are presented 

 

 

Fig. 9 Variation of k1 and k2 at different initial 

velocities 
 

Next, a concise analysis of the total pressure loss at 
various Reynolds numbers and the proportion of pressure 
loss to the total inlet pressure is depicted in Fig. 10. The 
pressure loss increases with the inlet velocity and can be  

 
Fig. 10 Total pressure loss and proportion of pressure 

loss of the contraction pipe at different Reynolds 
numbers 

 

determined by fitting the equation Pt=1.326×10-9·Re1.843. 
The coefficient of determination was approximately 1, 
indicating an excellent fit. The fitted formula was 
compared to the derived theoretical formula, and k1 
remained unaffected by the Reynolds number, whereas k2 
exhibited a negative correlation with Re. These results 
further support the accuracy of the theoretically derived 
Eq. (27). 

The proportion of pressure loss was more significant 
at lower inlet velocities (u0 < 2.3 m/s, i.e., Re < 100000) 
and decreased sharply as the inlet velocity increased. For 
higher inlet velocities (u0 > 2.5 m/s), the proportion of 
pressure loss decreased slowly with an increasing inlet 
velocity and was below 4%. 

4.3 Relationships between k1, k2, and the contraction 
angle 

Similarly, employing the method of controlling 
variables by maintaining a constant inlet velocity (fixed at 
20 m/s) and constant contraction pipe length (fixed at 3 
m), the effect of varying the contraction angle on k1/k2 was 
studied. Table 2 lists the working conditions. 

Figure 11 shows the fitted values of k1 for various 
contraction angles. Four sets of typical values are 
presented. The calculation of k2 was based on Eq. (27). 

 

Table 2 Simulated working conditions with different 
contraction angles at an inlet velocity of u0=20 m/s 

Group  (°) tan(  

1 1 0.01746 

2 1.2 0.0209 

3 1.5 0.0262 
4 1.7 0.0297 

5 2 0.0349 

6 2.2 0.0384 

7 2.5 0.0437 

8 2.7 0.0472 

9 3 0.0524 

10 3.2 0.0559 

11 3.5 0.0612 

12 3.7 0.0647 
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(a) =1°. 

 

(b) =3.7°. 

Fig. 11 Velocity distribution of each section at 

different contraction angles with an inlet velocity u0 

of 20 m/s. Two sets of typical values are presented 

 

 

Fig. 12 Variation of k1/k2/(k1*k2) versus the 

contraction angle 

 

Figure 12 depicts the variations in k1, k2, and (k1*k2) 
with the contraction angle. Here, k1, k2, and the contraction  

 

Fig. 13 Relationship between the pressure loss, 

proportion of pressure loss, and tangent values of 

different contraction angles 

 

angle are not entirely independent, as there exist some 
connections between them, as shown in Fig. 12. 
Specifically, k1 and k2 exhibit opposite changes, 
suggesting a reasonable relationship between (k1 × k2) and 
the contraction angle. Conversely, Fig. 12 demonstrates 
that (k1*k2) remained stable across different contraction 
angles, with a maximum change of only 1.2%. Hence, 
either k1 or k2 is related to the contraction angle, whereas 
(k1*k2) remains constant. Hence, (k1*k2) is independent of 
the contraction angle. 

Figure 13 shows the pressure loss and proportion of 
the pressure loss in relation to the tangent value of the 
contraction angle. Equation (29) represents the fitting 
relationship for the pressure loss with a highly reliable 
coefficient of determination (R2=0.99999), indicating the 
credibility of the fitting relationship. Equation (30) was 
derived by substituting each known condition into the 
pressure loss in Eq. (27), which was obtained via theory. 
The comparison of these two equations shows that (k1*k2) 
is independent of the angle and thereby provides further 
validation of the analysis mentioned above. 

