Proper Orthogonal Decomposition Analysis of an Airfoil Performances under a Small Vortical Gust

Document Type : Regular Article


1 Laboratory of Wind Energy Management and Waste Energy Recovery, Research and Technologies Center of Energy, Ecoparck of Borj-Cedria, BP 95 Hammam lif, 2050, Tunisia

2 Laboratory of Thermal Process, Research and Technologies Center of Energy, Ecoparck of Borj-Cedria, BP 95 Hammam lif, 2050, Tunisia



This paper investigates the performance of a non-symmetric airfoil in a perturbed flow for a low Reynolds number by creating small vortical structures. A newly designed two-dimensional numerical tool is used to examine the interaction between the NACA 23015 airfoil and the vortex shedding from a square cylinder. Different airfoil position ratios are numerically simulated concerning the square cylinder G/D (D: square cylinder diameter), the channel centerline T/d (d=D/2), and the vortices scale size D/c (c: airfoil chord length). Results show that the maximum values of the lift and drag aerodynamic coefficients are influenced by the airfoil’s lateral and longitudinal positions. The Proper Orthogonal Decomposition (POD) method is used to identify the most energetic flow structures. For all simulated scenarios, it was found that the first two modes reflect the dominating coherent structures in the flow field. The results also show that a leading-edge vortex is formed over the airfoil. The observed phenomena of symmetric and antisymmetric shedding vortex mechanisms essentially depend on the lateral distance of the airfoil T/d and the vortex scale size D/c. However, the spectral analysis demonstrates that the shedding frequency mainly depends on the gap distance G/D.


