Numerical Study of Microstructures and Roughness Design Effects on Surface Hydrophilicity through the Lattice Boltzmann Method

Document Type : Regular Article


1 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2 Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China Wuhan, China

3 School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

4 Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China



Hydrophilicity is one of the most vital characteristics of titanium (Ti) implants. Surface structure design is a powerful and efficient strategy for improving the intrinsic hydrophilic ability of Ti implants. Existing research has focused on experimental exploration, and hence, a reliable numerical model is needed for surface structure design and corresponding hydrophilicity prediction. To address this challenge, we proposed a numerical model to analyze the droplet dynamics on Ti surfaces with specific microstructures designed through the lattice Boltzmann method (LBM). In this work, a Shan-Chen (SC) model was applied in the simulations. We simulated droplets spreading on smooth and micropillar surfaces with various wettability and provided a comprehensive discussion of the edge locations, contact line, droplet height, contact area, surface free energy, and forces to reveal more details and mechanisms. To better tune and control the surface hydrophilicity, we investigated the effects of micropillar geometric sizes (pillar width a, height h, and pitch b) on hydrophilicity via single factor analysis and the response surface method (RSM). The results show that the hydrophilicity initially increases and then decreases with an increasing a, increases with an increasing h, and decreases with an increasing d. In addition, the interaction effects of a-d and h-d are significant. The optimization validation of the RSM also demonstrates the accuracy of our lattice Boltzmann (LB) model with an error of 0.687%. Here, we defined a dimensionless parameter ξ to integrate the geometric parameters and denote the surface roughness. The hydrophilicity of Ti surfaces improves with an increasing surface roughness. In addition, the effect of the microstructure geometry shape was investigated under the same value of surface roughness. Surfaces with micropillars show the best hydrophilicity. Moreover, this study is expected to provide an accurate and reliable LB model for predicting and enhancing the intrinsic hydrophilicity of Ti surfaces via specific microstructure and roughness designs.