4

1.03555 0.315
P 0.36633* tan( ) 1

0.315 3tan( )
t 



−
  
  = −  −    (29) 

4 42 2 2 2 2

0 1 2 1 22450.315 0.315
P 1 1

2 tan( ) 0.315 3tan( ) tan( ) 0.315 3tan( )
t

u k k k k

   

      
    = − = −      − −        

 (30) 

5. DISCUSSION 

Section 4 discussed the relationships between k1, k2, 
the Reynolds number, and the contraction angle. In 
general, (k1*k2) is related to the Reynolds number but not 
to the contraction angle. Therefore, determining its 
relationship with the Reynolds number can simplify the 
pressure loss model for a smooth gradual contraction pipe. 
Figure 14(a) shows a scatter plot of (k1*k2)2 versus the 
Reynolds number. By fitting, the equation 
(k1*k2)2=0.0148·(Re)-0.157 was obtained with a goodness-
of-fit value of 0.87. Substituting this into Eq. (28) yields a 
general expression for the local loss coefficient of a  
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(a) 

 

(b) 

Fig. 14 (a) Relationship between (k1*k2)
2

 and Re. (b) 
Comparison between the results of a previous study 

and those of the proposed model at different Re 
values 

 

gradually contracting pipe (Eq. (31)). This coefficient is 
applicable in the range of 4000 < Re < 106. 

2 22 2

0 01 2
max 2 0.157 2

S S0.0148
1 1

tan S Re tan Sx x

k k


 

   
= − = −   

   
 

2 22 2

1 2
min 2 0.157 2

0 0

S S0.0148
1 1

tan S Re tan S

x xk k


 

   
= − = −   

   
  (31) 

Here, we state the limitations regarding the scope of 
applicability of this model. The application of this model 
in situations beyond this range are likely to result in 
significant errors. These limitations include the 
limitations relating to the Reynolds number, which 
primarily consider the substantial impact of roughness at 
lower Reynolds numbers, as well as those relating to the 
influence of fluid compressibility at higher Reynolds 
numbers. However, large contraction angles can lead to an 

increase in the Reynolds number, and fluid 
compressibility has an impact. These are directions that 
future research must consider. 

Figure 14(b) illustrates a comparative analysis 
between an existing model developed by other researchers 
and the novel model proposed in this study, specifically 
focusing on the prediction of the actual pressure loss 
within the simulation. Both models exhibited a high level 
of accuracy; however, the proposed model demonstrated 
a marginally higher degree of precision. Notably, as the 
Reynolds number increases, the absolute error associated 
with the previous model tends to increase, which 
underscores the broader applicability of our model. 

Furthermore, the application of the previous model 
necessitates a preliminary calculation of the Darcy friction 
factor, which is feasible through reference to the Moody 
chart in engineering practice and substantially amplifies 
the computational overhead. In contrast, the local loss 
coefficient model established in this study offers distinct 
advantages. These results enhance the precision of 
predicting local pressure losses in gradually tapered pipes, 
streamlines the computational procedure, and allows the 
determination of local loss factors based solely on the 
Reynolds number to thereby facilitate the more efficient 
calculation of pressure losses. This advancement is of 
significant value in the context of engineering practice 
because it offers a practical and efficient method for 
assessing local losses in pipe systems. 

6. CONCLUSIONS 

In this study, we developed a semi-empirical model 
for predicting the pressure loss in smooth contraction 
pipes. The proposed model is valid within the Reynolds 
number range of 4000–1,000,000. The model, which is 
based on a variant of Stokes’ formula, accurately predicts 
the total pressure loss, pressure gradient, and local loss 
coefficient with improved accuracy, compared with 
existing empirical formulas. The model not only 
facilitates the stress analysis of contraction pipes but also 
enables the rapid calculation of local pipe resistance when 
only the flow rate is known, thereby significantly reducing 
measurement and time costs. These results are important 
for the determination of local losses in engineering 
practice, particularly for fan pipes with gradually 
contracting structures. 

The potential to expand the applicability of this 
model to a broader range of conditions and geometries 
presents a promising avenue for future research. The 
integration of our model with CFD simulations allows for 
more complex flow scenarios and further enhances the 
precision of modeling complex fluid systems. 

In addition, exploring the applicability of the model 
to various pipe materials and geometries could broaden its 
use in optimizing fluid flow systems across different 
industries. This study provides a foundation for future 
advancements in fluid mechanics research and the 
development of more efficient fluid-based applications. 
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