Effects of Electrical Boundary Configurations on Magnetohydrodynamic Flow and Heat Transfer in a Liquid Metal-filled Annulus

Document Type : Regular Article

Authors

1 Mechanics and Energy Laboratory (LME), Faculty of Applied Science- University of Bouira, 10000, Algeria

2 Department of Process Engineering, Faculty of Technology-University 20 août 1955–Skikda, 21000, Algeria

3 Department of Computer sciences, Faculty of Technology -University 20 août 1955–Skikda, 21000, Algeria

10.47176/jafm.19.1.3715

Abstract

This numerical study investigates magnetohydrodynamic (MHD) flow and heat transfer for liquid metals within a cylindrical annulus subjected to a radial magnetic field. A parametric study compares the thermal behavior of these metals under identical conditions, with particular focus on the influence of the annular wall's electrical boundary conditions on heat transfer. The finite volume method is used to analyze three electrical boundary conditions: electrically insulated walls (EI), electrically conducting vertical walls (EC-V), and electrically conducting horizontal walls (EC-H). The findings show that magnetic field strength, annular gap, aspect ratio, and wall conductivity significantly affect temperature distribution, average Nusselt number, Lorentz force, and induced electric field. The Nusselt number increases when the aspect ratio is below unity but decreases when it is above unity, and it improves consistently with a larger annular gap. Stronger magnetic fields are required to sustain conduction-dominated regimes in thicker annuli. The magnetic field generates characteristic Hartmann and Roberts layers through Lorentz force interactions, with layer dissipation observed in conducting wall cases. Among the configurations, the EC-H case exhibits the highest heat transfer performance compared to EI boundaries, particularly for intermediate gap ratios (R ≈ 0.5–0.87). (EC-H) offers the best heat transfer overall, with up to 10% gains for R<0.87, while (EI) performs better for R>0.87, and (EC-V) remains the least efficient.

