Investigation on Jet Characteristics of Turbofan Exhaust System under Take-off Condition with High Angle of Attack

Document Type : Regular Article

Authors

Shaanxi Key Laboratory of Internal Aerodynamics in Aero-Engine, School of Power and Energy, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China

10.47176/jafm.15.03.33364

Abstract

To understand the jet flow characteristics of turbofan separate exhaust system, a parametric design method based on the initial Class Shape Transformation function was developed. HBPR and UHBPR turbofan separate exhaust systems were designed. Furthermore, the jet flow characteristics of the HBPR turbofan exhaust system under take-off condition with zero angle of attack were studied based on numerical simulation. The jet flow characteristics of the HBPR and UHBPR turbofan exhaust system under take-off condition with high angle of attack were also simulated. The effects of angle of attack and bypass ratio on the jet flow characteristics were investigated and the related flow mechanisms were analyzed. Results show that the axisymmetric plumes of the HBPR turbofan exhaust system are distributed around the engine axis under take-off condition with zero angle of attack. With the plug wake as the center, the core flow, the fan/core shear layer, the fan flow, the fan/free stream shear layer and the free stream are wrapped around the plug wake from inside out. Vortexes appear in the lee area at the back of the cowl and jet flow under take-off condition with high angle of attack. These vortexes cause cross sectional secondary flow and expose the high-velocity core flow to the low-velocity free stream. The contact area and velocity gradient in the mixing region among the free stream, fan flow and core flow increase. Therefore, the mixture among jet flow and free stream strengthens. So the high-velocity region, the high-vorticity region, and the high turbulence kinetic energy region shorten by 55.1%, 47.7% and 50.9% respectively. The vorticity values and turbulence kinetic energy level peak on the upper side of the exhaust plumes increase by about 30% and 87% respectively. Relative to these parameters from the HBPR turbofan exhaust system, the jet velocity peak value of UHBPR turbofan decreases by 5.5% under take-off condition with high angle of attack. The vorticity values and turbulence kinetic energy level reduce due to decreased velocity gradient in shear layers downstream of the nozzle exit plane. The turbulence kinetic energy level peak on the upper side of the exhaust plumes decreases by 29.3%. The reasons are that the contact area between high-velocity core flow and the free stream decreases due to thicker fan flow and the velocity gradient in the core flow and free stream mixing region decreases because of the lower core flow velocity.

Keywords


Advisory Council for Aviation Research (2012). Realizing Europe’ Vision for Aviation. Strategic Research & Innovation Agenda. European Commission.##
Aeroengine Design Manual editorial committee (2002). Aeroengine Design Manual Volume 7 Intake and exhaust system design. Beijing: Aviation Industry Press.##
Andersson, N., L. E. Eriksson and L. Davidson (2005). Large-Eddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound. AIAA Journal 43(9), 1899-1912.##
Andreas, P., S. S. Zoltán, L. K. Wesley and R. Becky (2014). Ultra-short Nacelles for Low Fan Pressure Ratio Propulsors. In Proceeding of ASME Turbo Expo ASME GT2014-26369.##
Birch, N. T. (2000). 2020 vision: the prospects for large civil aircraft propulsion. Aeronautical Journal -New Series 104(1038), 347-352.##
