Numerical Investigation of Ducted Fuel Injection Strategy for Soot Reduction in Compression Ignition Engine

Document Type : Regular Article

Author

Department of Automotive Engineering, Batman University, 72100, Batman, Turkey

10.47176/jafm.15.02.33088

Abstract

The ducted fuel injection strategy is a method that significantly reduces soot emissions in direct injection compression ignition engines. Fuel is injected into the combustion chamber through a duct enhancing the air-fuel mixture. It guarantees more efficient combustion and less soot formation by reducing the equivalence ratio at the autoignition zone inside the combustion chamber. The effects of the duct fuel injection on the performance, combustion, and emission of the compression ignition engine were numerically investigated in this study. The duct geometries with varying diameters, lengths, and stand-off distances were examined to find the most appropriate size using an experimentally validated CFD model and detailed soot model. Results show that up to 66.7% reduction in soot emissions were observed with the usage of the ducted fuel injection strategy compared to conventional diesel combustion. In addition to reducing soot emissions, the ducted fuel injection strategy decreased CO and HC emissions by 20.4% and 7.8%, respectively. While the ducted fuel injection strategy reduces emissions, it does not decrease engine performance; on the contrary, it increases gross IMEP by 0.58%.

Keywords


Ahmed, S. S., F. Mauß, G. Moréac and T. Zeuch (2007). A comprehensive and compact n-heptane oxidation model derived using chemical lumping. Physical Chemistry Chemical Physics 9(9), 1107-1126.##
Amsden, A. A. (1997). KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves. In LA Report. Los Alamos National Laboratory, 1–75.##
An, Y., M. Jaasim, V. Raman, F. E. Hernández Pérez, J. Sim, J. Chang, H. G. Im and B. Johansson (2018). Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline. Energy 158, 181–191.##
Babayev, R., A. Andersson, A. S. Dalmau, H. G. Im and B. Johansson (2021). Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine. International Journal of Hydrogen Energy 46(35), 18678–18696.##
Bakhshan, Y. and A. H. Shadaei (2013). Quasi-Dimensional Modeling of a CNG Fueled HCCI Engine Combustion Using Detailed Chemical Kinetic. Journal of Applied Fluid Mechanics 6(2), 239–247.##
Beale, J. C. and R. D. Reitz (1999). Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization and Sprays 9(6), 623–650..##
Brijesh, P. and S. Sreedhara (2013). Exhaust emissions and its control methods in compression ignition engines: A review. International Journal of Automotive Technology 14(2), 195–206.##
Calam, A., H. Solmaz, E. Yılmaz and Y. İçingür (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 168(1), 1208–1216.##
Curran, H. J., P. Gaffuri, W. J. Pitz and C. K. Westbrook (1998). A Comprehensive Modeling Study of n-Heptane Oxidation. Combustion and Flame 114(1), 149–177.##
Curtis, E. W., A. Uludogan and R. D. Reitz (1995). A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling. SAE Technical Papers 412, 1-13.##
De Soete, G. G. (1975). Overall reaction rates of NO and N2 formation from fuel nitrogen. International Symposium on Combustion 15(1), 1093–1102.##
Deb, M., A. Paul, D. Debroy, G. R. K. Sastry, R. S. Panua and P. K. Bose (2015). An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel. Energy 85, 569–585.##
Demirkesen, C., U. Colak, I. H. Savci and H. B. Zeren (2020). Experimental and Numerical Investigation of Air Flow Motion in Cylinder of Heavy Duty Diesel Engines. Journal of Applied Fluid Mechanics 13(2), 537–547.##
Fajri, H. R., A. H. Shamekhi, S. Rezaie, M. J. Jafari and S. A. Jazayeri (2019). A Detailed Study of Boost Pressure and Injection Timing on an RCCI Engine Map Fueled with Iso-Octane and N-Heptane Fuels. Journal of Applied Fluid Mechanics 12(4), 1161–1175.##
Fitzgerald, R. P., K. Svensson, G. Martin, Y. Qi and C. Koci (2018). Early Investigation of Ducted Fuel Injection for Reducing Soot in Mixing-Controlled Diesel Flames. SAE International Journal of Engines 11(6), 817–833.##