Keywords

Main Subjects


Abou-Sena, A., Arbeiter, F., & Böttcher, T. (2016). Study of the wettability of fusion relevant steels by the sodium potassium eutectic alloy NaK-78, Nuclear Materials and Energy, 9, 292–299. https://doi.org/10.1016/j.nme.2016.05.003.
Afrand, M. (2017). Using a magnetic field to reduce natural convection in a vertical cylindrical annulus. International Journal of Thermal Sciences, 118,12-23. https://doi.org/10.1016/j.ijthermalsci.2017.04.012
Ali, K., Ahmad, S., Ahmad, S., & Tayebi, T. (2023). Impact of magnetic field localization on the vortex generation in hybrid nanofluid flow. Journal of Thermal Analysis and Calorimetry, 148(13), 6283–6300. https://doi.org/10.1007/s10973-023-12104-5
Benhacine, H., Mahfoud, B., & Salmi, M. (2022a). Stability effect of an axial magnetic field on fluid flow bifurcation between coaxial cylinders. International Journal of Computational Materials Science and Engineering, 10(4), 2150023. https://doi.org/10.1142/S2047684121500238
Benhacine, H., Mahfoud, B., & Salmi, M. (2022b). Stability of an Electrically Conducting Fluid Flow between Coaxial Cylinders under Magnetic field. Journal of Applied Fluid Mechanics, 15(2), 1741-1753. https://doi.org/10.47176/JAFM.15.02.33050
Ben Salah, N., Soulaimani, A., & Habashi, W. G. (2001). A finite element method for magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 190(43), 5867–5892. https://doi.org/10.1016/S0045-7825(01)00256-3
Boccaccini, L. V. (2013). Progress in EU blanket technology, Fusion Science and Technology, 64(3), pp. 615–622. https://doi.org/10.13182/FST13-A19160.
Boyd, J. P. (2000). Chebyshev and Fourier Spectral Methods (2nd ed.). Dover Publications. ISBN: 0486411834.
Dash, S. C., & Singh, N. (2019). Effect of a strong axial magnetic field on swirling flow in a cylindrical cavity with a top rotating lid. International Journal of Modern Physics C, 30(11), 1950092. https://doi.org/10.1142/S012918311950092X
Jha, B. K., & Aina, B. (2018). Impact of viscous dissipation on fully developed natural convection flow in a vertical microchannel. Journal of Heat Transfer, 140(9), 094502.‏ https://doi.org/10.1115/1.4039641
Kakarantzas, S. C., Sarris, I. E., & Vlachos, N. S. (2014). Magnetohydrodynamic natural convection of
liquid metal between coaxial isothermal
cylinders due to internal heating. Numerical
Heat Transfer, Part A
, 65, 401–418. https://doi.org/10.1080/10407782.2013.831681
Kuehn, T. H., & Goldstein, R. J. (1976). An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. Journal of Fluid Mechanics, 74(4), 695–719. https://doi.org/10.1017/S0022112076002012
Kumar, A., & Singh, A. K. (2013). Effect of induced magnetic field on natural convection in vertical concentric annuli heated/cooled asymmetrically. Journal of Applied Fluid Mechanics, 6(1),15-26.https://doi.org/10.36884/jafm.6.01.19477
Leela, V., Prasannakumara, B. C., Shilpa, B., & Gangadhara Reddy, R. (2022). Computational analysis of ohmic and viscous dissipation effects on MHD mixed convection flow in a vertical channel with linearly varying wall temperatures. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. Feb 24, 2022. https://doi.org/10.1177/09544089221080669
Leonchuk, S. S., Falchevskaya, A. S., Nikolaev, V., Vinogradov, V. V. (2022). NaK alloy: underrated liquid metal, Journal of Materials Chemistry A, 10(43), 22955–22976. https://doi.org/10.1039/D2TA06882F.
Mahfoud, B. (2022), Simulation of magnetic field effect on heat transfer enhancement of swirling nanofluid," International Journal of Computational Materials Science and Engineering. 11(04), 2250007.https://doi.org/10.1142/S2047684122500075
Mahfoud, B. (2023). Enhancement heat transfer of swirling nanofluid using an electrical conducting lid. Journal of Thermophysics and Heat Transfer, 37(1), 263–271. https://doi.org/10.2514/1.T6550
Mozayyeni, H. R., & Rahimi, A. B. (2012). Mixed convection in cylindrical annulus with rotating outer cylinder and constant magnetic field with an effect in the radial direction. Scientia Iranica, 19(1), 91–105. https://doi.org/10.1016/j.scient.2011.12.006
Ni, M. J., Yang, J. C., & Zhang, D. J., (2025). Magnetohydrodynamics in liquid metal interfacial flows, Applied Mechanics Reviews, 1–105. https://doi.org/10.1115/1.4067935.
Prasad, V., & Kulacki, F. A. (1984). Natural convection in a vertical porous annulus. International Journal of Heat and Mass Transfer, 27(2), 207–219. https://doi.org/10.1016/0017-9310(84)90212-6
Roux, N., Johnson, C., & Noda, K. (1992). Properties and performance of tritium breeding ceramics, Journal of Nuclear Materials, 191, 15–22. https://doi.org/10.1016/S0022-3115(09)80005-6.
Sankar, M., Venkatachalappa, M., & Do, Y. (2011). Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure. International Journal of Heat and Fluid Flow, 32, 402–412. https://doi.org/10.1016/j.ijheatfluidflow.2010.12.001
Sankar, M., Venkatachalappa, M., & Shivakumara, I. S. (2006). Effect of magnetic field on natural convection in a vertical cylindrical annulus. International Journal of Engineering Science, 44, 1556-1570. https://doi.org/10.1016/j.ijengsci.2006.06.004
Selim, M. M., El-Safty, S., Tounsi, A., & Shenashen, M. (2023). Review of the impact of the external magnetic field on the characteristics of magnetic nanofluids. Alexandria Engineering Journal, 76, 75–89. https://doi.org/10.1016/j.aej.2023.06.018
Shilpa, B., Leela, V., & Rani, H. P. (2023). Stability analysis of MHD radiative mixed convective flow in vertical cylindrical annulus: thermal nonequilibrium approach. Heat Transfer, 52(1), 707-733. https://doi.org/10.1002/htj.22713
Shoaib, M., Tabassum, R., Nisar, K. S., Raja, M. A. Z., Rafiq, A., Khan, M. I., Jamshed, W., Abdel-Aty, A.-H., Yahia, I. S., & E. Mahmoud, E. (2021). Entropy optimized second grade fluid with MHD and Marangoni convection impacts: an intelligent neuro-computing paradigm. Coatings, 11, 1492. https://doi.org/10.3390/coatings11121492
Teimouri, H., Afrand, M., Sina, N., Karimipour, A., & Isfahani, A. H. M. (2015). Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field. International Journal of Applied Electromagnetics and Mechanics, 49(4), 453–461. https://doi.org/10.3233/JAE-1500
Ulyanov, V. V., Koshelev, M. M., Kremleva, V. S., Bragin, D. S., & Prikazchikova, A. A. (2024). Features of purification and control of sodium-potassium eutectic alloy, Izvestiya Vysshikh Uchebnykh Zavedenij. Yadernaya Ehnergetika, 2, pp. 127–137. ISSN: 0204-3327.
Wang, F., Peng, L., Zhang, Q. Z., & Liu, J. (2015). Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool. Acta Physica Sinica, 64(14), 140202. https://doi.org/10.7498/aps.64.140202
Wang, X., Lu, C., & Rao, W. (2021). Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications, Applied Thermal Engineering, 192, 116937. https://doi.org/10.1016/j.applthermaleng.2021.116937.
Wrobel, W., Fornalik-Wajs, E., & Szmyd, J. S. (2010). Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. International Journal of Heat and Fluid Flow, 31(6), 1019–1031. https://doi.org/10.1016/j.ijheatfluidflow.2010.05.012
Yan, Y. (2024). Experimental and numerical study of mixed-convection magnetohydrodynamic (MHD) flows for liquid-metal fusion blankets, PhD Dissertation, University of California, Los Angeles.
Volume 19, Issue 1 - Serial Number 105
January 2026
Pages 3221-3235
  • Received: 05 June 2025
  • Revised: 03 September 2025
  • Accepted: 05 September 2025
  • Available online: 05 November 2025