Abou-Sena, A., Arbeiter, F., & Böttcher, T. (2016). Study of the wettability of fusion relevant steels by the sodium potassium eutectic alloy NaK-78,
Nuclear Materials and Energy,
9, 292–299.
https://doi.org/10.1016/j.nme.2016.05.003.
Ali, K., Ahmad, S., Ahmad, S., & Tayebi, T. (2023). Impact of magnetic field localization on the vortex generation in hybrid nanofluid flow.
Journal of Thermal Analysis and Calorimetry,
148(13), 6283–6300.
https://doi.org/10.1007/s10973-023-12104-5
Benhacine, H., Mahfoud, B., & Salmi, M. (2022a). Stability effect of an axial magnetic field on fluid flow bifurcation between coaxial cylinders.
International Journal of Computational Materials Science and Engineering,
10(4), 2150023.
https://doi.org/10.1142/S2047684121500238
Benhacine, H., Mahfoud, B., & Salmi, M. (2022b). Stability of an Electrically Conducting Fluid Flow between Coaxial Cylinders under Magnetic field.
Journal of Applied Fluid Mechanics,
15(2), 1741-1753.
https://doi.org/10.47176/JAFM.15.02.33050
Ben Salah, N., Soulaimani, A., & Habashi, W. G. (2001). A finite element method for magnetohydrodynamics.
Computer Methods in Applied Mechanics and Engineering,
190(43), 5867–5892.
https://doi.org/10.1016/S0045-7825(01)00256-3
Boyd, J. P. (2000). Chebyshev and Fourier Spectral Methods (2nd ed.). Dover Publications. ISBN: 0486411834.
Dash, S. C., & Singh, N. (2019). Effect of a strong axial magnetic field on swirling flow in a cylindrical cavity with a top rotating lid.
International Journal of Modern Physics C,
30(11), 1950092.
https://doi.org/10.1142/S012918311950092X
Jha, B. K., & Aina, B. (2018). Impact of viscous dissipation on fully developed natural convection flow in a vertical microchannel.
Journal of Heat Transfer,
140(9), 094502.
https://doi.org/10.1115/1.4039641
Kakarantzas, S. C., Sarris, I. E., & Vlachos, N. S. (2014). Magnetohydrodynamic natural convection of
liquid metal between coaxial isothermal
cylinders due to internal heating.
Numerical
Heat Transfer, Part A,
65, 401–418.
https://doi.org/10.1080/10407782.2013.831681
Kuehn, T. H., & Goldstein, R. J. (1976). An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders.
Journal of Fluid Mechanics,
74(4), 695–719.
https://doi.org/10.1017/S0022112076002012
Kumar, A., & Singh, A. K. (2013). Effect of induced magnetic field on natural convection in vertical concentric annuli heated/cooled asymmetrically.
Journal of Applied Fluid Mechanics,
6(1),15-26.
https://doi.org/10.36884/jafm.6.01.19477
Leela, V., Prasannakumara, B. C., Shilpa, B., & Gangadhara Reddy, R. (2022). Computational analysis of ohmic and viscous dissipation effects on MHD mixed convection flow in a vertical channel with linearly varying wall temperatures.
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. Feb 24, 2022. https://doi.org/10.1177/09544089221080669
Leonchuk, S. S., Falchevskaya, A. S., Nikolaev, V., Vinogradov, V. V. (2022). NaK alloy: underrated liquid metal,
Journal of Materials Chemistry A,
10(43), 22955–22976.
https://doi.org/10.1039/D2TA06882F.
Mahfoud, B. (2022), Simulation of magnetic field effect on heat transfer enhancement of swirling nanofluid,"
International Journal of Computational Materials Science and Engineering.
11(04), 2250007.
https://doi.org/10.1142/S2047684122500075
Mahfoud, B. (2023). Enhancement heat transfer of swirling nanofluid using an electrical conducting lid.
Journal of Thermophysics and Heat Transfer,
37(1), 263–271.
https://doi.org/10.2514/1.T6550
Mozayyeni, H. R., & Rahimi, A. B. (2012). Mixed convection in cylindrical annulus with rotating outer cylinder and constant magnetic field with an effect in the radial direction.
Scientia Iranica,
19(1), 91–105.
https://doi.org/10.1016/j.scient.2011.12.006
Ni, M. J., Yang, J. C., & Zhang, D. J., (2025). Magnetohydrodynamics in liquid metal interfacial flows,
Applied Mechanics Reviews, 1–105.
https://doi.org/10.1115/1.4067935.
Sankar, M., Venkatachalappa, M., & Do, Y. (2011). Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure.
International Journal of Heat and Fluid Flow,
32, 402–412.
https://doi.org/10.1016/j.ijheatfluidflow.2010.12.001
Sankar, M., Venkatachalappa, M., & Shivakumara, I. S. (2006). Effect of magnetic field on natural convection in a vertical cylindrical annulus.
International Journal of Engineering Science,
44, 1556-1570.
https://doi.org/10.1016/j.ijengsci.2006.06.004
Selim, M. M., El-Safty, S., Tounsi, A., & Shenashen, M. (2023). Review of the impact of the external magnetic field on the characteristics of magnetic nanofluids.
Alexandria Engineering Journal,
76, 75–89.
https://doi.org/10.1016/j.aej.2023.06.018
Shilpa, B., Leela, V., & Rani, H. P. (2023). Stability analysis of MHD radiative mixed convective flow in vertical cylindrical annulus: thermal nonequilibrium approach.
Heat Transfer,
52(1), 707-733.
https://doi.org/10.1002/htj.22713
Shoaib, M., Tabassum, R., Nisar, K. S., Raja, M. A. Z., Rafiq, A., Khan, M. I., Jamshed, W., Abdel-Aty, A.-H., Yahia, I. S., & E. Mahmoud, E. (2021). Entropy optimized second grade fluid with MHD and Marangoni convection impacts: an intelligent neuro-computing paradigm.
Coatings,
11, 1492.
https://doi.org/10.3390/coatings11121492
Teimouri, H., Afrand, M., Sina, N., Karimipour, A., & Isfahani, A. H. M. (2015). Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field.
International Journal of Applied Electromagnetics and Mechanics,
49(4), 453–461.
https://doi.org/10.3233/JAE-1500
Ulyanov, V. V., Koshelev, M. M., Kremleva, V. S., Bragin, D. S., & Prikazchikova, A. A. (2024). Features of purification and control of sodium-potassium eutectic alloy, Izvestiya Vysshikh Uchebnykh Zavedenij. Yadernaya Ehnergetika, 2, pp. 127–137. ISSN: 0204-3327.
Wang, F., Peng, L., Zhang, Q. Z., & Liu, J. (2015). Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool.
Acta Physica Sinica,
64(14), 140202.
https://doi.org/10.7498/aps.64.140202
Wang, X., Lu, C., & Rao, W. (2021). Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications,
Applied Thermal Engineering, 192, 116937.
https://doi.org/10.1016/j.applthermaleng.2021.116937.
Wrobel, W., Fornalik-Wajs, E., & Szmyd, J. S. (2010). Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure.
International Journal of Heat and Fluid Flow,
31(6), 1019–1031.
https://doi.org/10.1016/j.ijheatfluidflow.2010.05.012
Yan, Y. (2024). Experimental and numerical study of mixed-convection magnetohydrodynamic (MHD) flows for liquid-metal fusion blankets, PhD Dissertation, University of California, Los Angeles.