Galindo, J., S. Hoyas, P. Fajardo and R. Navarro (2013). Set-Up Analysis and Optimization of CFD Simulations for Radial Turbines. Engineering Applications of Computational Fluid Mechanics 7(4), 441–460.##
Gandhi, H. S., G. W. Graham and R. W. McCabe (2003). Automotive exhaust catalysis. Journal of Catalysis 216(1–2), 433–442.##
Gehmlich, R. K., C. E. Dumitrescu, Y. Wang and C. J. Mueller (2016). Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel in an Optical CI Engine. SAE International Journal of Engines 9(3), 1526–1543.##
Gehmlich, R. K., C. J. Mueller, D. J. Ruth, C. W. Nilsen, S. A. Skeen and J. Manin (2018). Using ducted fuel injection to attenuate or prevent soot formation in mixing-controlled combustion strategies for engine applications. Applied Energy 226, 1169–1186.##
Gugulothu, S. K. and K. H. C. Reddy (2016). CFD Simulation of In-Cylinder Flow on Different Piston Bowl Geometries in a DI Diesel Engine. Journal of Applied Fluid Mechanics 9(3), 1147–1155.##
Han, Z. and R. D. Reitz (1995). Turbulence Modeling of Internal Combustion Engines Using RNG k-ɛ Models. Combustion Science and Technology 106(1), 267–295.##
Heywood, J. (1988). Internal combustion engine fundamentals. In McGraw Hill.##
Ibrahim, F., W.M.F. Wan Mahmood, S. Abdullah and M.R.A. Mansor (2017). Comparison of Simple and Detailed Soot Models in the Study of Soot Formation in a Compression Ignition Diesel Engine. SAE Technical Papers 2017-0110, 1–9.##
Knecht, W. (2008). Diesel engine development in view of reduced emission standards. Energy 33(2), 264–271.##
Kumar, S. and D. Ramkrishna (1996). On the solution of population balance equations by discretization—II. A moving pivot technique. Chemical Engineering Science 51(8), 1333–1342.##
Lao, C. T., J. Akroyd, N. Eaves, A. Smith, N. Morgan D. Nurkowski, A. Bhave and M. Kraft (2020). Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines. Applied Energy 267, 114844.##
Li, F., C. Lee, Z. Wang, F. Liu and G. Lu (2020). Optical investigation on impacts of ambient pressure on macroscopic spray characteristics of ducted fuel injection under non-vaporizing conditions. Fuel 268, 117192.##
Li, F., C. Lee, Z. Wang, Y. Pei and G. Lu (2021). Impacts of duct inner diameter and standoff distance on macroscopic spray characteristics of ducted fuel injection under non-vaporizing conditions. International Journal of Engine Research 22(5), 1702–1713.##
Li, F., C. Lee, H. Wu, Z. Wang and F. Liu (2019). An optical investigation on spray macroscopic characteristics of ducted fuel injection. Experimental Thermal and Fluid Science 109, 109918.##
Liu, X., B. Mohan and H. G. Im (2020). Numerical Investigation of the Free and Ducted Fuel Injections under Compression Ignition Conditions. Energy & Fuels 34(11), 14832–14842.##
Manuel, A., D. Gonzalez, G. L. Borman and R. D. Reitz (1991). A study of diesel cold starting using both cycle analysis and multidimensional calculations. SAE International Journal of Engines, 100(3), 189–208.##
Mathivanan, K., J. M. Mallikarjuna and A. Ramesh (2019). Effect of Timing and Pattern of Fuel Injection on Performance and Emissions of a Diesel Engine in the Low-Temperature Combustion Mode – An Experimental Investigation. Journal of Applied Fluid Mechanics 12(6), 1769–1780.##
Mofijur, M., M. M. Hasan, T. M. I. Mahlia, S. M. A. Rahman, A. S. Silitonga and H. C. Ong (2019). Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review. Energies 12(18), 3557.##
Mohan, B., W. Yang and S. K. Chou (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews 28, 664–676.##
Mueller, C. J., C. W. Nilsen, D. J. Ruth, R. K. Gehmlich, L. M. Pickett and S. A. Skeen (2017). Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines. Applied Energy 204, 206–220.##
Nilsen, C. W., D. E. Biles and C. J. Mueller (2019). Using Ducted Fuel Injection to Attenuate Soot Formation in a Mixing-Controlled Compression Ignition Engine. SAE International Journal of Engines 12(3), 3–12.##
Nilsen, C. W., D. E. Biles, B. F. Yraguen and C. J. Mueller (2020). Ducted Fuel Injection versus Conventional Diesel Combustion: An Operating-Parameter Sensitivity Study Conducted in an Optical Engine with a Four-Orifice Fuel Injector. SAE International Journal of Engines 13(3), 1-18.##
