Very-Large-Eddy Simulation of Nonreactive Turbulent Flow for Annular Trapped Vortex Combustor

Document Type : Regular Article

Authors

College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China

10.47176/jafm.15.02.33195

Abstract

A hybrid Reynolds-averaged Navier-Stokes (RANS) large eddy simulation (LES) method is applied in this work. It called very-large-eddy simulation (VLES) turbulence closure model. The aim of this present study is firstly to validate the accuracy of this method for a specific engineering application (a trapped vortex combustor) and secondly to describe its flow characteristics. The trapped vortex combustor is a new concept that utilizes a large recirculation vortex to stabilize the flame. An accurate prediction of the turbulent flow is meaningful for the trapped vortex combustor. The time-averaged velocity, root-mean-square (rms) velocity, and flow pattern are compared with the experimental data. And the LES model, RANS BSL k-ω model, and RANS k-ɛ model are also applied for the simulation with different mesh resolutions. The results show that the VLES BSL k-ω model provides improved accuracy for velocity prediction. The classical large vortex structure for the trapped vortex combustor is captured qualitatively by the VLES BSL k-ω model also. In addition, the vortex breakdown and processing vortex cone are visualized using the Q-criterion. Furthermore, the VLES BSL k-ω model is not sensitive to the gird resolution. The VLES method is able to predict the turbulent flow of trapped vortex combustor relatively well‎.

Keywords


Batten, P., U. Goldberg and S. Chakravarthy (2004). Interfacing Statistical Turbulence Closures with Large-Eddy Simulation. Aiaa Journal, 42, 485-492.##
Burguburu, J. (2012). Etude expérimentale de la stabilité d’une flamme dans une chambre de combustion aéronautique par recirculation de gaz brûlés et par ajout d’hydrogène. France.##
Chen, S. and D. Zhao (2018). Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor. Aerospace Science and Technology 74, 81-92.##
Davidson, L. and S. Dahlström (2005). Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number. International Journal of Computational Fluid Dynamics 19, 415-427.##
Fasel, H. F., J. Seidel and S. Wernz (2002). A Methodology for Simulations of Complex Turbulent Flows. Journal of Fluids Engineering 124, 933-942.##
Han, X. and S. Krajnović (2012a). An efficient very large eddy simulation model for simulation of turbulent flow. International Journal for Numerical Methods in Fluids 71, 1341-1360.##
Han, X. and S. Krajnović (2013a). Validation of a novel very large eddy simulation method for simulation of turbulent separated flow. International Journal for Numerical Methods in Fluids 73, 436-461.##
Han, X. and S. Krajnović (2015). Very-Large-Eddy Simulation Based on k-ω Model. Aiaa Journal 53, 1103-1108.##
Han, X. and S. Krajnović (2013b). Very Large Eddy Simulation of Passive Drag Control for a D-Shaped Cylinder. Journal of Fluids Engineering 135.##
Han, X., T. Ye and Y. Chen (2012b). Calibration of a new very large eddy simulation (VLES) methodology for turbulent flow simulation. Science China Physics, Mechanics and Astronomy 55, 1905-1914.##
Hsieh, K.-J., F.-S. Lien and E. Yee (2009). Towards a Unified Turbulence Simulation Approach for Wall-Bounded Flows. Flow, Turbulence and Combustion 84, 193.##
Hsu, K., L. Gross, D. Trump and W. Roquemore (1995). Performance of a trapped-vortex combustor. In  33rd Aerospace Sciences Meeting and Exhibit: American Institute of Aeronautics and Astronautics.##
Jin, Y., X. He, B. Jiang, Z. Wu, G. Ding and Z. Zhu (2014a). Effect of cavity-injector/radial-strut relative position on performance of a trapped vortex combustor. Aerospace Science and Technology 32, 10-18.##
Jin, Y., X. He, J. Zhang, B. Jiang and Z. Wu (2014b). Numerical investigation on flow structures of a laboratory-scale trapped vortex combustor. Applied Thermal Engineering 66, 318-327.##
Labois, M. and D. Lakehal (2011). Very-Large Eddy Simulation (V-LES) of the flow across a tube bundle. Nuclear Engineering and Design 241, 2075-2085.##
Langhe, C. D., B. Merci and E. Dick (2005). Hybrid RANS/LES modelling with an approximate renormalization group. I: Model development. Journal of Turbulence 6, N13.##
Liu, N.-S. and T.-H. Shih (2006). Turbulence Modeling for Very Large-Eddy Simulation. Aiaa Journal 44, 687-697.##
Menter, F. (2018). Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling. In  (pp. 27-37). Cham: Springer International Publishing.##
Merlin, C., P. Domingo and L. Vervisch (2012). Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus Mécanique 340, 917-932.##
Tiwari, P., Z. Xia and X.Han. (2020). Comparison of VLES and LES Turbulence Modeling for Swirling Turbulent FLow. Journal of Applied Fluid Mechanics 13, 1107-1116.##
Sagaut, P. (2006). Large Eddy Simulation for Incompressible Flows (3rd ed.). Berlin: Springer, Berlin, Heidelberg.##
Sagaut, P., S. Deck and M. Terracol (2012). Multiscale and Multiresolution Approaches in Turbulence (2nd ed.): IMPERIAL COLLEGE PRESS.##
Sharifzadeh, R. and A. Afshari (2020). Numerical investigation of flow field effects on fuel–air mixing in a non-reacting trapped vortex combustor with different injection arrangements. European Journal of Mechanics - B/Fluids 82, 106-122.##
Spalart, P. R. (2008). Detached-Eddy Simulation. Annual Review of Fluid Mechanics 41, 181-202.##
Speziale, C. G. (1998). Turbulence modeling for time-dependent RANS and VLES: A review. Aiaa Journal 36, 173-184.##
Xia, Y., P. Sharkey, S. Orsino, M. Kuron, F. Menter, I. Verma, R. Malecki and B. Sen (2021). Stress-Blended Eddy Simulation/Flamelet Generated Manifold Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction. Journal of Turbomachinery 143(1).##
Xia, Z., X. Han and J. Mao (2020). Assessment and Validation of Very-Large-Eddy Simulation Turbulence Modeling for Strongly Swirling Turbulent Flow. Aiaa Journal 58, 148-163.##
Zhang, H., C. Bachman and H. Fasel (2000). Application of a new methodology for simulations of complex turbulent flows. In  Fluids 2000 Conference and Exhibit (Vol. 148): American Institute of Aeronautics and Astronautics.##
Volume 15, Issue 2 - Serial Number 63
March and April 2022
Pages 523-535
  • Received: 13 July 2021
  • Revised: 01 October 2021
  • Accepted: 05 November 2021
  • First Publish Date: 01 February 2022