Bridges, J. and M. Wernet (2002). Turbulence measurements of separate flow nozzles with mixing enhancement features. 8th AIAA/CEAS Aeroacoustics Conference AIAA 2002-2484.##
Cumpsty, N. (2010). Preparing for the future: reducing gas turbine environmental impact-IGTI scholar lecture. Journal of Turbomachinery 132, 041017.##
DeBonis, J. R. (2009). RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction. Journal of Fluids Engineering 131(4), 041104.##
European Commission (2011). Flightpath 2050. Europe’s Vision for Aviation. Report of the High Level Group on Aviation Research.##
Goulos, I., T. Stankowski and O. J. Etc (2016). Aerodynamic Design of Separate-Jet Exhausts for Future Civil Aero-engines-Part I: Parametric Geometry Definition and Computational Fluid Dynamics Approach. Journal of Engineering for Gas Turbines and Power 138, 081201-1.##
Goulos, I., T. Stankowski, D. MacManus, P. Woodrow and C. Sheaf (2018). Civil turbofan engine exhaust aerodynamics: Impact of fan exit flow characteristics. Aerospace Science and Technology 73, 85-95.##
Heidebrecht, A., T. Stankowski and D. MacManus (2016). Parametric geometry and computational process for turbofan nacelles. In Proceeding of ASME Turbo Expo ASME GT2016-57784.##
Hsiao, E., M. Su and J. Colehour (1997). Navier-Stokes analysis of a high by-pass engine exhaust system and plume. 15th Applied Aerodynamics Conference AIAA 1997-2282.13##
Hughes, C. (2011). The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration. AIAA Aero Sciences Meeting.##
Hunter, C., R. Thomas, K. Abdol-Hamid and S. Pao (2005). Computational Analysis of the Flow and Acoustic Effects of jet-pylon Interaction. 11th AIAA/CEAS Aeroacoustics Conference AIAA 2005-3083.15##
Kang, G. Q. and Q. Wang (2011). Numerical simulation on jet flow field of separate flow nozzles with chevron trailing edge. Journal of Aerospace Power 26(1), 154-160.##
Liang, D. W. and Y. Zhao (1998). Fundamentals of Fluids Mechanics. Beijing: Aviation Industry Press.##
Michael, J. D., B. S. Henderson and K. W. Kinzie (2007). Turbulence Measurements of Separate-flow Nozzles with Pylon Interaction Using Particle Image Velocimetry. AIAA Journal 45(6), 1281-1289.##
Otter, J. J., R. Christie, I. Goulos, D. MacManus and N. Grech (2019). Parametric design of non-axisymmetric separate-jet aero-engine exhaust systems. Aerospace Science and Technology 93, 105186.##
Smith, C., N. Snyder and B. Vittal (1997). Analysis of an axisymmetric two-stream nozzle plume. Applied Aerodynamics Conference AIAA 1997-2283.##
Suder, L. K. (2013). NASA Environmentally Responsible Aviation Project’s Propulsion Technology Phase I Overview and Highlights of Accomplishments. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition AIAA 2013-0414.##
Tejero, F., M. Robinson, G. D. MacManus and C. Sheaf (2019). Multi-objective optimization of short nacelles for high bypass ratio engines. Aerospace Science and Technology 91, 410-421.##
Thomas, H. R., W. K. Kinzie and S. P. Paul (2001). Computational analysis of a pylon-chevron core nozzle interaction. 7th AIAA/CEAS Aeroacoustics Conference AIAA 2001-2185.##
Thomas, R. and K. Kinzie (2004). Jet-pylon interaction of high bypass ratio separate flow nozzle configurations. 10th AIAA/CEAS Aeroacoustics Conference. AIAA 2004-2827.##
Wang, D., M. H. Cong, Z. Y. Zhang, Y. W. Du and Y. Shi (2014). A Design Method of Turbofan Separate Exhaust System. CN103823921A.##
Wang, W. J., B. W. Liu, L. Zhou, Z. X. Wang and W. J. Deng (2021). Parametric Design Method for Aerodynamic Profiles of Continuous Curvature Non-Axisymmetric Nacelle. Journal of Propulsion Technology 42(7), 1827-1838.##