Pickett, L. M. (2005). Low flame temperature limits for mixing-controlled Diesel combustion. Proceedings of the Combustion Institute 30(2), 2727–2735.##
Polonowski, C. J., C. J. Mueller, C. R. Gehrke, T. Bazyn, G. C. Martin and P. M. Lillo (2011). An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine. SAE International Journal of Fuels and Lubricants 5(1), 51-77.##
Praveena, V. and M. L. J. Martin (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute 91(5), 704–720.##
Reitz, R.D. (1987). Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Spray Technology 3, 309–337.##
Reitz, R. D., H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, K. Boulouchos, M. Canakci, S. Curran, I. Denbratt, M. Gavaises, M. Guenthner, C. Hasse, Z. Huang, T. Ishiyama … H. Zhao (2020). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research 21(1), 3–10.##
Richards, K. J., P. K. Senecal and E. Pomraning (2019). CONVERGE 2.4 Manual (p. 1078). Convergent Science.##
Schmidt, D. P. and C. J. Rutland (2000). A New Droplet Collision Algorithm. Journal of Computational Physics 164(1), 62–80.##
Senecal, P. K., E. Pomraning, K. J. Richards, T. E. Briggs, C. Y. Choi, R. M. Mcdavid and M. A. Patterson (2003). Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry. SAE International Journal of Engines, 112(3), 1331–1351.##
Senecal, P. K., K. J. Richards, E. Pomraning, T. Yang, M. Z. Dai, R. M. McDavid, M. A. Patterson, S. Hou and S. T. hethaji (2007). A new parallel cut-cell cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations. SAE Technical Papers, 1-32.##
Şener, R. and M. Z. Gül (2021). Optimization of the combustion chamber geometry and injection parameters on a light-duty diesel engine for emission minimization using multi-objective genetic algorithm. Fuel 304, 121379.##
Sener, R., M. U. Yangaz and M. Z. Gul (2020). Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine. Fuel 266(1), 117122.##
Sherwood, A. (1993). Los Alamos National Laboratory ion implantation program with General Motors and the University of Wisconsin. Journal of Fusion Energy 12(4), 405–405.##
Svensson, K. I. and G. C. Martin (2019). Ducted Fuel Injection: Effects of Stand-Off Distance and Duct Length on Soot Reduction. SAE Technical Papers 4, 1–10.##
Turkcan, A., A. N. Ozsezen, M. Canakci, G. Coskun, H. S. Soyhan and U. Demir (2015). An Experimental and Modeling Study to Investigate Effects of Two-Stage Direct Injection Variations on HCCI Combustion. Combustion Science and Technology 187(4), 642–658.##
Vadivel, A. and S. Periyasamy (2020). Experimental Investigation of Thermal Barrier (8YSZ-MGO-TIO2) Coated Piston used in Diesel Engine. Journal of Applied Fluid Mechanics 13(4), 1157–1165.##
Walters, R. (2010). Toxic Atmospheres Air Pollution, Trade and the Politics of Regulation. Critical Criminology 18(4), 307–323.##
Wen, J. Z., M. J. Thomson, S. H. Park, S. N. Rogak and M. F. Lightstone (2005). Study of soot growth in a plug flow reactor using a moving sectional model. Proceedings of the Combustion Institute 30(1), 1477–1484.##
Yakhot, V. and S. A. Orszag (1986). Renormalization group analysis of turbulence: I. Basic theory. Journal of Scientific Computing 1(1), 3–51.##
Yangaz, M. U., G. A. Çiftçioğlu and M. A. N. Kadırgan (2019). Comparison of Conventional and Modified Burners in Performance with Different Fuels using a Linear and a Non-linear Eddy-viscosity Turbulence Model. Journal of Applied Fluid Mechanics 12(6), 2069–2081.##
Yousefi, A., H. Guo and M. Birouk (2020). Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions. Applied Energy 279, 115828.##
Zeuch, T., G. Moréac, S. S. Ahmed and F. Mauss (2008). A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction. Combustion and Flame 155(4), 651–674.##
Zhou, L., M. D. Boot, B. H. Johansson and J. J. E. Reijnders (2014). Performance of lignin derived aromatic oxygenates in a heavy-duty diesel engine. Fuel 115, 469–478.##
Zhu, J., K. O. Lee, A. Yozgatligil and M. Y. Choi (2005). Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates. Proceedings of the Combustion Institute 30(2), 2781–2789.##
Volume 15, Issue 2 - Serial Number 63
March and April 2022
Pages 475-489
  • Received: 08 June 2021
  • Revised: 11 September 2021
  • Accepted: 15 October 2021
  • First Publish Date: 02 February 2022