Abbassi, H., S. Turki and S. Ben Nasrallah (2003) Interpolation functions in control volume finite element method. Computational Mechanics 30, 303-309.##
Alam, M. M., M. Moriya, K. Takai and H. Sakamoto (2003). Fluctuating Fluid Forces Acting on Two Circular Cylinders in a Tandem Arrangement at a Subcritical Reynolds Number. Journal of Wind Engineering and Industrial Aerodynamics 91, 139–154.##
Barnes, C. J. and M. R. Visbal (2018). Counterclockwise vortical-gust/airfoil interactions at a transitional Reynolds number. American Institute of Aeronautics and Astronautics Journal 56(7), 2540–2552.##
Bastine, D., B. Witha, M. Wächter and J. Peinke (2014). POD analysis of a wind turbine wake in a turbulent atmospheric boundary layer. Journal of Physics: Conference Series 524(1), 012153.##
Ben Salah, M. (2006). Contribution à resolution des problems des transferts couples de chaleur par les method des volumes finis. Ph. D. thesis, National of Engineering School of Monastir, University of Monastir, Monastir, Tunisia.##
Ben Salah, M., F. Askri and S. Ben Nasrallah (2005). Unstructured Control-Volume Finite-Element Method for Radiative Heat Transfer in a Complex 2-D Geometry. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology 48(5), 477-497.##
Biler, H., C. Badrya and A. R. Jones (2019). Experimental and computational investigation of transverse gust encounters. American Institute of Aeronautics and Astronautics Journal 57, 1–15.##
Breuer, M., J. Bernsdorf, T. Zeiser and F. Durst (2000). Accurate computations of the laminar fow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow 21, 186-196.##
Comini, G., M. Manzan and G. Cortella (1997). Open boundary conditions for the steamfunction-Vorticity formulation of unsteady laminar convection. Numerical Heat Transfer, Part B 31, 217.##
Dahmouni A. W., M. M. Oueslati, S. Ben Nasrallah (2017). Experimental Investigation of Tip Vortex Meandering in the Near Wake of a Horizontal-Axis Wind Turbine. Journal of Applied Fluid Mechanics 10(6), 1679-1688.##
Droandi, G., G. Gibertini and A. Zanotti (2016). Perpendicular blade–vortex-interaction over an oscillating airfoil in light dynamic stall. Journal of Fluid and Structures 65, 472–494.##
Han, R., W. Liu, X. L. Yang and X. H Chang (2021). Effect of NACA0012 Airfoil Pitching Oscillation on Flow Past a Cylinder. Energies 14, 5582.##
Huang, Z., G. Xi and W. Zhang (2012). Numerical simulation of spacing effects on the flow past two 2:1 rectangular cylinders in tandem at Re = 200. In proceedings of ASME Fluids Engineering Division Summer Meeting collocated with the ASME Heat Transfer Summer Conference, Rio Grande, Puerto Rico, USA, 1007-1015.##
Lau, Y. (2003). Experimental and Numerical Studies of Fluid-Structure Interaction in Flow-Induced Vibration Problems. Ph. D. thesis, The Hong Kong Polytechnic University, Hong Kong, China.##
Lefebvre, J. N. and A. R. Jones (2019). Experimental Investigation of Airfoil Performance in the Wake of a Circular Cylinder. American Institute of Aeronautics and Astronautics Journal 57(7), 2808-2818.##
Leite, H. F., A. C. Avelar, L. Abreu, D. Schuch and A. Cavalieri (2018). Proper orthogonal decomposition and spectral analysis of a wall-mounted square cylinder wake. Journal of Aerospace Technolgy and Management 10, e2118.##
Li, Y., X. N. Wang, Z-W. Chen and Z. C. Li (2014). Experimental study of vortex–structure interaction noise radiated from rod–airfoil configurations. Journal of Fluid and Structures 51(4), 313-325.##
Liao, Q., G. J. Dong and X. Y. Lu (2004). Vortex formation and force characteristics of a foil in the wake of a circular cylinder. Journal of Fluid and Structures 19(4), 491-510.##
Lissaman, P. B. S. (1983). Low-Reynolds number airfoils. Annual Review of Fluid Mechanics 15, 223-239.##
Lua, K. B., T. T. Lim and K. S. Yeo (2011). Effect of Wing-Wake Interaction on Aerodynamic Force Generation on a 2D Flapping Wing. Experiments in Fluids 51(1), 177–195.##
Martínez, M. C. and O. Flores (2020). Analysis of vortical gust impact on airfoils at low Reynolds number. Journal of Fluid and Structures 99, 103138.##
Mueller, T. J. and J. D. DeLaurier (2003). Aerodynamics of small vehicles. Annual Review of Fluid Mechanics 35, 89-111.##
Mueller, T. J., J. C. Kellogg, P. G. Ifju and S. Shkarayev (2007). Introduction to the design of fixed wing micro air vehicles including three case studies. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, USA.##
Mula, S. M., and C. E. Tinney (2014). Classical and snapshot forms of the POD technique applied to a helical vortex filament. In Proceeding of the 32nd AIAA Applied Aerodynamics Conference, 3257.##
Nikfarjam, F. and A. Sohankar (2015). Study of hysteresis associated with power-law fluids past square prisms arranged in tandem. Ocean Engineering 104, 698-713.##
Oberleithner, K., M. Sieber, C. N. Nayeri, C. O.  Paschereit, C. Petz, H. C. Hege, B. R. Noack and I. Wygnanski (2011). Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. Journal of Fluid Mechanics 679, 383–414.##
Ol'shanskii, M. A. and V. M. Staroverovon (2000). On Simulation of outflow boundary conditions in finite difference calculations for incompressible fluid. International Journal in Numerical Methods in Fluids 33, 499.##
Peng, D. and J. W. Gregory (2017). Asymmetric distributions in pressure/load fluctuation levels during blade-vortex interactions. Journal of Fluid and Structures 68, 58–71.##
Perrotta, G. and A. R. Jones (2017). Unsteady forcing on a flat-plate wing in large transverse gusts. Experiments in Fluids 58(8), 101-112.##
Prakash, C. and S. V. Patanker (1985). A Control Volume Based Finite Element Method for solving the Navier-Stokes Equations Using Equal Order Velocity Pressure Interpolation. Numer Heat Transfer 8, 259.##
Roshko, A. (1954). On the development of turbulent wakes from vortex streets, National Advisory Committee for Aeronautics, NACA Technical Report 1191.##
Saabas, H. J. and B. H. Baliga (1994). Co-located equal-order control volume finite Element method for multidimensional incompressible fluid flow part I: Formulation. Numerical Heat Transfer Part B, 26-409.##
Samani, M. (2014). Study of Coherent Structures in Turbulent Flows Using Proper Orthogonal Decomposition. Ph. D. thesis, University of Saskatchewan, Canada.##
Schneider, G. E. and M. J. Raw (1987). A Skewed Positive Influence Coefficient Upwinding Procedure for Control Volume Based Finite Element Convection Diffusion Computation. Numerical Heat Transfer 11, 363.##
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures part I: coherent structures. Quarterly of Applied Mathematics 45(3), 561-571.##
Streitlien, K., G. S. Triantafyllou and M. S. Triantafyllou (1996). Efficient foil propulsion through vortex control. American Institute of Aeronautics and Astronautics Journal 34(11), 2315-2319.##
Tang, G. Q., C. Q. Chen, M. Zhao and L. Lu (2015). Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number. Water Science and Engineering 8(4), 315-325.##
Unal, M. and D. Rockwell (1988). On vortex formation from a cylinder, Part 2, Control by splitter-plate interference. Journal of Fluid Mechanics 190, 513–529.##
Vakil, A. and S. I. Green (2013). Numerical study of two-dimensional circular cylinders in tandem at moderate Reynolds numbers. Transactions ASME Ser I: Journal of Fluids Engineering 135(7), 071204.##
Wang. F. and K. M. Lam (2019). Symmetric and antisymmetric characterization of turbulent flow past a square cylinder of low aspect ratio. In Proceeding of the Fourth Thermal and Fluids Engineering Conference, Las Vegas, NV, USA, 767-775.##
Weiland, C. and P. Vlachos (2007). Analysis of the parallel blade vortex interaction with leading edge blowing flow control using the proper orthogonal decomposition. In proceedings of ASME Fluids Engineering Division Summer Meeting collocated with the fifth Joint ASME/JSME Fluid Engineering Conference, San Diego, California, USA, 1523-1533.##
Zdravkovich, M. (1987). Review of flow interference between two circular cylinders in various arrangements. Transactions ASME Ser I: Journal of Fluids Engineering 99, 618.##
Zehner, P., F. Falissard and X. Gloerfelt (2018). Aeroacoustic study of the interaction of a rotating blade with a Batchelor vortex. American Institute of Aeronautics and Astronautics Journal 56, 629–647.##
Zhang, Z., Z. Wang and I. Gursul (2020). Lift Enhancement of a Stationary Wing in a Wake. American Institute of Aeronautics and Astronautics Journal 58(11), 4613-4619.##