Acoustic and Thermoacoustic Jet Propulsion

Document Type : Regular Article

Authors

1 Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados 5001, bairro Bangú, Santo André, SP CEP 09210-580 Brazil

2 Combustion and Propulsion Laboratory, National Institute for Space Research, Rodovia Presidente Dutra, km 40, Cachoeira Paulista, SP, CEP 12630-970, Brazil

3 Center for Natural and Human Sciences, Federal University of ABC, Av. dos Estados 5001, bairro Bangú, Santo André, SP CEP 09210-580 Brazil (Current address: SBND Laboratory, Neutrino Division – Fermilab – Batavia, IL 60510 USA)

10.47176/jafm.16.03.1396

Abstract

This manuscript bridges the fields of jet propulsion, synthetic jets and thermoacoustic engines. We introduce the case that synthetic jets in air can be considered a consistent approach for propulsion systems. To date, studies on synthetic jet propulsion have been scattered and rather subsidiary. Furthermore, investigating the perspective of propulsion can provide new insights into the field of synthetic jets and the physics of propulsion. In this work, synthetic jet propulsion in air is demonstrated and studied for acoustic and thermoacoustic cases. We developed synthetic jet systems and characterized the resulting propulsion regarding several relevant parameters such as geometric factors and the frequency and power of acoustic jets electromechanically and thermally produced. We demonstrated the 10.4-mN and 2.7-mN thrust in the acoustic and thermoacoustic modes, respectively, using compact tabletop assemblies. The physical mechanism of the jets has been modeled, simulated, verified with Schlieren imaging and laid in the perspective of adherent literature. Similarities and differences regarding traditional jet propulsion systems are discussed. Synthetic jet propulsion in air using a thermal cycle is experimentally demonstrated for the first time.