Wang, W. J., L. Zhou, Z. X. Wang and J. W. Shi. (2020). Influence of Geometric Parameters on Overall Performance of High Bypass Ratio Turbofan Nacelle and Exhaust System. Journal of Applied Fluid Mechanics 13(6), 1959-1973.##
Zhang, J. D., J. Chen, W. Wang, Y. G. Li and J. J. Liu (2014). A Design Method and Performance Research of Separately Exhaust System. Aeroengine 40(2), 47-50, 69.##
Zhou, E.C., C. Xu and X.H. Lai (2020). Large eddy simulation of Co-Axial Jets and Analysis of Sound Source. Journal of Engineering Thermophysics 41(9), 2199-2206.##
Zhu, F. and N. Qin (2014). Intuitive Class/Shape Function Parameterization for Airfoils. AIAA Journal 52(1), 17-25.##
Advisory Council for Aviation Research (2012). Realizing Europe’ Vision for Aviation. Strategic Research & Innovation Agenda. European Commission.##
Aeroengine Design Manual editorial committee (2002). Aeroengine Design Manual Volume 7 Intake and exhaust system design. Beijing: Aviation Industry Press.##
Andersson, N., L. E. Eriksson and L. Davidson (2005). Large-Eddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound. AIAA Journal 43(9), 1899-1912.##
Andreas, P., S. S. Zoltán, L. K. Wesley and R. Becky (2014). Ultra-short Nacelles for Low Fan Pressure Ratio Propulsors. In Proceeding of ASME Turbo Expo ASME GT2014-26369.##
Birch, N. T. (2000). 2020 vision: the prospects for large civil aircraft propulsion. Aeronautical Journal -New Series 104(1038), 347-352.##
Bridges, J. and M. Wernet (2002). Turbulence measurements of separate flow nozzles with mixing enhancement features. 8th AIAA/CEAS Aeroacoustics Conference AIAA 2002-2484.##
Cumpsty, N. (2010). Preparing for the future: reducing gas turbine environmental impact-IGTI scholar lecture. Journal of Turbomachinery 132, 041017.##
DeBonis, J. R. (2009). RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction. Journal of Fluids Engineering 131(4), 041104.##
European Commission (2011). Flightpath 2050. Europe’s Vision for Aviation. Report of the High Level Group on Aviation Research.##
Goulos, I., T. Stankowski and O. J. Etc (2016). Aerodynamic Design of Separate-Jet Exhausts for Future Civil Aero-engines-Part I: Parametric Geometry Definition and Computational Fluid Dynamics Approach. Journal of Engineering for Gas Turbines and Power 138, 081201-1.##
Goulos, I., T. Stankowski, D. MacManus, P. Woodrow and C. Sheaf (2018). Civil turbofan engine exhaust aerodynamics: Impact of fan exit flow characteristics. Aerospace Science and Technology 73, 85-95.##
Heidebrecht, A., T. Stankowski and D. MacManus (2016). Parametric geometry and computational process for turbofan nacelles. In Proceeding of ASME Turbo Expo ASME GT2016-57784.##
Hsiao, E., M. Su and J. Colehour (1997). Navier-Stokes analysis of a high by-pass engine exhaust system and plume. 15th Applied Aerodynamics Conference AIAA 1997-2282.13##
Hughes, C. (2011). The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration. AIAA Aero Sciences Meeting.##
Hunter, C., R. Thomas, K. Abdol-Hamid and S. Pao (2005). Computational Analysis of the Flow and Acoustic Effects of jet-pylon Interaction. 11th AIAA/CEAS Aeroacoustics Conference AIAA 2005-3083.15##
Kang, G. Q. and Q. Wang (2011). Numerical simulation on jet flow field of separate flow nozzles with chevron trailing edge. Journal of Aerospace Power 26(1), 154-160.##
Liang, D. W. and Y. Zhao (1998). Fundamentals of Fluids Mechanics. Beijing: Aviation Industry Press.##
Michael, J. D., B. S. Henderson and K. W. Kinzie (2007). Turbulence Measurements of Separate-flow Nozzles with Pylon Interaction Using Particle Image Velocimetry. AIAA Journal 45(6), 1281-1289.##
