Numerical Analysis of the Effect of the Non-Sinusoidal Trajectories on the Propulsive Performance of a Bionic Hydrofoil

Document Type : Regular Article

Authors

College of Naval Architecture and Ocean Engineering, Dalian Maritime University, Dalian, 116026, China

10.47176/jafm.15.03.32911

Abstract

Aquatic animals usually generate the effective propulsive force via non-sinusoidally flapping their fins. Inspired by the kinematics of fish, the propulsive characteristics of a NACA012 hydrofoil is numerically studied in this paper. The combination of non-sinusoidal heaving and pitching motions is adopted in the two-dimensional hydrofoil kinematics parameters. The elliptic function and the flattening parameter S are introduced to achieve the varieties of non-sinusoidal periodic motions. The numerical model is established by using the commercial computational fluid dynamic solver STAR-CCM+, and the code is verified by comparing with the published experimental results. The Reynolds number is fixed at 40,000 in all the numerical simulations. The results show that the non-sinusoidal trajectories affect the propulsive performance by affecting the angle of attack (AOA), the hydrodynamics of the foil and the flow structure behind the foil. The non-sinusoidal flapping trajectories can improve significantly the thrust coefficient at the same kinematics parameters compared with the sinusoidal motions in most cases. However, they may reduce the propulsive efficiency. When the values of S are greater than 1, the improvement of thrust coefficient acquired with the non-sinusoidal motions is more obvious. The wake pattern is also discussed which indicates that the strong leading-edge vortices results in the decrease of the propulsive efficiency acquired by the non-sinusoidal trajectories. It is possible to apply the non-sinusoidal motions of a flapping foil to improve propulsive performance of the underwater bionic machine.

Keywords


Anderson, J. M., K. Streitlien and D. S. Barrett (1998). Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics 360(360), 41-72.##
Ashraf, M. A., J. Young and J. C. S. Lai (2011). Reynolds number, thickness and camber effects on flapping airfoil propulsion. Journal of Fluids and Structures 27(2), 145-160.##
Benkherouf, T., M. Mekadem, H. Oualli, S. Hanchi, L. Keirsbulck and L. Labraga (2011). Efficiency of an auto-propelled flapping airfoil. Journal of Fluids and Structures 27(4), 552-566.##
Boudis, A., A. C. Bayeul-Laine, A. Benzaoui, H. Oualli, O. Guerri and O. Coutier-Delgosha (2019). Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectories on the Propulsion Mechanisms of a Flapping Airfoil. Journal of Fluids Engineering 141(4), Article 041106.##
Chao, L.-M., G. Pan, D. Zhang and G.-X. Yan (2019). Numerical investigations on the force generation and wake structures of a nonsinusoidal pitching foil. Journal of Fluids and Structures 85, 27-39.##
Eloy, C. (2012). Optimal Strouhal number for swimming animals. Journal of Fluids and Structures 30(2), 205-218.##
Fish, F. E. and G. V. Lauder (2006). Passive and active flow control by swimming fishes and mammals. Annual Review of Fluid Mechanics 38(1), 193-224.##
Gazzola, M., M. Argentina and L. Mahadevan (2014). Scaling macroscopic aquatic locomotion. Nature Physics 10(10), 758-761.##
Gray, J. (1936). Studies in Animal Locomotion, VI. The Propulsive Powers of the Dolphin. Journal of Experimental Biology 13(2), 192-199.##
Heathcote, S., Z. Wang and I. Gursul (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures 24(2), 183-199.##
Hover, F. S., O. Haugsdal and M. S. Triantafyllou (2004). Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids and Structures 19(1), 37-47.##
Kaya, M. and I. H. Tuncer (2007). Nonsinusoidal path optimization of a flapping airfoil. AIAA Journal 45(8), 2075-2082.##
Kinsey, T. and G. Dumas (2012). Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils. Journal of Fluids Engineering 134(2), Article 021104.##
Lai, J. C. S. and M. F. Platzer (2015). Jet Characteristics of a Plunging Airfoil. AIAA Journal 37(12), 1529-1537.##
Lewin, G. C. and H. Haj-Hariri (2003). Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. Journal of Fluid Mechanics 492, 339-362.##
Lighthill, M. J. (1969). Hydromechanics of Aquatic Animal Propulsion. Annual Review of Fluid Mechanics 1(1), 413-446.##
Lighthill, M. J. (1970). Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics 44(2), 265-301.##
Ljungqvist, B. D. (1999). Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences 35(5), 455-505.##
Nguyen, T. A., H. Vu Phan, T. K. L. Au, H. C. J. B. Park (2016). Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspiration and Biomimetics 11(4), 046001.##
Olivier, M. and G. Dumas (2016). Effects of mass and chordwise flexibility on 2D self-propelled flapping wings. Journal of Fluids and Structures 64, 46-66.##
Pedro, G., A. Suleman and N. Djilali (2003). A numerical study of the propulsive efficiency of a flapping hydrofoil. International Journal for Numerical Methods in Fluids 42(5), 493-526.##
Platzer, M. F., K. D. Jones, J. Young and J. C. S. Lai (2008). Flapping-wing aerodynamics: Progress and challenges. AIAA Journal 46(9), 2136-2149.##
Qadri, M. N. M., A. Shahzad, F. Zhao and H. Tang (2019). An Experimental Investigation of a Passively Flapping Foil in Energy Harvesting Mode. Journal of Applied Fluid Mechanics 12(5), 1547-1561.##
Qi, Z., J. Zhai, G. Lie and J. Peng (2019). Effects of non-sinusoidal pitching motion on the propulsion performance of an oscillating foil. PloS One 14(7), Article e0218832.##
Read, D. A., F. S. Hover and M. S. Triantafyllou (2003). Forces on oscillating foils for propulsion and maneuvering. Journal of Fluids and Structures 17(1), 163-183.##
Schouveiler, L., F. S. Hover and M. S. Triantafyllou (2005). Performance of flapping foil propulsion. Journal of Fluids and Structures 20(7), 949-959.##
Triantafyllou, G. S., M. S. Triantafyllou and M. A. Grosenbaugh (1993). Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion. Journal of Fluids and Structures 7(2), 205-224.##
Triantafyllou, M. S., G. S. Triantafyllou and D. K. P. Yue (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics 32, 33.##
Triantafyllou, M. S., A. H. Techet and F. S. Hover (2004). Review of experimental work in biomimetic foils. IEEE Journal of Oceanic Engineering 29(3), 585-594.##
Tuncer, I. H. and M. Kaya (2005). Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA Journal 43(11), 2329-2336.##
Xiao, Q. and W. Liao (2010). Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil. Computers and Fluids 39(8), 1366-1380.##
Xu, L., F.-B. Tian, J. C. S. Lai and J. Young (2021). Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion. AIAA Journal 59(6), 2143-+.##
Young, J. and S. Lai, J. C. (2004). Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA Journal 42(10), 2042-2052.##
Young, J. and J. C. S. Lai (2007). Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion. AIAA Journal 45(7), 1695-1702.##
Volume 15, Issue 3 - Serial Number 64
May and June 2022
Pages 917-925
  • Received: 24 April 2021
  • Revised: 12 December 2021
  • Accepted: 19 December 2021
  • First Publish Date: 24 March 2022