Abhijith, N. V., C. P. Priyanka, U. Sudeep and K. K. Ramachandran (2021). Crystallinity and wettability induced osteogenic behaviors of commercially pure Ti and Ti-6Al-4V alloy implant surfaces having multiscale surface topography. Materials Today: Proceedings 46(19), 9405-9411.##
Aldhaleai, A. and P. A. Tsai (2020). Effect of a cationic surfactant on droplet wetting on superhydrophobic surfaces. Langmuir 36(16), 4308-4316.##
Cassie, A. B. D. and S. Baxter (1944). Wettability of porous surfaces. Transactions of the Faraday Society 40, 546-551.##
Chen, Y., W. P. Peng, X. F. Hu and C. Zhang (2022). Functional performance of Silicon with periodic surface structures induced by femtosecond pulsed laser. Coatings 12(6), 716.##
Davar, H., N. M. Nouri and M. Navidbakhsh (2021). Effects of superhydrophobic, hydrophobic and hybrid surfaces in condensation heat transfer. Journal of Applied Fluid Mechanics 14(4), 1077-1090.##
Díaz-Cuenca, A., D. Rabadjieva, K. Sezanova, R. Gergulova, R. Ilieva and S. Tepavitcharova (2022). Biocompatible calcium phosphate-based ceramics and composites. Materials Today: Proceedings 61(4), 1217-1225.##
Dong, Y. Q., L. Long, P. Zhang, D. P. Yu, Y. N. Wen, Z. Zheng, J. Wu and W. Chen (2021). A chair-side plasma treatment system for rapidly enhancing the surface hydrophilicity of titanium dental implants in clinical operations. Journal of Oral Science 63(4), 334-340.##
Du, P., D. Song, F. Ren, Q. Xue and H. Hu (2017). Flow characterizations and drag reduction on the hydrophobic surface with a full covering gas film. Journal of Applied Fluid Mechanics 10(2), 491-498.##
Ezzatneshan, E. (2019). Simulation of dipole vorticity dynamics colliding viscous boundary layer at high Reynolds numbers. Journal of Applied Fluid Mechanics 12(4) 1073-1081.##
Ezzatneshan, E. and H. Vaseghnia (2019). Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects. Physica A: Statistical Mechanics and its Applications 541, 123258.##
Ezzatneshan, E. and R. Goharimehr (2021). A pseudopotential lattice boltzmann method for simulation of two-phase flow transport in porous medium at high-density and high–viscosity ratios. Geofluids 2021, 5668743.##
Fei, L. L., F. F. Qin, G. Wang, K. H. Luo, D. Derome and J. Carmeliet (2022). Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling. Physical Review E 105(2), 025101.##
Guo, L. X., Y. H. Guo, L. Zhong and J. T. Zhu (2022). Research on back analysis of meso-parameters of hydraulic cemented sand and gravel based on Box-Behnken design response surface. Science and Engineering of Composite Materials 29(1), 84-96.##
He, W., P. Yao, D. Chu, H. Sun, Q. Lai, Q. Wang, P. Wang, S. Qu and C. Huang (2022). Controllable hydrophilic titanium surface with micro-protrusion or micro-groove processed by femtosecond laser direct writing. Optics & Laser Technology 152, 108082.##
Huang, H., D. T. Thorne, M. G. Schaap and M. C. Sukop (2007). Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Physical Review E 76, 066701.##
Li, M., S. Komasa, S. Hontsu, Y. Hashimoto and J. Okazaki (2022). Structural characterization and osseointegrative properties of pulsed laser-deposited fluorinated hydroxyapatite films on nano-Zirconia for implant applications. International Journal of Molecular Sciences 23(5), 2416.##
Liddell, R. S., Z. M. Liu, V. C. Mendes and J. E. Davies (2020). Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points. Clinical Oral Implants Research 31(1), 49-63.##
Lin, G., C. Geng, L. Zhang and F. Hut (2022). Improved multicomponent multiphase lattice Boltzmann model for physical foaming simulation. Journal of Applied Fluid Mechanics 15(4), 1125-1136.##
Mohammadrezaei, S., M. Siavashi and S. Asiaei (2022). Surface topography effects on dynamic behavior of water droplet over a micro-structured surface using an improved-VOF based lattice Boltzmann method. Journal of Molecular Liquids 350, 118509.##
Mosas, K. K. A., A. R. Chandrasekar, A. Dasan, A. Pakseresht and D. Galusek (2022). Recent advancements in materials and coatings for biomedical implants. Gels 8(5), 323.##
Pan, C. F., Z. Chen, Q. M. Tang, Z. G. He, L. M. Wang, H. H. Li and W. Q. Zhou (2022). Heat dissipation improvement of Lithium battery pack with liquid cooling system based on Response-Surface optimization. Journal of Energy Engineering 148(4), 1943-7897.##
Panda, D., S. Bhaskaran, S. Paliwal, A. Kharaghani, E. Tsotsas and V. K. Surasani (2020). Pore-scale physics of drying porous media revealed by Lattice Boltzmann simulations. Drying Technology 40(6), 1114-1129.##
Park, J. W., J. H. Seo and H. J. Lee (2022). Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant. Journal of Biomaterial Applications 37(3), 447-458.##
Pham, D. Q., S. Gangadoo, C. C. Berndt, J. Chapman, J. L. Zhai, K. Vasilev, V. K. Truong and A. S. Ang (2022). Antibacterial longevity of a novel Gallium liquid metal/hydroxyapatite composite coating fabricated by plasma spray. ACS Applied Materials & Interfaces 14(16), 18974-18988.##
Sun, Y. L., A. Rahmani, T. Saeed, M. Zarringhalam, M. Ibrahim and D. Toghraie (2021). Simulation of deformation and decomposition of droplets exposed to electro-hydrodynamic flow in a porous media by lattice Boltzmann method. Alexandria Engineering Journal 61(1), 631-646.##
Tallet, L., V. Gribova, L. Ploux, N. E. Vrana and P. Lavalle (2021). New smart antimicrobial hydrogels, nanomaterials, and coatings: earlier action, more specific, better dosing? Advanced Healthcare Materials 10(1), 2001199.##
Tao, B. L., W. K. Zhao, C. C. Lin, Z. Yuan, Y. He, L. Lu, M. Chen, Y. Ding, Y. Yang, Z. Xia and K. Cai (2020). Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chemical Engineering Journal 390, 124621.##
Wang, D. H., Q. Q. Sun, M. J. Hokkanen, C. L. Zhang, F. Y. Lin, Q. Liu. S. P. Zhu, T. Zhou, Q. Chang, B. He and Q. Zhou (2020). Design of robust superhydrophobic surfaces. Nature 582(7810), 55-59.##
Wang, H., J. Q. Liu, C. T. Wang, S. G. Shen, X. D. Wang and K. L. Lin (2021). The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration. Journal of Materials Science & Technology 63, 18-26.##
Wang, M. H., Y. M. Xiong, L. M. Liu and G. Peng (2018). LBM investigation of immiscible displacement in a channel with regular surface roughness. Transport in Porous Media 123(1), 195-215.##
Wang, X., B. Xu, Y. Wang and Z. Q. Chen (2019). Directional migration of single droplet on multi-wetting gradient surface by 3D lattice Boltzmann method. Computers & Fluids 198, 104392.##
Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Transactions of The Faraday Society 28(8), 988-994.##
Yan, X. X., W. Cao and H. H. Li (2022). Biomedical alloys and physical surface modifications: A Mini-Review. Materials 15(1), 66.##
Yang, W. E. and H. H. Huang (2021). TiO2 nanonetwork on rough Ti enhanced osteogenesis in vitro and in vivo. Journal of Dental Research 100(10), 1186-1193.##
Yin, Q., Q. Guo, Z. L. Wang, Y. Q. Chen, H. G. Duan and P. Cheng (2021). 3D-Printed bioinspired Cassie-Baxter wettability for controllable microdroplet manipulation. ACS Applied Materials & Interfaces 13(1), 1979-1987.##
Zhang, B. J., J. Park, K. J. Kim and H. Yoon (2012). Biologically inspired tunable hydrophilic/hydrophobic surfaces: a copper oxide self-assembly multitier approach. Bioinspiration & Biomimetics 7(3), 036011.##
Zhang, X. Y., M. Y. Huang, Q. Ji and X. B. Luo (2018). Lattice Boltzmann modeling and experimental study of water droplet spreading on wedge-shaped pattern surface. International Journal of Heat and Mass Transfer 130, 857-861.##
Zhang, Z. C., R. G. Xu, Y. Yang, C. A. Liang, X. L. Yu, Y. Liu, T. Wang, Y. Yu and F. Deng (2021). Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to improve osseointegration. Journal of Nanobiotechnology 19(1), 78.##