New Trends in Multiscale and Multiphysics Simulation of Transport Phenomena in Novel Engineering Systems


ASCOMP GmbH, Technoparkstrasse 1, Zurich, 8005, Switzerland


The paper reports on the progress made in predicting large- and small-scale single and two-phase flows with heat transfer using the CMFD code TransAT. In the multi-phase context, the code uses the Level Set approach as the “Interface Tracking Method” of reference. The solver incorporates phase-change capabilities, surface tension and triple-line dynamics models, Marangoni effects, electric and magnetic fields, and a wall micro-film sub-grid scale model for lubrication. Complex 3D examples shown here were treated using a fully automatized version of the code, using the Immersed Surfaces Technique (IST) to map complex components into a simple rectangular Cartesian grid. It is shown that real coupled two-phase heat transfer (conjugate) problems are within reach of modern CMFD code using interface tracking, with relatively fast response times: 3D coupled two-phase flow heat transfer can run on a simple Linux PC cluster within 24 H time.