Keywords


Backhaus, S. and G. Swift (1999). A thermoacoustic stirling heat engine. Nature 399, 335–338.##
Blade, A. (2021). Thermoacoustic heat engine with thrust? - short heat engine experiment with standing wave [Video], march 6th.  https://youtu.be/uZwQwztWC2A. retrieved 24/08/21.##
Chang, J., S. Zheng, Y. Du, J. Xu, Y. Liu, B. Guo, Y. Pan, B. Han (2020). Investigation of vortex rings for free jet and synthetic jet at various reynolds numbers and strouhal numbers. Mathematical Problems in Engineering Article ID 1503628. ##
Chen, G., G. Krishan, Y. Yang, L. Tang and B. Mace (2020). Numerical investigation of synthetic jets driven by thermoacoustic standing waves. International Journal of Heat and Mass Transfer 146,118859.##
Chitsaz, I., M. H. Saidi, and A. A. Mozafari (2011). Semi analytical solution to transient start of weakly underexpanded turbulent jet. Journal of fluids engineering 133(9), 091204.##
Crowther, W. J. and L. T. Gomes (2008) An evaluation of the mass and power scaling of synthetic jet actuator flow control technology for civil transport aircraft applications. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 222 (5), 357-372.##
Dabiri, J. O. (2009). Optimal vortex formation as a unifying principle in biological propulsion. Annual Review of Fluid Mechanics 41, 17–33.##
De Guyon, G. and K. Mulleners (2022). Estimating the non-dimensional energy of vortex rings by modelling their roll-up. Journal of Fluid Mechanics 940.##
Dobson, R. T. (2003). An open oscillatory heat pipe steam-powered boat. International Journal of Mechanical Engineering Education 31, 4 339-358.##
Geng, T., F. Zheng, A. V. Kuznetsov, W. L. Roberts and D. E. Paxson (2010). Comparison between numerically simulated and experimentally measured flowfield quantities behind a pulsejet. Flow Turbulence Combust 84, 653-667.##
Gil, P. and E. Smyk (2019). Synthetic jet actuator efficiency based on the reaction force measurement. Sensors and Actuators A: Physical 295, 405-413.##
Glezer, A. and M. Amitay (2002). Synthetic jets. Annual Review of Fluid Mechanics 34, 503-529.##
Hecht, F. (2012). New development in FreeFem++. Journal of Numerical Mathematics 20 (3-4), 251-266.##
Helmholtz, H. V. (1858). Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. Journal für die Reine und Angewandte Mathematik 55, 25-55.##
Holman. R., Y. Utturkar, R. Mittal, B. L. Smith and L. Cattafesta (2005). Formation criterion for synthetic jets. American Institute of Aeronautics and Astronautics Journal 43(10), 2110-2116.##
Ingård, U. and S. Labate (1950). Acoustic circulation effects and the nonlinear impedance of orifices. The Journal of the Acoustical Society of America 22(2), 211-218.##
Ingård, U. (2008). Notes on Acoustics. Infinity Science Press, LLC, Hingham.##
Ishii, R., H. Hujimoto, N. Hatta and Y. Umeda (1999). Experimental and numerical analysis of circular pulse jets. Journal of Fluid Mechanics 392, 129-153.##
Jankee, G. K. and B. Ganapathisubramani (2019). Influence of internal orifice geometry on synthetic jet performance. Experiments in Fluids 60(4), 1-11.##
Jeng, T. M. and W. T. Hsu (2016). Experimental study of mixed convection heat transfer on the heated plate with the circular-nozzle synthetic jet. International Journal of Heat and Mass Transfer 97, 559-568.##
Kordík, J. and Z. Trávníček (2018) Novel nozzle shapes for synthetic jet actuators intended to enhance jet momentum flux. Actuators 7 (53), 1-13.##
Lamb, H. (1993). Hydrodynamics. Cambridge University Press, New York.##
Li, C. and J. Yang (2017) Roll control using only synthetic jet actuators at high angle of attack. Journal of Aircraft 54 (1), 369-375.##
McCormick, D. C. (2000). Boundary layer separation with directed synthetic jets. In American Institute of Aeronautics and Astronautics 38th Aerospace Sciences Meeting and Exhibit, Reno, Nev USA.##
Pack, L. G. and A. Seifert (2001). Periodic excitation for jet vectoring and enhanced spreading. Journal of Aircraft 38(3), 486-495.##
Paxson, D. E., M. P. Wernet and W. T. John (2007). Experimental investigation of unsteady thrust augmentation using a speaker-driven jet. AIAA Journal 45 (3), 607-614.##
Piot, T. (1892). Improvements in Steam Generators. UK Patent 20,081 Issue date: 0ct. 15.##
Qin. L., Y. Xiang, S. Qin and H. Liu (2020). On the structures of compressible vortex rings generated by the compressible starting jet from converging and diverging nozzles. Aerospace Science and Technology 106, 106188.##
Rogers, W. B. (1858). On the formation of rotating rings by air and liquids under certain conditions of discharge. The American Journal of Science and Arts 26, 246–258.##
Swift, G. W. (1988). Thermoacoustic engines. The Journal of the Acoustical Society of America 84, 1145.##
Thomas, A. P., M. Milano, M. G. G'Sell, K. Fischer and J. Burdick (2005). Synthetic jet propulsion for small underwater vehicles. Proceedings of the 2005 Institute of Electrical and Electronics Engineers International Conference on Robotics and Automation, IEEE.##
Trávníček, Z., Z. Broučková and J. Kordík (2012). Formation criterion for axisymmetric synthetic jets at high stokes numbers. American Institute of Aeronautics and Astronautics Journal 50(9), 2012-2017.##
Wang, H. and S. Menon (2001). Fuel–air mixing enhancement by synthetic microjets. American Institute of Aeronautics and Astronautics Journal 39(12), 2308-2319.##
Windall, S. E. and J. P. Sullivan (1973). On the stability of vortex rings. Proceedings of the Royal Society of London A 332, 335-353##
Whitehead, J. and I. Gursul (2006) Interaction of synthetic jet propulsion with airfoil aerodynamics at low reynolds numbers. AIAA Journal 44 (5), 1753-1766.##
Xu, H., Y. He, K. L. Strobel, C. K. Gilmore, S. P. Kelley, C. C. Hennick, T. Sebastian, M. R. Woolston, D. J. Perreault and S. R. Barrett (2018). Flight of an aeroplane with solid-state propulsion. Nature 563(7732), 532-535.##