Otter, J. J., R. Christie, I. Goulos, D. MacManus and N. Grech (2019). Parametric design of non-axisymmetric separate-jet aero-engine exhaust systems. Aerospace Science and Technology 93, 105186.##
Smith, C., N. Snyder and B. Vittal (1997). Analysis of an axisymmetric two-stream nozzle plume. Applied Aerodynamics Conference AIAA 1997-2283.##
Suder, L. K. (2013). NASA Environmentally Responsible Aviation Project’s Propulsion Technology Phase I Overview and Highlights of Accomplishments. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition AIAA 2013-0414.##
Tejero, F., M. Robinson, G. D. MacManus and C. Sheaf (2019). Multi-objective optimization of short nacelles for high bypass ratio engines. Aerospace Science and Technology 91, 410-421.##
Thomas, H. R., W. K. Kinzie and S. P. Paul (2001). Computational analysis of a pylon-chevron core nozzle interaction. 7th AIAA/CEAS Aeroacoustics Conference AIAA 2001-2185.##
Thomas, R. and K. Kinzie (2004). Jet-pylon interaction of high bypass ratio separate flow nozzle configurations. 10th AIAA/CEAS Aeroacoustics Conference. AIAA 2004-2827.##
Wang, D., M. H. Cong, Z. Y. Zhang, Y. W. Du and Y. Shi (2014). A Design Method of Turbofan Separate Exhaust System. CN103823921A.##
Wang, W. J., B. W. Liu, L. Zhou, Z. X. Wang and W. J. Deng (2021). Parametric Design Method for Aerodynamic Profiles of Continuous Curvature Non-Axisymmetric Nacelle. Journal of Propulsion Technology 42(7), 1827-1838.##
Wang, W. J., L. Zhou, Z. X. Wang and J. W. Shi. (2020). Influence of Geometric Parameters on Overall Performance of High Bypass Ratio Turbofan Nacelle and Exhaust System. Journal of Applied Fluid Mechanics 13(6), 1959-1973.##
Zhang, J. D., J. Chen, W. Wang, Y. G. Li and J. J. Liu (2014). A Design Method and Performance Research of Separately Exhaust System. Aeroengine 40(2), 47-50, 69.##
Zhou, E.C., C. Xu and X.H. Lai (2020). Large eddy simulation of Co-Axial Jets and Analysis of Sound Source. Journal of Engineering Thermophysics 41(9), 2199-2206.##
Zhu, F. and N. Qin (2014). Intuitive Class/Shape Function Parameterization for Airfoils. AIAA Journal 52(1), 17-25.##
Advisory Council for Aviation Research (2012). Realizing Europe’ Vision for Aviation. Strategic Research & Innovation Agenda. European Commission.##
Aeroengine Design Manual editorial committee (2002). Aeroengine Design Manual Volume 7 Intake and exhaust system design. Beijing: Aviation Industry Press.##
Andersson, N., L. E. Eriksson and L. Davidson (2005). Large-Eddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound. AIAA Journal 43(9), 1899-1912.##
Andreas, P., S. S. Zoltán, L. K. Wesley and R. Becky (2014). Ultra-short Nacelles for Low Fan Pressure Ratio Propulsors. In Proceeding of ASME Turbo Expo ASME GT2014-26369.##
Birch, N. T. (2000). 2020 vision: the prospects for large civil aircraft propulsion. Aeronautical Journal -New Series 104(1038), 347-352.##
Bridges, J. and M. Wernet (2002). Turbulence measurements of separate flow nozzles with mixing enhancement features. 8th AIAA/CEAS Aeroacoustics Conference AIAA 2002-2484.##
Cumpsty, N. (2010). Preparing for the future: reducing gas turbine environmental impact-IGTI scholar lecture. Journal of Turbomachinery 132, 041017.##
DeBonis, J. R. (2009). RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction. Journal of Fluids Engineering 131(4), 041104.##
European Commission (2011). Flightpath 2050. Europe’s Vision for Aviation. Report of the High Level Group on Aviation Research.##
Goulos, I., T. Stankowski and O. J. Etc (2016). Aerodynamic Design of Separate-Jet Exhausts for Future Civil Aero-engines-Part I: Parametric Geometry Definition and Computational Fluid Dynamics Approach. Journal of Engineering for Gas Turbines and Power 138, 081201-1.##
Goulos, I., T. Stankowski, D. MacManus, P. Woodrow and C. Sheaf (2018). Civil turbofan engine exhaust aerodynamics: Impact of fan exit flow characteristics. Aerospace Science and Technology 73, 85-95.##
Heidebrecht, A., T. Stankowski and D. MacManus (2016). Parametric geometry and computational process for turbofan nacelles. In Proceeding of ASME Turbo Expo ASME GT2016-57784.##
Hsiao, E., M. Su and J. Colehour (1997). Navier-Stokes analysis of a high by-pass engine exhaust system and plume. 15th Applied Aerodynamics Conference AIAA 1997-2282.13##
Hughes, C. (2011). The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration. AIAA Aero Sciences Meeting.##
Hunter, C., R. Thomas, K. Abdol-Hamid and S. Pao (2005). Computational Analysis of the Flow and Acoustic Effects of jet-pylon Interaction. 11th AIAA/CEAS Aeroacoustics Conference AIAA 2005-3083.15##
Kang, G. Q. and Q. Wang (2011). Numerical simulation on jet flow field of separate flow nozzles with chevron trailing edge. Journal of Aerospace Power 26(1), 154-160.##
Liang, D. W. and Y. Zhao (1998). Fundamentals of Fluids Mechanics. Beijing: Aviation Industry Press.##
Michael, J. D., B. S. Henderson and K. W. Kinzie (2007). Turbulence Measurements of Separate-flow Nozzles with Pylon Interaction Using Particle Image Velocimetry. AIAA Journal 45(6), 1281-1289.##
Otter, J. J., R. Christie, I. Goulos, D. MacManus and N. Grech (2019). Parametric design of non-axisymmetric separate-jet aero-engine exhaust systems. Aerospace Science and Technology 93, 105186.##
Smith, C., N. Snyder and B. Vittal (1997). Analysis of an axisymmetric two-stream nozzle plume. Applied Aerodynamics Conference AIAA 1997-2283.##
Suder, L. K. (2013). NASA Environmentally Responsible Aviation Project’s Propulsion Technology Phase I Overview and Highlights of Accomplishments. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition AIAA 2013-0414.##
Tejero, F., M. Robinson, G. D. MacManus and C. Sheaf (2019). Multi-objective optimization of short nacelles for high bypass ratio engines. Aerospace Science and Technology 91, 410-421.##
Thomas, H. R., W. K. Kinzie and S. P. Paul (2001). Computational analysis of a pylon-chevron core nozzle interaction. 7th AIAA/CEAS Aeroacoustics Conference AIAA 2001-2185.##
Thomas, R. and K. Kinzie (2004). Jet-pylon interaction of high bypass ratio separate flow nozzle configurations. 10th AIAA/CEAS Aeroacoustics Conference. AIAA 2004-2827.##
Wang, D., M. H. Cong, Z. Y. Zhang, Y. W. Du and Y. Shi (2014). A Design Method of Turbofan Separate Exhaust System. CN103823921A.##
Wang, W. J., B. W. Liu, L. Zhou, Z. X. Wang and W. J. Deng (2021). Parametric Design Method for Aerodynamic Profiles of Continuous Curvature Non-Axisymmetric Nacelle. Journal of Propulsion Technology 42(7), 1827-1838.##
Wang, W. J., L. Zhou, Z. X. Wang and J. W. Shi. (2020). Influence of Geometric Parameters on Overall Performance of High Bypass Ratio Turbofan Nacelle and Exhaust System. Journal of Applied Fluid Mechanics 13(6), 1959-1973.##
Zhang, J. D., J. Chen, W. Wang, Y. G. Li and J. J. Liu (2014). A Design Method and Performance Research of Separately Exhaust System. Aeroengine 40(2), 47-50, 69.##
Zhou, E.C., C. Xu and X.H. Lai (2020). Large eddy simulation of Co-Axial Jets and Analysis of Sound Source. Journal of Engineering Thermophysics 41(9), 2199-2206.##
Zhu, F. and N. Qin (2014). Intuitive Class/Shape Function Parameterization for Airfoils. AIAA Journal 52(1), 17-25.##
Volume 15, Issue 3 - Serial Number 64
May and June 2022
Pages 943-958
  • Received: 13 September 2021
  • Revised: 29 December 2021
  • Accepted: 01 January 2022
  • First Publish Date: 26 March 2022